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Предисловие

“Скажи — я забуду, объясни — я запомню, делай со мной и я на-
учусь” –слова Вениамина Франклина как нельзя лучше передают суть
процесса обучения. Мы пытались руководствоваться этим мудрым прин-
ципом, работая над лежащим перед вами практикумом по векторному
анализу, теории поля, криволинейным и поверхностным интегралам. Он
содержит материал практических занятий по курсу векторного анализа,
много лет ведущихся на радиофизическом факультете нижегородского
университета.

Большинство разобранных здесь задач взяты из замечательного сбор-
ника задач и упражнений Б.П.Демидовича. Занимая сравнительно мало
места в самом сборнике, они охватывают обширную область математи-
ческого анализа, включающую в себя криволинейные и поверхностные
интегралы, дифференциальные операции со скалярными и векторны-
ми полями, владение формулами Грина, Гаусса-Остроградского, Стокса.
Именно эти разделы математического образования являются ключевы-
ми для инженеров и физиков, специализирующихся в изучении свойств
полей и волн самой разной физической природы. Помимо того они ак-
кумулируют в себе знания по многим областям математики, предпола-
гая свободное владение понятиями предела, обыкновенными и частными
производными, теорией и методами интегрирования, аналитической гео-
метрией и высшей алгеброй.

Другая отличительная черта теории поля и векторного анализа, цен-
ная для формирования специалистов любого профиля, от математиков
и физиков до биологов и экономистов, состоит в том, что построения и
упражнения этой ветви математики развивают пространственное вооб-
ражение.
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Часто в упражнениях по математике видят лишь способ натаскать
студента на тех или иных математических приемах, оставляя за кадром
как происхождение задачи, так и возможные следствия найденных ре-
шений. Подобный однобокий подход скорее вредит, чем служит главной
цели обучения — становлению специалиста, способного самостоятельно
формулировать проблемы, решать их и уметь применить приобретен-
ные знания в жизни. Поэтому при создании практикума мы старались
не только передать навыки обращения со скалярными и векторными по-
лями, но и привить студенту осознание того, что сама постановка задачи
и обсуждение следствий найденного решения, едва ли не более важны,
чем собственно процесс отыскания ответа.

По нашему глубокому убеждению, проработка включенных в прак-
тикум задач будет способствовать воспитанию в студентах творческого
начала и навыков реальной научной работы, необходимых для преодоле-
ния возникающих исследовательских и инженерных проблем. Последнее
подразумевает поиски и сравнение разных подходов и методов решения,
попытки обобщения как самой задачи так и полученных в процессе реше-
ния результатов. С этой целью многие приведенные в практикуме реше-
ния дополнены замечаниями, призванными с разных углов зрения осве-
тить, казалось бы уже совсем решенную, проблему. Иными словами, при
написании практикума мы ставили целью привить студенту, помимо дис-
циплины интеллекта, такие неотъемлемые качества истинного исследо-
вателя, как развитое ассоциативное мышление, богатство воображения,
“собачий нюх” на новые результаты и готовность немедля броситься по
горячему следу.

Стремление взглянуть на задачу с разных позиций, глубже осмыс-
лить ее корни, полнее обсудить следствия найденных решений, долж-
но сделать данный практикум полезным для преподавателей, ведущих
практические занятия по теории поля и векторному анализу. Но, есте-
ственно, в первую очередь практикум предназначен студентам. Им наш
совет относиться к практикуму не как к подборке развернутых ответов,
а как к путеводителю по векторному анализу, раскрывающему свойства
и достопримечательности многообразного мира скалярных и векторных
полей. Лучше всего, при освоении материала практикума, вначале само-
стоятельно решить выбранную задачу, и лишь затем ознакомиться с тем,
что по ее поводу сказано в книге. Вполне возможно, собственное реше-
ние покажется более привлекательным. Все же почти наверняка коммен-
тарии практикума сделают более емким понимание той или иной, уже
проработанной самостоятельно, задачи.

При создании практикума мы ясно сознавали, что весь материал, по-
мещенный в каждое из занятий, очень тяжело втиснуть в прокрустово
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ложе двух академических часов. Поэтому практикум предназначен пре-
имущественно для внеклассной подготовки, способствующей более глу-
бокому освоению лекционного и семинарского материала по теории поля
и векторному анализу. Причем полезней всего обращаться к практику-
му лишь после того, как была пройдена та или иная тема, и материал
практикума ляжет на уже разрыхленную почву.

Практикум разбит на занятия, посвященные разным разделам теории
поля. Практически каждое из них предваряется кратким обсуждением
идей, понятий и методов, необходимых для самостоятельного выполне-
ния упражнений предлагаемого занятия. Не подменяя собой лекционного
материала, помещенная здесь подборка сведений призвана быстро вве-
сти в курс дела и дать возможность уверенно приступить к решению
конкретных задач.

На наш взгляд, упомянутые теоретические разделы позволяют ис-
пользовать практикум еще и как обстоятельное справочное пособие всем
тем, кто столкнулся в процессе работы с неотложной необходимостью
применения аппарата векторного анализа и теории поля. Этим людям
советуем не ограничиваться чтением введения только к одному из за-
нятий. Дело в том, что из методических соображений, в более ранних
занятиях сообщаются лишь сведения, необходимые для решения задач
данного раздела, и сознательно не освещаются “более продвинутые” под-
ходы, составляющие предмет последующих занятий. К примеру, знакомя
в начале 7-го занятия с поверхностными интегралами 2-го типа, мы “ута-
иваем” возможность использования формулы Гаусса-Остроградского, а
при обсуждении, на 9-м уроке, основных понятий теории поля, ничего
не говорим о преимуществах применения вектора набла.

От других учебных пособий подобного рода данный практикум от-
личает еще последовательное и регулярное использование векторной, не
зависящей от выбора системы координат, формы записи дифференци-
альных и интегральных соотношений теории поля. Кроме того, мы взя-
ли за правило доводить задачу “до числа”, детально прослеживая все
сопутствующие вычисления, даже если они имеют весьма отдаленное
отношение к собственно векторному анализу. Ведь именно это отличает
истинный научный труд от школярских упражнений.

Для наглядности изложения, в практикум помещено довольно много
рисунков, поясняющих геометрическую суть аналитических выкладок,
поставленных задач и способов их решения.

Считаем долгом отметить, что практикум впитал в себя плоды об-
суждений и разнообразных методических находок многих преподавате-
лей нашей кафедры, в разные годы проводивших практические занятия
по векторному анализу. Их кропотливый труд сформировал окончатель-
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ное содержание и методику ведения практических занятий по предмету.
Более всего мы благодарны старейшим преподавателям кафедры Л.Э.
Каплану, В.И. Казимирову и Т.А. Гороховой, чьи ценные советы и заме-
чания сделали практикум таким как он есть.

Нумерация формул, рисунков, задач, определений и примеров своя
в каждом занятии. В пределах задачи нумерация формул, если в этом
есть необходимость, производится звездочками. Кроме того, замечания
к каждой задаче имеют собственную нумерацию.

Авторы
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Глава 1

Практикум по векторному
анализу

Занятие 1. Криволинейные интегралы перво-
го рода

Необходимые сведения из теории
Криволинейные интегралы 1-го рода возникают во многих приклад-

ных задачах. Например, при нахождении масс материальных кривых с
известной линейной плотностью, полных электрических зарядов, распре-
деленных вдоль заряженных нитей. Схема их вычисления та же, что и
стандартного определенного интеграла. Поясним ее на примере нахож-
дения массы гладкой материальной кривой L.

