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АФФИННЫЙ ОРТОГОНАЛЬНЫЙ ТЕНЗОР

1. Преобразование ортонормированных базисов

Рассмотрим два ортонормированных базиса ei и ẽi в Rn. Из ортогональ-
ности и нормировки следует

(ei, ek) = δik, (ẽi, ẽk) = δik.

Условимся называть ei старым базисом, а ẽi — новым базисом.
Разложив векторы нового базиса ẽi по старому базису ei, получим

ẽi =
n∑

j=1

αijej, i = 1, 2, . . . , n, (1.1)

где αij называют коэффициентами прямого преобразования, а матрицу (αij)
— матрицей перехода от старого базиса ei к новому ẽi. Разлагая векторы
старого базиса ei по новому ẽi, будем иметь

ek =
n∑

j=1

βkjẽj, k = 1, 2, . . . , n, (1.2)

где βkj называют коэффициентами обратного преобразования, а матрица
(βkj) перехода от нового базиса к старому является матрицей обратной (αij).

Умножая скалярно (1.1) на ek, находим

(ẽi, ek) =
n∑

j=1

αij(ej, ek) =
n∑

j=1

αijδij = αik.

Аналогично, умножая (1.2) скалярно на ẽi, получаем

(ẽi, ek) = βki.

Откуда следует, что
βki = αik,

т.е. матрица (βij), обратная матрице (αij), получается транспонированием
матрицы (αij).

Окончательно получаем следующие формулы преобразования ортонорми-
рованных базисов

ẽi =
n∑

j=1

αijej, ei =
n∑

j=1

αjiẽj.

Заметим, что в первой формуле прямого преобразования индекс суммиро-
вания у αij — второй, а во второй формуле обратного преобразования индекс
суммирования у αji — первый.
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2. Определение аффинного ортогонального тензора

Определение 2.1. Скалярная величина L, инвариантная относитель-
но перехода от одного ортонормированного базиса к другому ортонормиро-
ванному базису, называется аффинным ортогональным тензором нулевого
ранга.

Определение 2.2. Пусть объект L в Rn определяется в каждом ор-
тонормированном базисе ei совокупностью np чисел

Li1i2···ip,

где is = 1, 2, . . . , n; s = 1, 2, . . . , p.

Если при переходе от базиса ei к любому новому ортонормированному
базису ẽi эти числа преобразуются по закону

L̃i1i2···ip =

n∑
j1,j2,...,jp=1

αi1j1αi2j2 · · ·αipjpLj1j2···jp,

где (αij) — матрица прямого преобразования, то L называют аффинным
ортогональным тензором p-го ранга в пространстве Rn и обозначают Li1i2···ip.

Пример 2.1. Любой вектор в Rn является аффинным ортогональным
тензором первого ранга. Во-первых, в каждом ортонормированном базисе ei
вектор x определяется 31 координатами. Во-вторых, при переходе от одного
ортонормированного базиса к другому ортонормированному базису коорди-
наты вектора x преобразуются по тензорному закону.

Действительно,

x =
n∑

j=1

xjej =
n∑

j=1

xj

n∑
i=1

αijẽi =
n∑

i=1

(
n∑

j=1

αijxj

)
ẽi =

n∑
i=1

x̃iẽi.

Откуда следует

x̃i =
n∑

j=1

αijxj.

Замечание 2.1. Если провести аналогичные преобразования

x =
n∑

j=1

x̃jẽj =
n∑

j=1

x̃j

n∑
i=1

αjiei =
n∑

i=1

(
n∑

j=1

αjix̃j

)
ei =

n∑
i=1

xiei,

то получим формулу преобразования координат вектора x

xi =
n∑

j=1

αjix̃j
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при переходе от нового ортонормированного базиса к старому ортонормиро-
ванному базису, т.е. координаты вектора x в Rn преобразуются по тем же
законам, что и ортонормированные базисы:

x̃i =
n∑

j=1

αijxj , xi =
n∑

j=1

αjix̃j .

Пример 2.2. Символ Кронекера

δij = (ei, ej),

определенный в ортонормированном базисе ei пространства Rn, является аф-
финным ортогональным тензором второго ранга.

Действительно, числа δij имеют n2 значений: δij = 1, если i = j, и δij = 0,
если i ̸= j, i = 1, 2, . . . , n; j = 1, 2, . . . , n. Кроме того при переходе от одного
ортонормированного базиса в Rn к другому ортонормированному базису эти
числа преобразуются по тензорному закону. В самом деле,

δ̃ij = (ẽi, ẽj) =

(
n∑

k=1

αikek,
n∑
l=1

αjlel

)
=

=
n∑

k=1

n∑
l=1

αikαjl(ek, el) =
n∑

k=1

n∑
l=1

αikαjlδkl.

Пример 2.3. Центральная (неконическая) поверхность второго порядка
с центром в начале координат является аффинным ортогональным тензором
второго ранга в пространстве R3.

Ее уравнение можно записать в виде

3∑
k=1

3∑
m=1

akmxkxm = 1,

где матрица коэффициентов (akm) — симметричная. Следовательно, поверх-
ность задается 32 координатами (ее коэффициентами akm).

Используя закон преобразования вектора при переходе от одного орто-
нормированного базиса к другому

xk =
3∑

i=1

αikx̃i , xm =
3∑

j=1

αjmx̃j ,

получим уравнение поверхности в базисе ẽi

3∑
k=1

3∑
m=1

akm

3∑
i=1

αikx̃i

3∑
j=1

αjmx̃j = 1,
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3∑
i=1

3∑
j=1

(
3∑

k=1

3∑
m=1

αikαjmakm

)
x̃ix̃j = 1,

то есть

ãij =
3∑

k=1

3∑
m=1

αikαjmakm.

Следовательно, коэффициенты центральной поверхности второго порядка
преобразуются по тензорному закону, и рассматриваемая поверхность - аф-
финный ортогональный тензор в пространстве R3.