Пусть кривая L задана параметрическим уравнением

�r = �r (t) , (τ ≤ t ≤ T ) , (1.1)

отображающим каждую точку числового отрезка t ∈ [τ, T ] в точку про-
странства с радиус-вектором �r (t), заданным в некоторой системе коорди-
нат. Чаще всего пользуются декартовой системой координат, где радиус-
вектор задается в виде:

�r (t) = x(t)�i+ y(t)�j + z(t)�k . (1.2)

Здесь {�i, �j, �k} – тройка базисных векторов данной декартовой системы
координат, а {x(t), y(t), z(t)} – координаты радиус-вектора.

Будем в дальнейшем считать кривую L, по которой ведется интегри-
рование, гладкой. Для этого достаточно, чтобы во всех точках сегмента
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i j

k

Рис. 1.1: График декартовой системы координат. Изображены взаимно перпенди-
кулярные оси декартовой системы координат и их орты – направленные вдоль осей
единичные векторы {�i,�j,�k}. Оси выбраны в таком порядке, чтобы орты образовыва-
ли правую тройку. Изображен также радиус-вектор некоторой точки пространства
с координатами (x, y, z). Чтобы найти координаты радиус-вектора, надо опустить из
его вершины перпендикуляры на соответствующие числовые оси. На графике опреде-
ление координат x и y проведено в два приема: Вначале опущена вертикальная линия
до пересечения с координатной плоскостью x0y, а затем построены перпендикуляры
к осям x и y.

[τ, T ] существовала непрерывная производная векторной функции �r (t)
по аргументу t. Операцию дифференцирования обозначим для кратко-
сти штрихом. Другими словами, по определению,

�r ′(t) =
d�r

dt
.

Очевидно, эта производная указывает направление касательной к кривой
в данной точке. Пусть вдоль кривой L распределено вещество с линей-
ной (то есть равной массе, приходящейся на единицу длины) плотностью
µ(�r). Для определенности будем полагать плотность непрерывной функ-
цией во всех точках кривой L. Разобьем кривую на кусочки точками

�r0 = �r(t0) , �r1 = �r(t1) , . . . , �rn = �r(tn)

(τ = t0 < t1 < · · · < tn−1 < tn = T ) .

Обозначим расстояние между точками �rk−1 и �rk за ∆�k. Если эти расстоя-
ния достаточно малы, то массу соответствующего участка материальной
кривой L можно вычислить с помощью приближенной формулы

∆mk = µ(�r ∗
k ) ∆�k .
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Здесь �r ∗
k – произвольная точка k-го участка кривой. Сложив их, получим

интегральную сумму

m ∼=
n∑
k=1

µ(�r ∗
k ) ∆�k ,

примерно равную полной массе материальной кривой.

L

τ= r '(t)

r 
0

r nr 
k-1

r 
k

Рис. 1.2: Вверху изображена типичная гладкая кривая L, вдоль которой берется
криволинейный интеграл 1-го рода. Там же указан вектор касательной к некоторой
точке кривой. Внизу та же кривая, разбитая на кусочки, фигурирующие в интеграль-
ной сумме, определяющей криволинейный интеграл.

В математике доказывается, что если µ(�r) – ограниченная, кусочно-
непрерывная вдоль кривой L функция, то при max(∆�k) → 0 интеграль-
ная сумма сходится к пределу, независящему от способа разбиения кри-
вой на элементарные отрезки, то есть выбора точек �r ∗

k . Этот предел на-
зывают криволинейным интегралом 1-го рода вдоль кривой L, и пользу-
ются для него обозначением:

m =

∫
L

µ(�r ) d� .

В общем случае, вместо плотности µ(�r ), под интегралом может стоять
любая другая интегрируемая функция f(�r ). Заметим еще, что как видно
из определения криволинейного интеграла 1-го рода, его величина не
зависит от направления обхода кривой L при увеличении параметра t.

Чтобы свести криволинейный интеграл к стандартному определенно-
му интегралу по отрезку [τ, T ] на числовой оси t, замечают, что длина
бесконечно малого отрезка кривой, с точностью до бесконечно малых
более высокого порядка малости, может быть найдена по формуле

d� = |�r ′| (t) dt ,
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и заменяют криволинейный интеграл определенным интегралом:

I =

∫
L

f(�r ) d� =

T∫
τ

f(�r (t)) |�r ′| (t) dt . (1.3)

Найдем явную формулу вычисления криволинейного интеграла 1-го
рода в декартовой системе координат. Для этого продифференцируем
радиус-вектор (1.2) по t и подставим его модуль

|�r ′| (t) =
d�

dt
=

√
x′

2
(t) + y′

2
(t) + z′

2
(t)

в правую часть формулы (1.3). В итоге получим:

I =

T∫
τ

f(�r (t))

√
x′

2
(t) + y′

2
(t) + z′

2
(t) dt .

Заметив еще, что в используемой декартовой системе координат подин-
тегральная функция векторного аргумента сводится к функции трех ар-
гументов

f(�r (t)) = f(x(t), y(t), z(t)) ,

перепишем интеграл в окончательном виде:

I =

T∫
τ

f(x(t), y(t), z(t))

√
x′

2
(t) + y′

2
(t) + z′

2
(t) dt . (1.4)

Интеграл по плоской кривой

Приведем еще несколько полезных формул вычисления криволиней-
ного интеграла. Так если кривая целиком лежит в плоскости {x, y} (z =
0), то z′ ≡ 0, f(�r ) = f(x(t), y(t)), и из (1.4) имеем:

I =

T∫
τ

f(x(t), (t))

√
x′

2
(t) + y′

2
(t) dt . (1.5)

Пусть кроме того кривая задана однозначной функцией y = y(x). Тогда
за параметр t естественно выбрать координату x и вычислять криволи-
нейный интеграл по формуле

I =

b∫
a

f(x, y(x))

√
1 + y′

2
(x) dx . (1.6)

Здесь [a, b] – отрезок на оси x, на который проектируется плоская кривая.
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L r
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y

a b

r(
 )ϕ

ϕ

ϕ

ϕ

Рис. 1.3: Иллюстрация к вычислению криволинейного интеграла в полярных коор-
динатах. На рисунке a изображена кривая L, по которой ведется интегрирование, а
также текущий полярный угол ϕ точки прямой, отстоящей от начала координат на
расстоянии r(ϕ). Пунктирами указаны направления на крайние точки кривой инте-
грирования, отвечающие углам φ и Φ. На рисунке b изображен радиус-вектор точки
в полярными координатами {r, ϕ} и единичные векторы локального базиса полярной
системы координат в данной точке. Если мысленно поместить базисный вектор �ir в
начало координат, то с ростом ϕ он будет совершать чистое вращательное движение
со скоростью вращения, равной �iϕ.

Интегрирование в полярной системе координат

Иногда плоскую кривую удобно задать в полярной системе коорди-
нат {r, ϕ}, то есть так, что интересующий нас участок кривой задан
уравнением

r(ϕ) = r(ϕ) (φ ≤ ϕ ≤ Φ) . (1.7)

Здесь (φ, Φ) – раствор углов, под которым из начала координат виден
исследуемый участок кривой.

В подобных случаях удобно свести криволинейный интеграл к опре-
деленному интегралу по углу ϕ. Чтобы сделать это, выразим декартовы
координаты точек кривой через полярные координаты:

x(ϕ) = r(ϕ) cosϕ , y(ϕ) = r(ϕ) sinϕ .