3. Аффинный ортогональный тензор второго ранга как линейный
оператор

Перейдем к более подробному изучению аффинного ортогонального тен-
зора второго ранга, так как в физических приложениях наиболее часто ис-
пользуется именно этот тензор.

Определение 3.1. Рассмотрим линейный оператор L : Rn → Rn

y = Lx.

Координатами оператора L в ортонормированном базисе ei будем назы-
вать коэффициенты разложения образов Lei по базису ei.

Теорема 3.1. Линейный оператор L : Rn → Rn является аффинным
ортогональным тензором второго ранга в Rn.

Доказательство: Прежде всего напомним, что в силу линейности опера-
тора для любых векторов x1,x2 из пространства Rn и любых действительных
чисел c1, c2 выполняется

L(c1x1 + c2x2) = c1Lx1 + c2Lx2.

Пусть разложение образов Lei по базису ei имеет вид

Lei =
n∑

k=1

Likek.

Умножая это равенство скалярно на ej, получаем выражения для координат
Lij линейного оператора L в ортонормированном базисе ei

(Lei, ej) =
n∑

k=1

Lik(ek, ej) =
n∑

k=1

Likδik = Lij.

Аналогично в базисе ẽi
L̃ij = (Lẽi, ẽj).
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Подставляя в последнее равенство выражения

ẽi =
n∑

k=1

αikek, ẽj =
n∑

m=1

αjmem,

имеем

L̃ij = (Lẽi, ẽj) =

(
L

n∑
k=1

αikek,
n∑

m=1

αjmem

)
=

=
n∑

k=1

n∑
m=1

αikαjm(Lek, em) =
n∑

k=1

n∑
m=1

αikαjmLkm.

Таким образом линейный оператор L : Rn → Rn имеет n2 координат и эти
координаты преобразуются по тензорному закону. Теорема доказана.

Определение 3.2. Пусть Lij — аффинный ортогональный тензор вто-
рого ранга. Будем говорить, что оператор L : Rn → Rn порожден тензором
Lij, если для каждого вектора

x =
n∑

i=1

xiei

вектор Lx определен по формуле

Lx =
n∑

i=1

xiLei,

где Lei =
n∑

k=1

Lkiek.

Теорема 3.2. Оператор L : Rn → Rn, порожденный аффинным ортого-
нальным тензором второго ранга Lij, является линейным оператором.

Доказательство: Если

x =
n∑

i=1

xiei, y =
n∑

i=1

yiei,

то для любых постоянных действительных чисел c1, c2 имеем

L(c1x+ c2y) =

n∑
i=1

(c1xi + c2yi)Lei = c1

n∑
i=1

xiLei + c2

n∑
i=1

yiLei =

= c1Lx+ c2Ly.
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Теорема 3.3. Линейный оператор L : Rn → Rn, порожденный аффин-
ным ортогональным тензором второго ранга Lij, не зависит от выбора
ортонормированного базиса в Rn.

Доказательство: Пусть L̃ij — координаты тензора Lij в новом базисе
ẽi. Тогда линейный оператор L̃, порожденный этим тензором, для каждого

вектора x =
n∑

i=1

x̃iẽi принимает значение

L̃x =
n∑

i=1

x̃iL̃ẽi,

где L̃ẽi =
n∑

k=1

L̃kiẽk.

Докажем, что
L̃x = Lx.

В самом деле

L̃x =
n∑

i=1

x̃iL̃ẽi =
n∑

i=1

x̃i

n∑
k=1

L̃kiẽk =

=
n∑

i=1

x̃i

n∑
k=1

(
n∑
l=1

n∑
m=1

αklαimLlm

)
ẽk =

=
n∑

m=1

(
n∑

i=1

αimx̃i

)
n∑
l=1

Llm

(
n∑

k=1

αklẽk

)
=

=
n∑

m=1

xm

n∑
l=1

Llmel =
n∑

m=1

xmLem = Lx.

Теорема доказана.
Вывод. Мы доказали, что каждому аффинному ортогональному тензо-

ру второго ранга однозначно ставится в соответствие линейный оператор L.
С другой стороны любой линейный оператор L в Rn можно трактовать как
аффинный ортогональный тензор. Таким образом аффинный ортогональный
тензор второго ранга можно отождествить с линейным оператором, задавае-
мым матрицей

L = L11L21Ln1L12L22Ln2L1nL2nLnn.

4. Приведение симметричного аффинного ортогонального тензора
второго ранга к главным осям
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Определение 4.1. Тензор Lij называется симметричным, если для лю-
бых индексов i и j выполняется

Lij = Lji.

Пользуясь результатами предыдущего пункта будем рассматривать аф-
финный ортогональный тензор второго ранга как линейный оператор y =
Lx.

Определение 4.2. Собственными числами и собственными вектора-
ми аффинного ортогонального тензора Lij называют собственные числа и
собственные вектора линейного оператора, порождаемого этим тензором,
т.е. ненулевые решения x и соответствующие им числа λ уравнения

Lx = λx.

Для симметричного тензора собственные числа λ находятся из уравнения∣∣∣∣∣∣∣∣
L11 − λ L12 . . . L1n

L21 L22 − λ . . . L2n

. . . . . . . . . . . .
Ln1 Ln2 . . . Lnn − λ

∣∣∣∣∣∣∣∣ = 0 .

Если тензор L симметричный, то его собственные числа λ1, λ2, . . . , λn —
вещественны и для них находится система собственных ортонормированных
векторов e1, e2, . . . , en, образующих базис в пространстве Rn. В этом базисе
матрица оператора L принимает диагональный вид

L1 0 0 . . . 0
0 L2 0 . . . 0
0 0 L3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . Ln

 .

Определение 4.3. Выбор базиса ei, в котором матрица симметричного
аффинного ортогонального тензора второго ранга имеет диагональный вид,
называется приведением тензора к главным осям.

5. Инвариантные билинейные формы

Определение 5.1. Билинейной формой от 2n действительных пере-
менных x1, x2, . . . , xn; y1, y2, . . . , yn, порожденной матрицей

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 ,
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называется однородный многочлен второй степени

(x, Ay) =
n∑

i=1

n∑
k=1

aikxiyk.

Билинейная форма называется симметричной, если матрица ее коэф-
фициентов симметричная.

Симметричная билинейная форма, у которой всегда y = x,

(x, Ax) =
n∑

i=1

n∑
k=1

aikxixk,

называется квадратичной формой.
Билинейная форма называется инвариантной, если при переходе от од-

ного ортонормированного базиса в Rn к другому ортонормированному базису
ее значение для любых векторов x и y не изменяется.

Теорема 5.1. Коэффициенты инвариантной билинейной формы образу-
ют аффинный ортогональный тензор второго ранга.

Доказательство: Предположим,что в базисе ei билинейная форма имеет
вид

n∑
i=1

n∑
k=1

aikxiyk,

а в базисе ẽi — вид
n∑
l=1

n∑
m=1

ãlmx̃lỹm

и в силу ее инвариантности выполняется равенство

n∑
l=1

n∑
m=1

ãlmx̃lỹm =
n∑

i=1

n∑
k=1

aikxiyk.

Тогда, учитывая что

xi =
n∑
l=1

αlix̃l, yk =
n∑

m=1

αmkỹm,

получаем
n∑
l=1

n∑
m=1

ãlmx̃lỹm =
n∑

i=1

n∑
k=1

aikxiyk =

=
n∑

i=1

n∑
k=1

aik

(
n∑
l=1

αlix̃l

)(
n∑

m=1

αmkỹm

)
=
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=
n∑
l=1

n∑
m=1

(
n∑

i=1

n∑
k=1

αliαmkaik

)
x̃lỹm.

Откуда, в силу произвольности x̃l и ỹm,

ãlm =
n∑

i=1

n∑
k=1

αliαmkaik.

Теорема 5.2. Симметричная билинейная форма однозначно восстанав-
ливается с помощью порождаемой ею квадратичной формой.

Доказательство: Подставим в квадратичную форму

(x, Ax)

вместо вектора x вектор x+ y. В силу линейности оператора (матрицы) A и
свойств скалярного произведения имеем

(x+ y, A(x+ y)) = (x+ y, Ax+ Ay) =

= (x, Ax) + (x, Ay) + (y, Ax) + (y, Ay).

В силу симметрии матрицы A

(y, Ax) = (Ay,x) = (x, Ay)

и
(x+ y, A(x+ y)) = (x, Ax) + 2(x, Ay) + (y, Ay).

Откуда

(x, Ay) =
1

2
{(x+ y, A(x+ y))− (x, Ax)− (y, Ay)},

что и доказывает теорему.
Следствие 5.1. Коэффициенты инвариантной квадратичной формы со-

ставляют аффинный ортогональный тензор второго ранга.

ТЕНЗОРЫ В АФФИННЫХ КООРДИНАТАХ

6. Тензорная символика

Условимся, что каждый индекс принимает n значений: 1, 2, 3, . . . , n. Сим-
вол Ai означает, что величина Ai принимает значения A1, A2, A3, . . . , An; сим-
вол Aij означает, что величина Aij принимает n2 значений и т.д. Этой сим-
воликой мы уже в некоторой степени пользовались при изучении аффинного
ортогонального тензора.

Если в некотором выражении встречаются два индекса, обозначенные од-
ной и той же буквой, то это означает, что по этим индексам (этой букве)

11



произведено суммирование от 1 до n. Например, в пространстве Rn это озна-
чает, что

xie
i =

n∑
i=1

xie
i, aikx

ik =
n∑

i=1

n∑
k=1

aikx
ik, Aii =

n∑
i=1

Aii,

в пространстве R3

xie
i =

3∑
i=1

xie
i, aikx

ik =
3∑

i=1

3∑
k=1

aikx
ik, Aii =

3∑
i=1

Aii,

и т.д.

7. Преобразование косоугольных базисов.

Пусть в некоторой точке M ∈ Rn выбраны два векторных косоугольных
базиса:

“старый” ei и “новый” ẽi,
и пусть:

ek — взаимный базис к ei (старый взаимный базис),
ẽk — взаимный к ẽi (новый взаимный базис).
Применяя тензорную символику, будем иметь

ẽi = αk
i ek,

где αk
i — коэффициенты прямого преобразования и

ei = γk
i ẽk,

где γk
i — коэффициенты обратного преобразования.

Умножая скалярно первое из этих равенств на ek, а второе на ẽk, получаем

αk
i = (ẽi, e

k), γk
i = (ei, ẽ

k) . (7.1)

Рассмотрим теперь преобразование взаимных базисов

ẽk = aki e
i, ek = bki ẽ

i.

Умножим первое из этих равенств на ei, а второе на ẽi. Тогда

aki = (ei, ẽ
k), bki = (ẽi, e

k) . (7.2)

Сравнивая (7.1) с (7.2), получаем связь между коэффициентами основных и
взаимных базисов

aki = γk
i bki = αk

i .
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Получаем закон преобразования взаимных базисов

ẽk = γk
i e

i, ek = αk
i ẽ

i,

согласно которому преобразование взаимных базисов осуществляется по об-
ратному закону. Это означает, что коэффициентами прямого преобразования
для взаимного базиса являются коэффициенты обратного преобразования
для основного базиса и наоборот, коэффициентами обратного преобразова-
ния для взаимного базиса являются коэффициенты прямого преобразования
для основного базиса.

И в заключение этого пункта приведем все формулы преобразования ос-
новных и взаимных базисов:

ẽi = αk
i ek, ei = γk

i ẽk,

ẽk = γk
i e

i, ek = αk
i ẽ

i.

8. Общее определение тензора

Определение 8.1. Пусть дан объект (p, q) — строения, заданный с по-
мощью np+q чисел (координат):

A
j1j2...jq
i1i2...ip

— его координаты в старом базисе ei,

Ã
l1l2...lq
k1k2...kp

— его координаты в новом базисе ẽi.