Заменив в (1.5) t на ϕ и подставив под знаком корня в интеграле квад-
раты производных x и y по ϕ:

x′ = r′ cosϕ− r sinϕ , y′ = r′ sinϕ+ r cosϕ ,
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придем к искомой форме записи криволинейного интеграла:

I =

∫
L

f(�r(ϕ))d� =

Φ∫
φ

f(r cosϕ, r sinϕ)

√
r 2(ϕ) + r′

2
(ϕ) dϕ . (1.8)

Замечание 1.1 Изложенный выше переход от криволинейного инте-
грала к определенному интегралу по полярному углу, чересчур привя-
зан к исходной декартовой системе координат {x, y}. Порой это созда-
ет неудобства, особенно если интегрируемая функция изначально задана
как функция полярных координат: f = f(r, ϕ). Поэтому выведем форму-
лу, родственную (1.8), опираясь на разложение векторов по локальному
базису полярной системы координат. Другими словами, в каждой точке
пространства с полярными координатами {r, ϕ} зададим два взаимно-
перпендикулярных вектора �ir и �iϕ. Первый из них направлен от центра
полярной системы координат в сторону рассматриваемой точки, а вто-
рой касателен окружности радиуса r, описанной вокруг центра полярной
системы координат, и направлен в сторону возрастания угла ϕ. С их по-
мощью радиус-вектор кривой интегрирования запишется в виде:

�r(ϕ) = r(ϕ)�ir .

Дифференцируя его по ϕ и заметив, что производная базисного ради-
ального вектора

d�ir
dϕ

=�iϕ

– равна базисному угловому вектору (�ir⊥�iϕ), получим:

d� = |�r ′(ϕ)| dϕ =

√
r 2(ϕ) + r′

2
(ϕ)dϕ .

Здесь штрихом обозначена производная по ϕ. Следовательно, криволи-
нейный интеграл по кривой, заданной в полярной системе координат,
вычисляется по формуле:

I =

∫
L

f(r, ϕ) d� =

Φ∫
φ

f (r(ϕ), ϕ)

√
r 2(ϕ) + r′

2
(ϕ) dϕ . (1.9)
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Задачи
Задача 1.1
Вычислить криволинейный интеграл 1-го рода∫

L

(x+ y) d� ,

где L - контур треугольника с вершинами O(0, 0), A(1, 0) и B(0, 1).

Р е ш е н и е. Кривая, вдоль которой ведется интегрирование, представля-
ет собой треугольник, причем две его стороны лежат на осях координат.
Поэтому естественно разбить этот интеграл на три обычных интеграла
I = I1 + I2 + I3. Первый из них равен интегралу по оси x в пределах от
0 до 1:

I1 =

1∫
0

x dx =
x2

2

∣∣∣∣1
0

=
1

2
.

Аналогично вычисляется второй интеграл, по отрезку оси y: I2 = 1/2.
Третий интеграл надо взять по прямой между точками A и B. Об-

щая формула вычисления интегралов 1-го рода в данном двумерном
случае задается формулой (1.5), где τ и T , соответственно, наимень-
шее и наибольшее значения параметра t, при изменении которого точка
x = x(t), y = y(t), пробегает заданную кривую. В нашем случае x(t) = t,
y(t) = 1 − t, τ = 0, T = 1. Следовательно, третий интеграл равен:

I3 =

1∫
0

√
2 dt =

√
2 .

Таким образом, окончательный результат:

I =
1

2
+

1

2
+
√

2 = 1 +
√

2 .

Задача 1.2
Вычислить криволинейный интеграл 1-го рода∫

L

y2 d� ,

где L - арка циклоиды, заданной параметрическим уравнением

x = a(t− sin t) , y = a(1 − cos t) (0 ≤ t ≤ 2π) .
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Рис. 1.4: Иллюстрация к задаче 1.2: График одной арки циклоиды – траектории
движения точки на ободе колеса радиусом a = 1, катящегося по прямой без скольже-
ния.

Р е ш е н и е. Напомним, циклоида представляет собой траекторию
точки на ободе колеса радиусом a, катящегося без скольжения по оси x.

Начнем вычисление с нахождения производных под корнем в инте-
грале (1.5):

x′ 2(t) = a2 (1 − cos t)2 , y′ 2(t) = a2 sin2 t .

Соответственно, подкоренное выражение равно

a2(1 − cos t)2 + a2 sin2 t = 2a2(1 − cos t) ,

а интеграл принимает вид:

I = a3

2π∫
0

(1 − cos t)2
√

2 − 2 cos t dt .

Чтобы вычислить полученный определенный интеграл, сделаем замену
переменных t = 2α и воспользуемся известной тригонометрической фор-
мулой

1 − cos 2α = 2 sin2 α ,

с учетом которой искомый интеграл примет вид:

I = −16a3

π∫
0

sin4 α d cosα .
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y=xy=-x

x

y

-1 -0,5 0,5 1

-0,4

-0,2

0,2

0,4

Рис. 1.5: Иллюстрация к задаче 1.3: Лемниската Бернулли. Ее график целиком
умещается между биссектрисами 1-го – 3-го и 2-го – 4-го квадрантов.

С помощью еще одной замены z = cosα, и принимая во внимание чет-
ность подинтегральной функции, сведем интеграл к следующему:

I = 32 a3

1∫
0

(1 − z2)2 dz = 32 a3

(
1 − 2

3
+

1

5

)
=

256

15
a3 .

Задача 1.3
Вычислить интеграл ∫

L

|y| d� ,

где L –дуга лемнискаты

(x2 + y2)2 = a2(x2 − y2) .

Р е ш е н и е. Вначале напомним геометрические свойства лемнискаты
Бернулли. Это геометрическое место точек, для которых произведение
их расстояний до двух фокусов (в нашем случае лежащих на оси x в
точках ±a/√2) есть постоянная величина (здесь a2/2).

Уравнение лемнискаты задано в неявной форме, поэтому удобно пе-
рейти к полярной системе координат x = r cosϕ , y = r sinϕ, в которой
уравнение лемнискаты примет вид: r = a

√
cos 2ϕ. Вычислим заданный

криволинейный интеграл по формуле (1.8). Заметим при этом, что лем-
ниската лежит между прямыми y = ±x (так как cos 2ϕ должен быть
неотрицателен) и симметрична как по отношению к оси x, так и к оси
y. Тем же свойством симметрии обладает и подинтегральная функция.
Поэтому достаточно вычислить интеграл по куску лемнискаты, лежаще-
му в первом квадранте. Ему отвечают пределы интегрирования φ = 0 и
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Φ =
π

4
. Кроме того, в нашем случае корень в определенном интеграле

(1.8) равен: √
a4

r2
sin2 2ϕ+ r2 =

1

r

√
a4 sin2 2ϕ+ r4 =

a2

r
.

Таким образом:

∫
L

|y| d� = 4

π
4∫

0

| r sinϕ| a
2

r
dϕ = 4a2

π
4∫

0

sinϕdϕ = 2a2(2 −
√

2) .

Задача 1.4
Вычислить интеграл

I =

∫
L

d�

y2
,

где L – цепная линия
y = a ch

x

a
.

Р е ш е н и е. За переменную интегрирования в определенном ин-
теграле здесь проще всего взять x и прибегнуть к формуле (1.6). Имея
ввиду, что

d� =

√
1 + y′

2
dx =

√
1 + sh 2

x

a
dx = ch

x

a
dx ,

придем к равенству

I =
1

a2

+∞∫
−∞

dx

ch
x

a

=
1

a

+∞∫
−∞

dz

ch z
.

Здесь взята новая переменная интегрирования z = x/a. Далее

I =
2

a

+∞∫
−∞

ez dz
e2z + 1

=
2

a

+∞∫
0

du

u2 + 1
=
π

a
.

Задача 1.5
Вычислить интеграл ∫

L

(x2 + y2 + z2) d� ,

где L – часть винтовой линии

x = a cos t , y = a sin t , z = bt (0 ≤ t ≤ 2π) .
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Рис. 1.6: Иллюстрация к задаче 1.5: График одного шага винтовой линии.