Если при переходе от базиса ei к базису ẽi его координаты преобразуются
по формулам

Ã
l1l2...lq
k1k2...kp

= αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
A

j1j2...jq
i1i2...ip

,

где αi
k — коэффициенты прямого преобразования, γl

j — коэффициенты об-
ратного преобразования, то объект A называется тензором p+ q-го ранга,
p-раз ковариантным и q-раз контравариантным и обозначается

A
j1j2...jq
i1i2...ip

.

Нижние индексы называются ковариантными индексами, а верхние — кон-
травариантными индексами.

Пример 8.1. Пусть ei — старый, ẽi — новый базисы, ek и ẽk — старый и
новый взаимные базисы. Вектор A можно разложить по основному и взаим-
ному базисам

A = Akek и A = Ake
k,

13



где Ak = (A, ek) — контравариантные координаты этого вектора, а Ak =
(A, ek) — ковариантные координаты.

Ковариантные координаты вектора A образуют ковариантный тензор пер-
вого ранга, а контравариантные координаты вектора A образуют контрава-
риантный тензор первого ранга.

Действительно,

Ãk = (A, ẽk) = (A, αi
kei) = αi

k(A, ei) = αi
kAi

и
Ãk = (A, ẽk) = (A, γk

i e
i) = γk

i (A, ei) = γk
i A

i.

Пример 8.2. Символ Кронекера

δki = (ei, e
k),

определенный в косоугольном базисе пространства Rn является тензором вто-
рого ранга, один раз ковариантным и один раз контравариантным. Покажем
это:

δ̃ki = (ẽi, ẽ
k) = (αm

i em, γ
k
ne

n) = αm
i γ

k
n(em, e

n) = αm
i γ

k
nδ

n
m.
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9. Метрический тензор

Определение 9.1. Пусть ei — основной, а ek — взаимный базисы в Rn.
Совокупность чисел

gik = (ei, ek)

называется ковариантным метрическим тензором, а совокупность чисел

gik = (ei, ek)

называется контравариантным метрическим тензором.
Из определения следует, что метрический тензор симметричный, т.е.

gik = gki и gik = gki.

Покажем, что координаты метрического тензора преобразуются по тен-
зорному закону:

g̃ik = (ẽi, ẽk) = (γi
ne

n, γk
me

m) = γi
nγ

k
m(e

n, em) = γi
nγ

k
mg

mn,

g̃ik = (ẽi, ẽk) = (αm
i em, α

n
ken) = αm

i α
n
k(em, en) = αm

i α
n
kgmn.

Метрический тензор устанавливает связь между ковариантными и кон-
травариантными координатами вектора. Действительно, умножим

A = Aiei

скалярно на ek. Получим

(A, ek) = Ai(ei, ek),

т.е.
Ak = gikA

i.

Аналогично
Ak = gikAi.

10. Тензорная алгебра

Прежде всего отметим, что все действия в тензорной алгебре вводятся
для тензоров, определенных в пространстве одного и того же измерения.

Сложение тензоров.

Определение 10.1. Пусть A и B два тензора одинакового строения
(p, q)

A = A
j1j2...jq
i1i2...ip

, B = B
j1j2...jq
i1i2...ip

.
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Суммой тензоров A и B называется объект C = A + B, координаты
которого определяются по формулам

C
j1j2...jq
i1i2...ip

= A
j1j2...jq
i1i2...ip

+B
j1j2...jq
i1i2...ip

.

Теорема 10.1. Суммой двух тензоров одинакового строения является
тензор того же строения.

Доказательство: Из определения суммы тензоров видно, что если A и
B имеют np+q координат, то тензор C = A+ B имеет также np+q координат.
Покажем, что эти координаты преобразуются по тензорному закону:

C̃
l1l2...lq
k1k2...kp

= Ã
l1l2...lq
k1k2...kp

+ B̃
l1l2...lq
k1k2...kp

=

αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
A

j1j2...jq
i1i2...ip

+

+αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
B

j1j2...jq
i1i2...ip

=

αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq

(
A

j1j2...jq
i1i2...ip

+B
j1j2...jq
i1i2...ip

)
=

αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
C

j1j2...jq
i1i2...ip

.

Умножение тензоров.

Определение 10.2 Пусть даны два тензора любого строения:

A = A
j1j2...jq1
i1i2...ip1

, B = B
l1l2...lq2
k1k2...kp2

.

Произведением двух тензоров A и B называется объект C = A · B,
координаты которого определяются по формулам

C
j1j2...jq1l1l2...lq2
i1i2...ip1k1k2...kp2

= A
j1j2...jq1
i1i2...ip1

·Bl1l2...lq2
k1k2...kp2

.

Теорема 10.2. Произведением тензора (p1, q1) - строения на тензор
(p2, q2)-строения является тензор строения (p1 + p2, q1 + q2).

Доказательство: Очевидно, что объект C = A + B имеет p1 + p2 кова-
риантных индексов, q1 + q2 — контравариантных индексов и, следовательно,
имеет np1+p2+q1+q2 координат. Кроме того,
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C̃
n1n2...nq1s1s2...sq2
m1m2...mp1r1r2...rp2

= Ã
n1n2...nq1
m1m2...mp1

· B̃s1s2...sq2
r1r2...rp2

=

= αi1
m1
αi2
m2

· · ·αip1
mp1

γn1
j1
γn2
j2
· · · γnq1

jq1
A

j1j2...jq1
i1i2...ip1

×

×αk1
r1
αk2
r2
· · ·αkp2

rp2
γs1
l1
γs2
l2
· · · γsq2

lq2
B

l1l2...lq2
k1k2...kp2

=

= αi1
m1

· · ·αip1
mp1

αk1
r1
· · ·αkp2

rp2
γn1
j1
· · · γnq1

jq1
γs1
l1
· · · γsq2

lq2
×

×
(
A

j1j2...jq1
i1i2...ip1

B
l1l2...lq2
k1k2...kp2

)
=

αi1
m1

· · ·αip1
mp1

αk1
r1
· · ·αkp2

rp2
γn1
j1
· · · γnq1

jq1
γs1
l1
· · · γsq2

lq2
×

×C
j1j2...jq1l1l2...lq2
i1i2...ip1k1k2...kp2

,

что и доказывает согласно определению 8.1 теорему.
Очевидно, что при перемножении тензоров число сомножителей может

быть больше двух.
Индексы в произведении ставятся в порядке их следования в множителях.
Заметим, что если мы станем перемножать тензоры в другом порядке, то

получим другой результат, т.е., вообще говоря, AB ̸= BA.

Свертка тензоров

Определение 10.3. Пусть

A = A
j1j2...jq
i1i2...ip

аффинный тензор (p, q)-строения. Выберем один ковариантный и один кон-
травариантный индексы, например, i1 и j1. Положим i1 = i2 = s. Тогда
объект

B
j2j3...jq
i2i3...ip

= A
sj2j3...jq
si2i3...ip

будем называть сверткой тензора A по паре индексов (i1, j1).
Аналогично определяется свертка аффинного тензора по любой паре раз-

ноименных индексов (ковариантного и контравариантного).
Лемма 10.1. Пусть (αj

i ) — матрица прямого преобразования, а (γj
i ) —

матрица обратного преобразования. Тогда справедливы равенства

αk
jγ

j
i = δki , αj

iγ
k
j = δ̃ki .
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Доказательство: Умножая равенство

ei = γj
i ẽj

скалярно на ek = αk
l ẽ

l, получаем

δki = (ei, e
k) = (γj

i ẽj, α
k
l ẽ

l) = γj
iα

k
l (ẽj, ẽ

l) =

= γj
iα

k
l δ̃

l
j = γj

i (α
k
l δ̃

l
j) = γj

iα
k
j = αk

jγ
j
i .

Аналогично
δ̃ki = (ẽi, ẽ

k) = (αj
iej, γ

k
l e

l) = αj
iγ

k
l (ej, e

l) =

= αj
iγ

k
l δ

l
j = αj

i (γ
k
l δ

l
j) = αj

iγ
k
j .

Теорема 10.3. Сверткой аффинного тензора (p, q)- строения по паре
индексов является тензор (p− 1, q − 1) -строения.

Доказательство: Очевидно, что после сверстки по паре индексов полу-
ченный объект содержит n(p−1)+(q−1) координат, столько же координат, что
и аффинный тензор (p − 1, q − 1)-строения. Покажем, что эти координаты
преобразуются по тензорному закону. По определению тензора

Ã
l1l2...lq
k1k2...kp

= αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
A

j1j2...jq
i1i2...ip

.

Положим k1 = l1 = s. Тогда

Ã
sl2...lq
sk2...kp

= αi1
s α

i2
k2
· · ·αip

kp
γs
j1
γl2
j2
· · · γlq

jq
A

j1j2...jq
i1i2...ip

=

= αi2
k2
· · ·αip

kp
γl2
j2
· · · γlq

jq

(
αi1
s γ

s
j1

)
A

j1j2...jq
i1i2...ip

.

Используя предыдущую лемму, получаем

Ã
sl2...lq
sk2...kp

= αi2
k2
· · ·αip

kp
γl2
j2
· · · γlq

jq
δi1j1A

j1j2...jq
i1i2...ip

.

Индексы i1 и j1 являются индексами суммирования, и так как δi1j1 = 0 при
i1 ̸= j1, то справа в последнем выражении остаются только те слагаемые, для
которых эти индексы равны, т.е. i1 = j1 = s. Тогда

Ã
sl2...lq
sk2...kp

= αi2
k2
· · ·αip

kp
γl2
j2
· · · γlq

jq
A

sj2...jq
si2...ip

.

Но по определению свертки тензоров

Ã
sl1...lq
sk2...kp

= B̃
l2l3...lq
k2k3...kp

, A
sj2...jq
si2...ip

= B
j2j3...jq
i2i3...ip
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и координаты свертки преобразуются по тензорному закону

B̃
l2l3...lq
k2k3...kp

= αi2
k2
αi3
k3
· · ·αip

kp
γl2
j2
γl3
j3
· · · γlq

jq
B

j2j3...jq
i2i3...ip

.

Замечание. Свертка аффинного ортогонального тензора по паре индек-
сов, например, i1 и i2 определяется следующим образом

Lssi3...ip =

n∑
s=1

Lssi3...ip.

Аналогично предыдущей теореме можно показать, что в этом случае ранг
тензора также понижается на 2 единицы.

Примеры.
1). Если произведение аффинных ортогональных тензоров 1-го ранга aibj

подвергнуть свертке, то получим скалярное произведение векторов a и b

(a,b) = asbs =
n∑

s=1

asbs.

2). Сверткой аффинного ортогонального тензора 2-го ранга aij является
след матрицы (aij)

ass = a11 + a22 + a33 + · · ·+ ann.

Перестановка индексов.

Определение 10.4. Пусть дан тензор

A = A
j1j2...jq
i1i2...ip

.

Будем говорить, что объект

B
j1j2...jq
i1i2...ip

= A
j1j2...jq
i2i1...ip

получается перестановкой двух индексов (одноименных) i1 и i2 в тензоре
A.

Аналогично определяется перестановка любых двух одноименных индек-
сов (ковариантных или контравариантных).

Теорема 10.4. Объект, получающейся при перестановке двух одноимен-
ных индексов тензора (p, q)-строения, является тензором того же строе-
ния.
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Доказательство: Запишем для тензора

A = A
j1j2...jq
i1i2...ip

закон преобразования координат

Ã
l1l2...lq
k1k2...kp

= αi1
k1
αi2
k2
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
A

j1j2...jq
i1i2...ip

.

Поменяем местами два индекса i1 и i2. Тогда получим

αi2
k2
αi1
k1
· · ·αip

kp
γl1
j1
γl2
j2
· · · γlq

jq
A

j1j2...jq
i2i1...ip

= Ã
l1l2...lq
k2k1...kp

,

а это означает, что A
j1j2...jq
i2i1...ip

— тензор (p, q)-строения.

Симметрирование.