Р е ш е н и е. Мы уже взяли за правило зримо представлять себе
форму обсуждаемых кривых. Не отступим от него и на сей раз, пред-
варительно изобразив винтовую линию. Выполнив затем элементарные
выкладки, основанные на формуле (1.4), будем иметь:

I =

2π∫
0

(a2 + b2t2)
√
a2 + b2 dt =

2π

3
(3a2 + 4π2b2)

√
a2 + b2 .

Задача 1.6
Найти массу M дуги параболы

y2 = 2px
(
0 ≤ x ≤ p

2

)
,

если линейная плотность параболы в текущей точке M(x, y) равна |y|.
Р е ш е н и е. Используем формулу (1.6). При этом учтем, что вклад от

интегралов по разным ветвям параболы одинаков, так что можно взять
в качестве результата удвоенный вклад от ее верхней ветви. Явный вид
уравнения указанной ветви кривой и ее производной таков:

y =
√

2px , y′ =

√
p

2x
.

Следовательно:

M = 2

p
2∫

0

y
√

1 + y′2(x) dx = 2
√

2p

p
2∫

0

√
x+

p

2
dx =

=
4

3

√
2p
(
x+

p

2

)3
2

∣∣∣∣∣
p
2

0

=
2

3
p2(2

√
2 − 1) .
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Задачи для самостоятельной работы
Задача 1.7
Вычислить интеграл 1-го рода

I =

∫
L

xy d� ,

где L – дуга гиперболы

x = ch t , y = sh t (0 ≤ t ≤ t0) .

Задача 1.8
Вычислить интеграл

I =

∫
L

e
√
x2+y2 d� ,

где L – выпуклый контур, ограниченный кривыми

r = a , ϕ = 0 , ϕ =
π

4

(r и ϕ – полярные координаты).

Задача 1.9
Сосчитать интеграл∫

L

√
x2 + y2 d� , где L – окружность x2 + y2 = ax .

Задача 1.10
Найти длину дуги пространственной кривой

x = 3t , y = 3 t2 , z = 2 t3 ,

от точки O(0, 0, 0) до точки A(3, 3, 2).

Задача 1.11
Найти статические моменты

Sy =

∫
L

x d� , Sx =

∫
L

y d�

дуги L астроиды

x
2
3 + y

2
3 = a

2
3 (x ≥ 0 , y ≥ 0)

относительно осей координат.
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Задача 1.12
Найти момент инерции окружности x2 +y2 = a2 относительно ее диамет-
ра.

Задача 1.13
Найти полярные моменты инерции

I0 =

∫
L

(x2 + y2) d� ,

относительно точки O(0, 0), следующих линий:
а) контура L квадрата max{|x|, |y|} = a;
б) контура L правильного треугольника с вершинами в полярных

координатах

P (a, 0) , Q

(
a,

2π

3

)
, R

(
a,

4π

3

)
.

Задача 1.14
Найти средний полярный радиус астроиды

x
2
3 + y

2
3 = a

2
3 ,

то есть число r0 (r0 > 0), определяемое формулой

I0 = � r2
0 ,

где I0 – полярный момент инерции астроиды относительно начала коор-
динат, а � – длина дуги астроиды.

Ответы

1.7.
a3

6

(
ch

3
2 t0 − 1

)
. 1.8. 2( ea−1)+

πa

4
ea. 1.9. 2a2. 1.10. 5. 1.11.

3

5
a2. 1.12. πa3. 1.13. a)

32

3
a3, б)

3
√

3

2
a3. 1.14.

a√
2
.

Занятие 2. Криволинейные интегралы второго
рода

Необходимые сведения из теории
Напомним, обсужденный нами на предыдущем занятии криволиней-

ный интеграл 1-го рода был удобен при отыскании скалярных величин,
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L

M
M

M

M

M
A=M

r

B=
0

1

2

k-1

k

n

k
*

r k
*F(    )

r k
*τ(    )

Рис. 2.1: Иллюстрация к определению работы перемещения материальной точки
вдоль кривой L от начальной точки A до конечной точки B. Здесь же указаны век-
торы силового поля �F и касательной �τ к кривой по направлению перемещения ма-
териальной точки, в некоторой точке �r∗k k-й элементарной дуги, на которые разбита
данная кривая L.

таких как полные массы материальных кривых, заряды электрически
заряженных нитей. Эти величины не зависели от способа ориентации
исследуемых кривых в пространстве. Напротив, криволинейные инте-
гралы 2-го рода, которые мы будем учиться вычислять на этом занятии,
тесно связаны с векторными полями и принципиально зависят от взаим-
ной ориентации интегрируемых векторных полей и кривых, по которым
ведется интегрирование.

К необходимости вычисления криволинейных интегралов 2-го рода
приводят многие задачи, возникающие в различных разделах физики.
Типичным примером подобного рода задач может служить проблема
определения работы, которую надо совершить, чтобы переместить ма-
териальную точку в силовом поле вдоль заданной кривой. Обсудим эту
проблему подробнее.

Пусть имеется силовое поле �F (�r), �r ∈ Ω ⊂ R
3. Вычислим работу по

перемещению материального тела массыm вдоль гладкой ориентирован-
ной кривой L, лежащей в области Ω и соединяющей точки A и B (см.
Рис. 2.1). Для этого разобьем кривую L точками

A = M0 , M1 , . . . ,Mk−1 , Mk , . . . ,Mn = B

на дугиMk−1 Mk, k = 1, . . . , n. Как известно из физики, работа при пере-
мещении вдоль маленькой, практически прямолинейной, дуги Mk−1 Mk,
вдоль которой силовое поле �F (�r) можно считать постоянным, прибли-
женно равна

m
(
�F (�r ∗

k ) · �τ(�r ∗
k )
)

∆�k ,
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где �r ∗
k – любая точка дуги Mk−1 Mk, �τ(�r ∗

k ) – единичный касательный
вектор к кривой в точке �r ∗

k , направленный в сторону движения, ∆�k –
длина дуги Mk−1 Mk. Здесь и всюду ниже (·) символизирует скалярное
произведение векторов.

Складывая вместе работу вдоль всех дуг Mk−1 Mk, найдем, что пол-
ная работа по перемещению материальной точки вдоль кривой L при-
ближенно равна так называемой интегральной сумме

m

n∑
k=1

(
�F (�r ∗

k ) · �τ(�r ∗
k )
)

∆�k .

Предел входящей сюда суммы при max∆�k → 0 (существующий, в слу-
чае гладкой кривой L и непрерывного поля �F (�r), независимо от способа
разбиения) называют криволинейным интегралом 1-го рода и обознача-
ют с помощью значка интеграла:∫

L

(
�F (�r) · �τ(�r)

)
d� .

Приведенный пример показывает, что криволинейный интеграл 2-го
рода можно ввести стандартным способом – как предел интегральной
суммы. Для нас же предпочтительнее будет другое, более лаконичное,
определение, опирающееся на уже знакомое понятие криволинейного ин-
теграла 1-го рода:

Определение 2.1 Пусть L –гладкая ориентированная кривая в R и
�A(�r) – ограниченная векторная функция точки �r кривой L. Положим

f(�r) = ( �A(�r) · �τ(�r)) , �r ∈ L ,
где �τ(�r) – касательный единичный вектор к кривой L в точке �r, на-
правление которого совпадает с выбранным направлением обхода кри-
вой. Криволинейный интеграл 1-го рода∫

L

f(�r) d� =

∫
L

( �A(�r) · �τ(�r)) d�

называют криволинейным интегралом 2-го рода.

Замечание 2.1 Подчеркнем, из определения криволинейного интегра-
ла 2-го рода следует, что последний, в отличие от криволинейного инте-
грала 1-го рода, зависит от выбранного обхода кривой. Точнее, при смене
направления обхода кривой меняется знак криволинейного интеграла 2-
го рода. Геометрическая суть указанного свойства криволинейного инте-
грала 2-го рода выражена на Рис. 2.2.
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r (t) r (t)

A A

L L
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τ
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Рис. 2.2: Геометрическое пояснение смены знака криволинейного интеграла 2-го ро-
да при смене направления обхода кривой интегрирования L: В этом случае направ-
ление касательной к кривой L в каждой ее точке меняется на противоположное. Со-
ответственно, скалярное произведение f(�r) всюду меняет знак, что и приводит смене
знака криволинейного интеграла 2-го рода. На рисунке изображен также текущий
радиус-вектор кривой �r (t), проведенный из начала координат O.

К криволинейному интегралу 2-го рода приводит, возникающее во
многих разделах физики, понятие циркуляции векторного поля вдоль
заданной кривой. Поясним это понятие подробнее. Пусть имеется вектор-
ное поле �A (�r), заданное в области Ω ⊂ R

3, включающей в себя гладкую
кривую L. Предположим на время, что это контур, то есть замкнутая
кривая, заданная параметрическим уравнением

�r = �r(t) ,

где �r(t) непрерывно дифференцируемая функция, что геометрически
обеспечивает гладкость кривой – наличие единственной касательной в
каждой ее точке. Выделим определенное направление обхода контура и
зададим �τ(�r) – единичный вектор, касательный к контуру в точке �r и
направленный в сторону обхода контура. Выберем из двух возможных
его ориентаций ту, которая совпадает с направлением обхода контура.

Аппроксимируем контур набором малых отрезков и сопоставим с каж-
дым из них вектор ∆�r (t) = �τ ∆�. Здесь ∆� – длина соответствующего
отрезка.

Определение 2.2 Предел интегральной суммы скалярных произведе-
ний векторного поля �A (�r ) в некоторой точке выбранного отрезка и
ориентированных отрезков контура ∆�r, взятой по всем составляющим
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$ (A dr ). (A dr ).!

τ
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Рис. 2.3: Замкнутый контур (слева), незамкнутая кривая (справа) и соответствую-
щие обозначения криволинейных интегралов второго рода. На кривых указаны на-
правления обхода и касательные векторы в некоторой наугад выбранной точке.

контур элементарным отрезкам, называют криволинейным интегра-
лом 2-го рода, или циркуляцией векторного поля �A (�r ) вдоль контура
L.

Вытекающая из геометрического смысла форма записи криволиней-
ного интеграла 2-го рода такова:∮

L

(
�A · d�r

) ∮
L

(
�A · �τ

)
d� . (2.1)

Кружок на знаке интеграла здесь и всюду ниже означает, что интегри-
рование ведется по замкнутому контуру. Если кружок отсутствует, то
подразумевается, что кривая интегрирования L не замкнута.

Укажем для справки еще одну разновидность записи криволиней-
ного интеграла, иногда используемую в физических приложениях. Для
этого заметим, что ( �A · d�r) = Aτ d�, где Aτ – проекция интегрируемого
векторного поля на заданное направление обхода. Соответственно, кри-
волинейный интеграл по контуру L записывают еще и так:∮

L

Aτd� .

Пусть в пространстве задана декартова система координат (x, y, z) с
базисными векторами {�i, �j, �k }, а интегрируемое векторное поле �A (�r )
представимо в форме:

�A (�r ) =�i P (x, y, z) +�j Q(x, y, z) + �k R(x, y, z) . (2.2)



26 Глава 1. Практикум по векторному анализу

Здесь {P, Q, R} – проекции векторного поля на оси декартовой системы
координат. Скалярное произведение поля �A и ориентированного элемен-
тарного отрезка

d�r =�i dx+�j dy + �k dz (2.3)

кривой L равно(
�A · d�r

)
= P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz .

Поэтому криволинейный интеграл 2-го рода часто записывают в форме:

I =

∫
L

(
�A · d�r

)
= I =

∫
L

P dx+Qdy +Rdz . (2.4)

Для вычислении криволинейных интегралов как 1-го так и 2-го ти-
пов, их стараются свести к стандартным – определенным – интегралам.
Покажем как это делается в случае криволинейного интеграла 2-го рода.
Пусть кривая L задана в параметрической форме:

�r (t) =�i x(t) +�j y(t) + �k z(t) ,

“привязанной” к некоторой декартовой системе координат (x, y, z). При-
чем параметр t выбран так, что при его возрастании от τ до T (τ < T )
радиус-вектор �r (t) вычерчивает всю кривую в заданном направлении об-
хода. Очевидно: d�r = �r ′(t) dt, и входящее в определение криволинейного
интеграла 2-го рода скалярное произведение равно:(

�A · d�r
)

=
(
�A (�r (t)) · �r ′(t)

)
dt =

[P (x(t), y(t), z(t))x′(t) +Q (x(t), y(t), z(t)) y′(t)+

R (x(t), y(t), z(t)) z′(t)] dt .

Отсюда следует, что криволинейный интеграл 2-го рода выражается че-
рез стандартный определенный интеграл по формуле

I =

T∫
τ

[P (x(t), y(t), z(t))x′(t)+

Q(x(t), y(t), z(t))y′(t) +R(x(t), y(t), z(t))z′(t)] dt .

(2.5)

Мы придем к той же самой формуле перехода от к р и в о л и н е й н о-
г о и н т е г р а л а в т о р о г о р о д а к определенному интегралу,
подставив в (2.4) дифференциалы dx = x′(t)dt, dy = y′(t)dt, dz = z′(t)dt.
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Подчеркнем еще раз, что в отличие от криволинейного интеграла 1-го
рода, интеграл 2-го рода зависит от направления обхода заданной кри-
вой. А именно, при смене направления обхода кривой знак интеграла
меняется. Это свойство криволинейных интегралов 2-го рода роднит их
с обычными определенными интегралами, меняющими знак при пере-
становке пределов интегрирования.

В физических приложениях важную роль играют так называемые
потенциальные поля:

Определение 2.3 Векторное поле �A (�r ) называют потенциальным,
если найдется такая скалярная функция U(�r ), что во всей области
определения векторного поля �A(�r ) выполняется равенство

�A =
∂U

∂x
�i+

∂U

∂y
�j +

∂U

∂z
�k . (2.6)

Входящую сюда скалярную функцию U(�r ) = U(x, y, z) называют потен-
циалом векторного поля �A (�r ).

Если интегрируемое векторное поле �A (�r ) потенциально, то подынте-
гральное выражение в криволинейном интеграле 2-го рода представляет
собой полный дифференциал:

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz = dU(x, y, z) . (2.7)

Вследствие этого интеграл не зависит от вида кривой L, а только от ее
начальной (x0, y0, z0) и конечной (x1, y1, z1) точек, и может быть вычислен
по формуле: ∫

L

(
�A · d�r

)
= U(x1, y1, z1) − U(x0, y0, z0) . (2.8)

Из-за сходства этой формулы с формулой Ньютона-Лейбница теории
определенных интегралов, потенциал U(�r ) иногда называют первообраз-
ной интегрируемого векторного поля �A (�r ).

Потенциал можно найти обычным интегрированием

U(x, y, z) =

x∫
x0

P (x, y, z) dx+

y∫
y0

Q(x0, y, z) dy+

z∫
z0

R(x0, y0, z) dz+C . (2.9)

Поясним геометрический смысл этой формулы. Ее правая часть пред-
ставляет собой криволинейный интеграл по пути, соединяющем некото-
рую исходную точку (x0, y0, z0) с произвольной точкой (x, y, z) нашего
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Рис. 2.4: Путь, сводящий нахождение потенциала к вычислению обычных опреде-
ленных интегралов.