Определение 10.5. Если для тензора A выполняется равенство

A
j1j2...jq
i2i1i3...ip

= A
j1j2...jq
i1i2i3...ip

,

то говорят, что тензор A — симметричный (симметрический) по индек-
сам i1 и i2.

Аналогично определяется симметричность тензора по любой паре од-
ноименных индексов.

Тензор A называется симметричным по нескольким одноименным ин-
дексам, если он не изменяется при перестановке любых двух из этих ин-
дексов а, следовательно, и при любой их подстановке.

Операция симметрирования заключается в следующем: из одноименных
индексов выбирается N индексов, над которыми производится N ! всевоз-
можных перестановок, и берется среднее арифметическое полученных тен-
зоров.

Те индексы, по которым производится симметрирование, заключаются
в круглые скобки (. . .). Эти индексы мы будем называть симметрирован-
ными индексами.

Пример 10.1.

Al
(ij)k =

1

2

(
Al

ijk + Al
jik

)
,

Al
(ijk) =

1

6

(
Al

ijk + Al
jki + Al

kij + Al
jik + Al

ikj + Al
kji

)
.

Теорема 10.5. При симметрировании тензора по любой группе одно-
именных индексов получается тензор того же строения. При этом полу-
ченный тензор будет симметричным по симметрированным индексам.
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Доказательство: При перестановке двух индексов а, следовательно, и
при любой перестановке выбранных индексов по теореме 10.4 получаем тен-
зор того же строения, что и исходный. При сложении тензоров одинакового
строения получается тензор того же строения. Деление суммы тензоров, по-
лученных при всех перестановках симметрированных индексов, на N ! можно
рассматривать как умножение на тензор нулевого ранга. Поэтому согласно
теореме 10.2 строение тензора не изменяется. Таким образом, производя сим-
метрирование тензора (p, q)-строения, получаем тензор (p, q)-строения.

Симметричность тензора следует из того, что если во всех перестановках
симметрированных индексов поменять местами одни и те же два индекса, то
получим все те же перестановки.

Альтернация.

Определение 10.6. Если для тензора A выполняется равенство

A
j1j2...jq
i2i1i3...ip

= −A
j1j2...jq
i1i2i3...ip

,

то говорят, что тензор A — кососимметричный (кососимметрический)
по индексам i1 и i2.

Тензор называется кососимметричным по нескольким одноименным ин-
дексам, если он кососимметричен по любой паре из этих индексов.

Операция альтернации заключается в следующем: из одноименных ин-
дексов данного тензора выбирают N индексов и производят N ! всевозмож-
ных перестановок, результаты четных перестановок берутся со своими
знаками, а у результатов нечетных перестановок знак меняется на про-
тивоположный, после чего берется среднее арифметическое всех тензоров.

Те индексы, по которым осуществляется альтернация, заключают в
квадратные скобки [. . .]. Эти индексы будем называть альтернированными
индексами.

Пример 10.2.

Al
[ij]k =

1

2

(
Al

ijk − Al
jik

)
Al

[ijk] =
1

6

(
Al

ijk + Al
jki + Al

kij − Al
jik − Al

ikj − Al
kji

)
.

Теорема 10.6. При альтернации тензора по любой группе одноимен-
ных индексов получается тензор того же строения. При этом полученный
тензор будет кососимметричным по альтернированным индексам.

Доказательство: Как и при доказательстве теоремы 10.5 можно устано-
вить, что в результате альтернации тензора (p, q)-строения получается тензор
того же строения.
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Из курса высшей алгебры известно, что при n ≥ 2 число четных пере-
становок равно числу нечетных перестановок. Если в перестановке поменять
местами два любых индекса, то четная перестановка перейдет в нечетную пе-
рестановку и наоборот, нечетная перестановка перейдет в четную. Отсюда и
следует кососимметричность тензора, полученного в результате альтернации.

Подъем и опускание индексов.

Лемма 10.2. Свертка произведения контравариантного и ковариант-
ного метрических тензоров равна символу Кронекера, т.е.

gijgjk = δik.

Доказательство: Обе части разложения вектора взаимного базиса по
векторам основного базиса

ei = cijej

умножим скалярно на ek

(ei, ek) = cij(ej, e
k) = cijδkj = cik.

Откуда следует что cij = gij и, следовательно, разложение вектора взаимного
базиса по основному базису имеет вид

ei = gijej.

Умножая скалярно обе части последнего равенства на ek, получаем

δik = (ei, ek) = gij(ej, ek) = gijgjk.

Введем операции подъема и опускания индексов. С этой целью изменим
нумерацию индексов у тензора, так чтобы для поднимаемого (или опускае-
мого) индекса было место, куда его следует поставить. Это место мы будем
обозначать точкой, например, A··k·

ij·l. Такая запись означает, что 1-й и 2-й ин-
декс ковариантный, 3-й контравариантный, 4-й контравариантный.

Поднимем 1-й индекс: для этого тензор умножим на gis и затем произве-
дем свертку, в которой участвует поднимаемый индекс

gisA··k·
sj·l = Ai·k·

·j·l .

Опустим верхний индекс: для этого тензор умножим на gks и произведение
свернем

gksA
··s·
ij·l = Aijkl.

Аналогично поднимают и опускают любые индексы.
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Так как для метрических тензоров выполняется соотношение gijgjk = δik,
то операции подъема и опускания индексов взаимно-обратные. Например для
контравариантных координат вектора A имеем

Ai = gijAj = gijgjkA
k = δjkA

k = Ai.

Тензоры, полученные друг из друга путем подъема или опускания индек-
сов, называют ассоциированными.

11. Обратный тензорный признак

Если нам дано, например, уравнение вида

Ar
stB

st = Cr,

связывающее тензоры Ast и Bst — тензоры указанных типов, то мы можем
заключить, что Cr есть тензор, так как он получен умножением и последую-
щим свертыванием.