трехмерного пространства. Причем, для удобства интегрирования, путь
составлен из трех прямых, параллельных осям координат: вначале мы
идем вдоль оси z, по прямой x = x0, y = y0 (последний интеграл в пра-
вой части (2.9)). Затем движемся вдоль оси y, и наконец вдоль оси x.
Поскольку потенциал определен с точностью до произвольной постоян-
ной, в конце равенства помещена произвольная константа C.

Часто оказывается полезным необходимое и достаточное условие на-
личия потенциальной функции, известное в анализе как необходимое и
достаточное условие полного дифференциала,

∂P

∂y
=
∂Q

∂x
,

∂Q

∂z
=
∂R

∂y
,

∂R

∂x
=
∂P

∂z
. (2.10)

Задачи
Задача 2.1
Вычислить криволинейный интеграл

I =

∫
L

(x2 − 2xy) dx+ (y2 − 2xy) dy

по параболе L
y = x2 (−1 ≤ x ≤ 1) ,

пробегаемой слева направо.

Р е ш е н и е. За параметр, по которому ведется интегрирование в
соответствующем определенном интеграле, в данном случае естественно
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взять x. Учитывая, что y′ = 2x, получаем:

I =

1∫
−1

(x2 − 2x3 + 2x5 − 4x4) dx = 2

(
1

3
− 4

5

)
= −14

15
.

Здесь мы, воспользовавшись симметрией пределов, сразу проигнориро-
вали вклад от подинтегральных слагаемых с нечетными степенями x.

Задача 2.2
Вычислить интеграл

I =

∮
L

(x+ y) dx+ (x− y) dy ,

где L – эллипс
x2

a2
+
y2

b2
= 1 ,

пробегаемый против хода часовой стрелки.

Р е ш е н и е. При вычислении указанного интеграла удобно записать
уравнение эллипса в параметрической форме:

x = a cos t , y = b sin t (0 ≤ t ≤ 2π) .

Отсюда x′ = −a sin t , y′ = b cos t, и контурный интеграл сводится к

I =

2π∫
0

[ab(cos2 t− sin2 t) − (a2 + b2) sin t cos t] dt ,

или

I =

2π∫
0

[
ab cos 2t− 1

2
(a2 + b2) sin 2t

]
dt = 0 .

Замечание 1. Мы могли бы заранее предсказать результат, вовремя
сообразив, что подынтегральное выражение является полным диффе-
ренциалом, а интеграл от полного дифференциала по замкнутому конту-
ру равен нулю. Напомним, условие полного дифференциала в 2-мерном
пространстве имеет вид:

∂P

∂y
=
∂Q

∂x
.

В нашем случае P = x+y , Q = x−y , и указанное условие выполняется.
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Рис. 2.5: Линии, вдоль которых потенциал из задачи 2.2 принимает одинаковые
значения. Их называют еще линиями равного уровня или эквипотенциальными кри-
выми. Криволинейный интеграл 2-го рода от потенциального поля равен нулю, если
кривая, по которой ведется интегрирование, соединяет точки, лежащие на одной ли-
нии равного уровня.

Замечание 2. Приведенное рассуждение служит простейшей иллю-
страцией того, как иногда совершаются научные открытия: Высказав и
проверив гипотезу относительно происхождения полученного частного
результата, мы доказали существенно более общее утверждение – инте-
грал от заданного подынтегрального выражения равен нулю для любого
замкнутого контура интегрирования.

Для полноты картины, найдем потенциал интегрируемой векторной
функции. Его легко вычислить с помощью двумерного варианта форму-
лы (2.9), выбрав за исходную точку начало координат (x0 = 0, y0 = 0):

U(x, y) =

x∫
0

P (x, y) dx+

y∫
0

Q(0, y) dy + C =

=
1

2

(
x2 − y2

)
+ x y + C .

Задача 2.3
Вычислить интеграл

I =

∮
ABCDA

dx+ dy

|x| + |y| ,

где L – контур квадрата с вершинами A(1, 0), B(0, 1), C(−1, 0), D(0,−1).
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Р е ш е н и е. В качестве параметра здесь можно выбрать x и разбить
интеграл на 4 –по каждой стороне квадрата. Заметив еще, что во всех
точках контура интегрирования |x| + |y| ≡ 1, будем иметь

I =

0∫
1

0 · dx+

−1∫
0

2dx+

0∫
−1

0 · dx+

1∫
0

2dx = 0 − 2 + 0 + 2 = 0 .

Нечетные интегралы здесь равны нулю, так как для них dx+ dy = dx−
dx = 0. Четные же интегралы взаимно сокращаются. Таким образом,
окончательный результат: I = 0.

Задача 2.4
Вычислить интеграл

(6,8)∫
(1,0)

x dx+ y dy√
x2 + y2

вдоль путей, не проходящих через начало координат.

Р е ш е н и е. В постановке задачи уже содержится подсказка: контур
не определен однозначно, а заданы лишь координаты его начальной и
конечной точек. Поэтому проверим прежде всего, не является ли подин-
тегральное выражение полным дифференциалом. Для этого вычислим
производные:

∂P

∂y
=

∂

∂y

x√
x2 + y2

= − xy

(x2 + y2)
3
2

,

∂Q

∂x
=

∂

∂x

y√
x2 + y2

= − xy

(x2 + y2)
3
2

.

Они равны, а значит интеграл не зависит от пути интегрирования. Чтобы
вычислить интеграл, нам осталось найти потенциал. Найдем его, двига-
ясь, например, от точки с координатами x0 = 1, y0 = 1 до произвольной
точки плоскости (x, y):

U(x, y) =

x∫
1

x dx√
x2 + 1

+

y∫
1

y dy√
x2 + y2

.

Таким образом
U(x, y) =

√
x2 + y2 + C
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Рис. 2.6: График четырех витков винтовой линии при a = 12 и b = 1. В задаче 2.5
требуется вычислить интеграл по нижнему витку.

и исходный интеграл равен:

I =
√

36 + 64 − 1 = 9 .

Этот же интеграл можно вычислить иначе:

(6,8)∫
(1,0)

x dx+ y dy√
x2 + y2

=

(6,8)∫
(1,0)

d(x2 + y2)

2
√
x2 + y2

=

(6,8)∫
(1,0)

d
(√

x2 + y2
)

=
√
x2 + y2

∣∣∣∣(6,8)

(1,0)

= 9.

Задача 2.5
Вычислить интеграл

I =

∫
L

y dx+ z dy + x dz ,

где L – виток винтовой линии

x = a cos t , y = a sin t , z = bt (0 ≤ t ≤ 2π) ,

пробегаемый в направлении возрастания параметра.

Р е ш е н и е. Разобьем интеграл на три:

I = −a2

2π∫
0

sin2 t dt+ ab

2π∫
0

t cos t dt+ ab

2π∫
0

cos t dt .

Первый из них вычислим, используя формулу sin2 t =
1 − cos 2t

2
, и со-

образив, что интеграл от косинуса по удвоенному периоду равен нулю.
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Таким образом I1 = −πa2. Второй интеграл вычисляется интегрирова-
нием по частям:

ab

2π∫
0

t cos t dt = ab

2π∫
0

t d sin t = −
2π∫
0

sin t dt = 0 .

Очевидно, третий интеграл также равен нулю. Следовательно, оконча-
тельный ответ: I = −πa2.

Задача 2.6
Вычислить интеграл

(6,1,1)∫
(1,2,3)

yz dx+ xz dy + xy dz .

Р е ш е н и е. Нетрудно сообразить, что подинтегральное выражение
представляет собой полный дифференциал потенциала U = xyz. Таким
образом, интеграл равен: I = 6− 6 = 0, поскольку начальная и конечная
точки лежат на одной эквипотенциальной поверхности U = 6.

Задача 2.7
Найти первообразную функцию z, если:

dz = (x2 + 2xy − y2) dx+ (x2 − 2xy − y2) dy .