Важно уметь распознавать тензоры обратным способом: если мы знаем,
что Cr и Bst — тензоры, можем ли мы заключить, что Ar

st — тензор?
Теорема 11.1. Пусть нам дано уравнение

A(r, s, t)Bst = Cr,

где Cr является некоторым определенным тензором, а Bst — произвольный
тензор, тогда A(r, s, t) есть тензор, который может быть представлен
как Ar

st.
Доказательство: В старом базисе ei имеем

A(r, s, t)Bst = Cr.

В новом базисе ẽi :
Ã(r, s, t)B̃st = C̃r.

Но
C̃r = γr

mC
m = γr

mA(m,n, p)Bnp.

А так как при переходе от базиса ẽi к базису ei роль коэффициентов преоб-
разований αj

i и γj
i меняется (γj

i становятся как бы коэффициентами прямого
преобразования, а αj

i — коэффициентами обратного преобразования), то

Bnp = αn
sα

p
t B̃

st.

Поэтому
Ã(r, s, t)B̃st = γr

mα
n
sα

p
tA(m,n, p)B̃st

или [
Ã(r, s, t)− αn

sα
p
tγ

r
mA(m,n, p)

]
B̃st = 0.
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Так как Bst, а следовательно и B̃st — произвольный тензор, то все его коэф-
фициенты при B̃st должны равняться нулю, т.е.

Ã(r, s, t) = αn
sα

p
tγ

r
mA(m,n, p),

что и показывает, что A(r, s, t) является аффинным тензором третьего ранга
и что его правильная запись есть Ar

st.
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12. Физические примеры тензоров

Тензор Инерции
Рассмотрим абсолютно твердое тело с объемной плотностью ρ(r). Пусть

v(r) –поле скорости точек этого тела. Рассчитаем его кинетическую энергию.
По определению она равна

T =
1

2

∫∫∫
υ

ρ(r)v2(r)dυ ,

где интегрирование ведется по области υ, занятой телом.
Известно, что скорость произвольной точки абсолютно твердого тела удоб-

но представить в виде:
v(r) = V + [ω × r] .

Здесь V и ω –одинаковые для всех точек тела векторы, имеющие прозрач-
ный физический смысл: V –скорость поступательного движения тела, равная
скорости его центра инерции, а ω –вектор угловой скорости вращения тела.
Кроме того здесь r –радиус-вектор в движущейся с телом системе отсчета,
центр которой совпадает с центром инерции тела. Напомним, что в такой
системе координат ∫∫∫

υ

r ρ(r) dυ ≡ 0 . (12.1)

Подставив правую часть равенства для скорости тела в интеграл, выра-
жающий его кинетическую энергию, получим:

T =
1

2
V 2

∫∫∫
υ

ρ(r) dυ +

∫∫∫
υ

ρ(r) (V · [ω × r]) dυ+ (12.2)

1

2

∫∫∫
υ

ρ(r) ([ω × r] · [ω × r]) dυ .

Обсудим каждое из входящих сюда слагаемых по отдельности. Первое из них
дает кинетическую энергию поступательного движения тела и имеет такой
вид:

Tп =
1

2
mV 2

m =

∫∫∫
υ

ρ(r)dυ масса тела


–как если бы вся масса тела была сосредоточена в его центре инерции. Второе
слагаемое в (12.2) равно нулю, а третье слагаемое

Tвр =
1

2

∫∫∫
υ

ρ(r) ([ω × r] · [ω × r]) dυ
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–выражает кинетическую энергию вращательного движения тела. Обсудим
ее подробнее, для чего преобразуем входящее сюда скалярное произведение
двух векторных произведений к более удобному виду. Пользуясь свойствами
скалярных и векторных произведений, нетрудно показать, что

([ω × r] · [ω × r]) = r2 ω2 − (ω · r)2 .

Пусть в некоторой декартовой системе координат вектор угловой скорости
ω обладает координатами {ω1, ω2, ω3}, а радиус-вектор r имеет координаты
{x1, x2, x3}. В данной системе координат полученное выражение запишется в
виде:

r2 ω2 − (ω · r) = ωlωm

(
δmlr

2 − xlxm
)
.

Подставив правую часть этого равенства в формулу кинетической энергии
вращательного движения твердого тела, будем иметь:

Tвр =
1

2
ωlωmIlm . (12.3)

Здесь

Ilm =

∫∫∫
υ

ρ(r)
[
δlm r2 − xlxm

]
dυ

–координаты так называемого тензора инерции абсолютно твердого тела.
В том что это действительно тензор, нетрудно убедиться с помощью следую-
щих рассуждений: Величина кинетической энергии вращения твердого тела
не зависит от ориентации системы координат. Следовательно, правая часть
выражения (12.3) представляет собой инвариантную квадратичную форму,
коэффициенты которой Ilm должны преобразовываться при повороте систе-
мы координат по закону преобразования координат аффинного ортогональ-
ного тензора 2-го ранга.

Геометрически, равенство (12.3) задает некоторый эллипсоид в декарто-
вой системе координат {ω1, ω2, ω3}. Его называют эллипсоидом инерции. На-
правления в теле, совпадающие с полуосями эллипсоида инерции, называ-
ют главными осями инерции тела. Если направить оси системы координат
{x1, x2, x3} вдоль главных осей инерции, то тензор инерции окажется приве-
денным к диагональному виду, а кинетическая энергия вращения твердого
тела окажется равной:

Tвр =
1

2

(
I21ω

2
1 + I22ω

2
2 + I23ω

2
3

)
.

Если все главные моменты инерции (собственные числа тензора инерции)
равны, то все направления оказываются равноправными и тензор инерции
в любой системе координат приобретает вид: Iij = Iδij. Очевидно, к телам
с таким вырожденным тензором энергии относится шар. Нетрудно показать
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также, что главные моменты инерции одинаковы у однородного куба. Поэто-
му куб, наряду с шаром, называют шаровым волчком.