Р е ш е н и е. Убедимся вначале в том, что правая часть этого равен-
ства действительно является полным дифференциалом:

∂P

∂y
= 2x− 2y =

∂Q

∂x
.

Вычислим потенциал, взяв за исходную точку начало координат:

z =

x∫
0

x2 dx+

y∫
0

(x2 − 2xy − y2) dy + C .

Отсюда имеем:

z =
1

3
x3 + x2y − xy2 − 1

3
y3 + C .
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Задача 2.8
Найти первообразную функцию U , если:

dU =

(
1 − 1

y
+
y

z

)
dx+

(
x

z
+
x

y2

)
dy − xy

z2
dz . (∗)

Р е ш е н и е. Вычислим потенциал, взяв за исходную точку, например,
(x0 = 0, y0 = 1, z0 = 1). Пользуясь формулой (1.18), будем иметь:

U =

x∫
0

(
1 − 1

y
+
y

z

)
dx+

y∫
1

(
0 +

0

y2

)
dy −

z∫
1

0 · dz
z2

+ C .

При выбранном пути интегрирования последние два интеграла равны
нулю. Таким образом

U = x− x

y
+
xy

z
+ C .

Осталось убедиться в том, что это равенство и соотношение (∗) не про-
тиворечат друг другу. Для этого надо продифференцировать U по x, y
и z, и сравнить полученные выражения с коэффициентами при dx, dy,
dz в (∗).

Задачи для самостоятельной работы

Задача 2.9
Вычислить интеграл

I =

∮
L

(x+ y) dx− (x− y) dy

x2 + y2
,

где L – окружность x2 + y2 = a2, пробегаемая против часовой стрелки.

Задача 2.10
Вычислить интеграл

I =

∫
AB

dx sin y + dy sin x ,

где AB – отрезок прямой между точками A(0, π) и B(π, 0).
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Задача 2.11
Вычислить интеграл

I =

(1,2)∫
(2,1)

y dx− x dy

x2

вдоль путей, не пересекающих оси y.

Задача 2.12
Найти криволинейный интеграл от полного дифференциала:

I =

(2,3,−4)∫
(1,1,1)

x dx+ y2 dy − z3 dz .

Задача 2.13
Найти первообразную функцию U , если:

dU = (x2 − 2yz) dx+ (y2 − 2xz) dy + (z2 − 2xy) dz .

Ответы

2.9. −2π. 2.10. 0. 2.11. −3

2
. 2.12. −643

12
. 2.13.

1

3
(x3+y3+z3)−2xyz.

Занятие 3. Формула Грина

Необходимые сведения из теории

Формула Грина связывает криволинейный интеграл по замкнутому
контуру L, расположенному в плоскости (x, y), с двойным интегралом
по плоской области S, ограниченной этим контуром:∮

L

P (x, y) dx+Q(x, y) dy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy . (3.1)

При этом контур в криволинейном интеграле должен пробегаться так,
что область S остается по левую руку от бегущего. Формула остается
справедливой и когда область S ограничена не одним, а несколькими
контурами (Рис. 3.1). При этом в левой части равенства (3.1) оказыва-
ется несколько интегралов, по всем контурам, ограничивающим область
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Рис. 3.1: Пример составного контура, состоящего из трех контуров. Указаны направ-
ления обхода контуров, при которых, согласно формуле Грина, сумма криволинейных
интегралов

∮
Pdx + Qdy по всем контурам равна двойному интегралу по затененной

на графике области.

S, а направления обхода каждого контура определяют упомянутым пра-
вилом “левой руки”. Указанное направление обхода контура называют
положительным. Всюду ниже, если особо не обговорено, будем пола-
гать, что контур обходят в положительном направлении.

Формула Грина бывает полезна при вычислении конкретных криво-
линейных интегралов по плоским контурам, поскольку, за счет диффе-
ренцирования, подынтегральное выражение в двойном интеграле часто
оказывается достаточно простым. Однако этим не ограничивается зна-
чение формулы Грина. Позволяя лучше понять геометрический и фи-
зический смысл исследуемого криволинейного интеграла, она служит
важным инструментом теоретической физики. К примеру, в механике
широко используется тот факт, что интеграл∮

L

x dy

равен, согласно формуле Грина, площади области, ограниченной конту-
ром L.

Из формулы Грина сразу следует уже знакомый нам вывод, что если
P и Q всюду подчиняются равенствам:

P (x, y) =
∂U

∂x
, Q(x, y) =

∂U

∂y
,

где U(x, y) – некоторая потенциальная функция, то криволинейный ин-
теграл в левой части формулы Грина тождественно равен нулю.

В заключение укажем одно гидромеханическое применение формулы
Грина. Пусть P и Q, соответственно, x и y компонента поля скорости
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плоского течения несжимаемой жидкости. В этом случае, как известно
из гидромеханики, P и Q выражаются через функцию тока Ψ(x, y):

P (x, y) = −∂Ψ

∂y
, Q(x, y) =

∂Ψ

∂x
,

а формула Грина принимает вид∮
P dx+Qdy =

∫∫
∫

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
dxdy .

Цель данного занятия – научиться свободно пользоваться форму-
лой Грина для вычисления разнообразных криволинейных интегралов
по плоским контурам.

Задачи
Задача 3.1
Вычислить криволинейный интеграл

I =

∮
L

xy2 dy − x2y dx ,

где L – окружность x2 + y2 = a2.

Р е ш е н и е. Преобразуем этот интеграл, по формуле Грина (3.1),
в двойной, надеясь, что производные под знаком двойного интеграла
сделают его простым для вычисления. Действительно, согласно формуле
Грина:

I =

∫∫
S

(x2 + y2) dx dy .

Симметрия области интегрирования и подинтегральной функции под-
сказывают, что при вычислении данного двойного интеграла удобно пе-
рейти к полярной системе координат. Другими словами, перейти от пе-
ременных x, y к ρ, ϕ , связанных между собой равенствами:

x = ρ cosϕ , y = ρ sinϕ .

Напомним, что при замене переменных в двойном интеграле, надо заме-
нять дифференциалы исходных переменных интегрирования на новые
дифференциалы, по формуле:

dx dy = |J | dρ dϕ ,
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где

J =

∣∣∣∣∣∣∣∣
∂x

∂ρ

∂y

∂ρ
∂x

∂ϕ

∂y

∂ϕ

∣∣∣∣∣∣∣∣
– якобиан преобразования старых переменных интегрирования в новые.
В нашем случае якобиан равен J = ρ, так что двойной интеграл преоб-
разуется к виду:

I =

a∫
0

ρ dρ

2π∫
0

dϕ ρ2 .

Выражение в правой части распадается на произведение двух интегралов

I =

a∫
0

ρ3 dρ ·
2π∫
0

dϕ .

Первый из них равен a4/4, а последний – 2π. Таким образом, окончатель-
ный результат: I = πa4/2. Заметим еще, что круг, по которому брался
двойной интеграл, будет слева от идущего по контуру L, если контур
обходят против часовой стрелки. При вычислении того же контурного
интеграла с обходом его по часовой стрелке, надо сменить знак получен-
ного ответа.

Задача 3.2
Применяя формулу Грина, вычислить следующий интеграл:

I =

∮
L

ex[(1 − cos y) dx− (y − sin y) dy] ,

где L – пробегаемый в положительном направлении контур, ограничи-
вающий область 0 < x < π, 0 < y < sin x.

Р е ш е н и е. В нашем случае

∂Q

∂x
= ex(sin y − y) ,

∂P

∂y
= − ex sin y .

Следовательно, соответствующий двойной интеграл равен:

I = −
π∫

0

dx ex
sinx∫
0

y dy .
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Вычислив внутренний интеграл, будем иметь:

I = −1

2

π∫
0

ex sin2 x dx .