Тензор относительных движений сплошной среды
Рассмотрим теперь движущуюся сплошную среду. Пусть движение среды

в некоторый момент времени характеризуется полем скорости v(r). Сравним
относительное движение частиц среды в двух бесконечно близких точках r и
r+ dr. Оно описывается векторным дифференциалом dv = v(r+ dr)− v(r) ,
координаты которого равны:

dv1 =
∂v1
∂x1

dx1 +
∂v1
∂x2

dx2 +
∂v1
∂x3

dx3 ,

dv2 =
∂v2
∂x1

dx1 +
∂v2
∂x2

dx2 +
∂v2
∂x3

dx3 ,

dv3 =
∂v3
∂x1

dx1 +
∂v3
∂x2

dx2 +
∂v3
∂x3

dx3 ,

или в векторной форме:
dv = W dr ,

где W оператор, матрица которого имеет вид:

W = v1x1v1x2v1x3v2x1v2x2v2x3v3x1v3x2v3x3.

Поскольку dv и dr –истинные векторы, то по обратному тензорному признаку
применительно к матрицам второго ранга следует, что W –тензор.

Разложим тензор W на симметричное и антисимметричное слагаемые:
W = S + A. Здесь

S = v1x1
1

2
(v1x2 + v2x1)

1

2
(v1x3 + v3x1)

1

2
(v2x1 + v1x2)v2x2

1

2
(v2x3 + v3x2)

1

2
(v3x1 + v1x3)

1

2
(v3x2 + v2x3)v3x3 ,

–симметрированный тензор W , а

A = 0−ω1ω2ω30−ω1−ω2ω10,

–альтернированный. В него входят всего три независимых координаты

ω1 =
1

2

(
∂v3
∂x2

− ∂v2
∂x3

)
, ω2 =

1

2

(
∂v1
∂x3

− ∂v3
∂x1

)
,

ω3 =
1

2

(
∂v2
∂x1

− ∂v1
∂x2

)
.

Разбиение тензора на симметричную и антисимметричную части обычно име-
ет глубокий физический смысл. Продемонстрируем это на обсуждаемом при-
мере тензора относительных движений. Для этого заметим, что выписанные
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координаты антисимметричного тензора A равны координатам вектора ро-
тора

ω =
1

2
rotv .

Соответственно, дифференциал поля скорости может быть представлен в ви-
де:

dv = S dr+ [ω × dr] ,

где последнее слагаемое, отвечающее антисимметричной части, уже знакомо
нам по предыдущему примеру движения абсолютно твердого тела. Первое же
слагаемое, содержащее симметричный тензор, ответственно за деформации
–сжатия и растяжения сплошной среды.

Тензор деформаций
В теории упругих тел ключевую роль играет тензор деформаций. Он

вводится следующим образом. Рассмотрим некоторое деформируемое тело.
Пусть в исходном недеформированном состоянии каждой частице тела соот-
ветствовал свой радиус-вектор r с координатами {x1, x2, x3}. Изменим каким
либо образом расположение и конфигурацию тела. Тогда каждой точке тела
будет сопоставлен новый радиус-вектор r′. Разность между радиус-векторами
нового и старого положений выделенной частицы тела образует так называ-
емый вектор смещения

u(r) = r′ − r .

Естественно трактовать его как векторное поле, зависящее от координат пер-
воначального положения частиц тела. В развернутой форме векторное поле
смещений имеет вид:

u(r) = e1 u1(x1, x2, x3) + e2 u2(x1, x2, x3) + e3 u3(x1, x2, x3) .

Будем в дальнейшем считать функции u1, u2, u3 –непрерывно дифференци-
руемыми во всей интересующей нас области пространства.

При деформировании тела меняются взаимные расположения его сосед-
них частиц и в частности расстояния между ними. Выясним, как изменится
расстояние между двумя частицами, изначально расположенными в беско-
нечно близких точках r и r + dr. Очевидно, после деформирования диффе-
ренциал расстояния между ними будет равен:

dr′ = dr+ du .

Применяя правила дифференциального исчисления нетрудно показать, что
главная часть квадрата расстояния между указанными частицами после де-
формации равна:

dr′
2
= dr2 + 2(dr · du) + du2 =

dr2 + 2uijdxi dxj = dr2 + 2drU dr , (12.4)
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где координаты uij тензора U определяются равенством:

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂ui
∂xj

∂uj
∂xi

)
. (12.5)

То что это действительно тензор, вытекает из обратного тензорного признака.
Этот тензор и называют тензором деформаций.

Из (12.4) видно, что если все координаты тензора U равны нулю, то рас-
стояние между рассматриваемыми частицами тела не меняется, а значит
тензор деформаций ответственен за явления, связанные со сжатием и рас-
тяжением тел. Как любой симметричный тензор, тензор деформаций может
быть приведен к главным осям. Иными словами, в каждой точке тела можно
выбрать такую систему координат, в которой отличны от нуля только диаго-
нальные координаты тензора деформаций. Обозначим их u(1), u(2), u(3). После
приведения к главным осям тензора деформаций, квадрат расстояния меж-
ду рассматриваемыми частицами деформируемого тела можно представить
в виде:

dr′
2
= [1 + u(1)]dx21 + [1 + u(2)]dx22 + [1 + u(3)]dx23 .

Последнее на физическом языке означает, что деформацию каждого беско-
нечно малого элемента объема тела можно представить как совокупность
трех независимых деформаций — сжатий или растяжений — по трем взаим-
но перпендикулярным направлениям — главным осям тензора деформаций.
Отсюда же следует, что относительное сжатие или растяжение вдоль произ-
вольной i-й главной оси равно

dr′

dr
=
√

1 + u(i) .

В большинстве прикладных проблем теории упругости оно близко к единице,
а |u(i)| ≪ 1. Поэтому на практике чаще всего отбрасывают в (12.5) слагаемое
2-го порядка малости и используют следующее приближенное выражение для
координат тензора деформаций:

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Заметим в заключение, что тензор деформаций входит в основное урав-
нение теории упругости и кристаллофизики — обобщенный закон Гука:

σpq = λpqrsurs ,

где тензор 2-го ранга σpq называют тензором напряжений, а тензор 4-го
ранга λpqrs –тензором модулей упругости.
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