Представим его в виде:

I =
1

4
(I0 + Ic) ,

где

I0 = −
π∫

0

ex dx = − ( eπ − 1) ,

а

Ic =

π∫
0

ex cos 2x dx . (∗)

Последний интеграл, как мы знаем из курса математического анализа,
вычисляется двойным интегрированием по частям:

Ic =

π∫
0

cos 2x dex = ( eπ − 1) + 2

π∫
0

ex sin 2x dx .

Далее

Ic = ( eπ − 1) +

π∫
0

sin 2x d ex = ( eπ − 1) − 4Ic .

Отсюда
Ic =

1

5
( eπ − 1) ,

а значит окончательный ответ:

I =
1

4

[
− ( eπ − 1) +

1

5
( eπ − 1)

]
= −1

5
( eπ − 1) .

Замечание. Сделаем замечание по поводу вычисления интеграла Ic
(∗). Как это часто бывает, более простой путь “лежит” через комплекс-
ную плоскость. Заметим, что Ic равен реальной части интеграла от ком-
плексной экспоненциальной функции:

Z =

π∫
0

ex(1+2i) dx .
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Этот табличный легко вычисляется:

Z =

π∫
0

ex(1+2i) dx =
1

1 + 2i
ex(1+2i)

∣∣∣∣∣
π

0

=
1

1 + 2i
( eπ − 1) .

Отсюда
Ic = ReZ =

1

5
( eπ − 1) .

Задача 3.3
Насколько отличаются друг от друга криволинейные интегралы

I1 =

∫
AmB

(x+ y)2 dx− (x− y)2 dy

и
I2 =

∫
AnB

(x+ y)2 dx− (x− y)2 dy ,

где AmB – прямая, соединяющая точки A(1, 1) и B(2, 6), и AnB – па-
рабола с вертикальной осью, проходящая через те же точки и начало
координат?

Р е ш е н и е. Найдем вначале уравнения кривых, по которым берут-
ся данные интегралы. Нетрудно сообразить, что первый из них берется
вдоль прямой y = 5x − 4, а второй – по параболе y = 2x2 − x. В усло-
вии задачи подразумевается, что каждый из указанных криволинейных
интегралов 1-го рода берется в направлении возрастания x. Поэтому ис-
комая разность

∆I = I2 − I1 =

∮
AnBmA

(x+ y)2 dx− (x− y)2 dy

равна криволинейному интегралу 1-го рода по контуру AnBmA, пробе-
гаемому против часовой стрелки, то есть так, что внутренность контура
остается по левую руку от бегущего. С помощью формулы Грина, можно
заменить данный контурный интеграл на двойной:

∆I = −4

∫∫
S

x dx dy .

Последний интеграл сводится к повторному по формуле:

∆I = −4

2∫
1

x dx

5x−4∫
2x2−x

dy = −4

2∫
1

x[(5x− 4) − (2x2 − x)] dx .
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Раскрыв скобки в подинтегральном выражении, найдем окончательно:

∆I = −4

2∫
1

(−2x3 + 6x2 − 4x)
)
dx = −2(−15 + 28 − 12) = −2 .

Задача 3.4
Вычислить криволинейный интеграл

I =

∫
AmO

( ex sin y −my) dx+ ( ex cos y −m) dy ,

где AmO – верхняя полуокружность x2 + y2 = ax, пробегаемая от точки
A(a, 0) до точки O(0, 0).

Р е ш е н и е. Чтобы применить формулу Грина, дополним контур
до замкнутого, отрезком оси x, от начала координат до точки A(a, 0).
Очевидно, интеграл по этому отрезку равен нулю. Действительно, пер-
вое слагаемое в левой части соотношения (3.1) равно нулю, так как на
указанном отрезке P (x, y = 0) = 0, а второе слагаемое равно нулю по-
скольку dy = 0. Таким образом, мы имеем право заменить исходный
интеграл на интеграл по замкнутому контуру:

I =

∮
AmO

( ex sin y −my) dx+ ( ex cos y −m) dy .

Последний равен следующему двойному интегралу по верхней половине
указанного круга:

I =

∫∫
S

mdxdy =
1

8
mπa2 .

Задача 3.5
Вычислить интеграл

IL =

∮
L

x dy − y dx

x2 + y2
,

где L – простой замкнутый контур, не проходящий через начало коор-
динат, пробегаемый в положительном направлении.

Р е ш е н и е. Определим значение этого интеграла с помощью форму-
лы Грина. Для чего найдем, прежде всего, подынтегральное выражение
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двойного интеграла в правой части формулы (3.1). Вычислим по отдель-
ности первое и второе слагаемое:

∂Q

∂x
=

∂

∂x

x

x2 + y2
=

(x2 + y2) − 2x2

x2 + y2
=
y2 − x2

x2 + y2
,

∂P

∂y
= − ∂

∂y

y

x2 + y2
=
y2 − x2

x2 + y2
=
∂Q

∂x
.

Отсюда следует, что подынтегральное выражение в соответствующем
двойном интеграле тождественно равно нулю, а значит равен нулю и
интересующий нас интеграл: IL = 0.

Более аккуратные рассуждения показывают, что полученный нами
результат не всегда справедлив. Он верен, лишь если внутрь контура L
не попадает начало координат. В противном случае внутри интеграла
имеется особая точка, где производные функций P и Q не существуют
в классическом смысле, и наш вывод о тождественном равенстве ну-
лю подынтегрального выражения в двойном интеграле не имеет смыс-
ла. Таким образом, ситуация, когда начало координат попадает внутрь
контура интегрирования, должна быть исследована отдельно. Чтобы вы-
числить интеграл в этом случае, окружим особую точку окружностью
La достаточно малого радиуса a, такого, чтобы упомянутая окружность
целиком лежала внутри контура L. Контурный интеграл по указанной
окружности

Ia =

∮
La

x dy − y dx

x2 + y2

можно вычислить в лоб, так, как мы вычисляли криволинейные инте-
гралы 2- го рода на предыдущем занятии. Для этого запишем уравнение
окружности в параметрической форме: x = a cos t, y = a sin t, и восполь-
зуемся формулой (2.5) предыдущего занятия, сводящей криволинейный
интеграл к обычному Риманову интегралу. В итоге получим:

Ia =

2π∫
0

dt = 2π .

Проведем перемычку, соединяющую контур L с упомянутой окружно-
стью. Рассмотрим контур L′, образованный контуром L, перемычкой и
окружностью La. Обойдем его вначале по контуру L, от точки смыкания
с перемычкой, возвратившись в эту точку с другой стороны. Затем прой-
дем по перемычке до окружности, обойдем ее, и по перемычке же вер-
немся в исходную точку. Заметим, что внутри пройденного нами контура
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L′ находится область, заключенная между контуром L и окружностью
La. Она не содержит особой точки (0, 0), а значит интеграл по этому за-
мкнутому контуру равен нулю. С другой стороны, этот интеграл равен
разности между искомым интегралом и интегралом по окружности:

IL′ = IL − Ia = 0 .

Знак минус здесь появился из-за того, что мы вычисляли интеграл Ia,
обходя контур против часовой стрелки, в то время как положительное
направление обхода контура L′ соответствует обходу окружности по ча-
совой стрелке. Таким образом, окончательный результат:

IL = Ia = 2π .

Задача 3.6
Вычислить двумя способами (непосредственно и с помощью формулы
Грина) следующий криволинейный интеграл 2-го рода:

I =

∮
L

(1 − x2)y dx+ x(1 + y2) dy ,

где L – окружность x2 + y2 = R2.

Р е ш е н и е. Согласно формуле Грина∮
L

P (x, y) dx+Q(x, y) dy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy ,

искомый криволинейный интеграл сводится к двойному:

I =

∫∫
S

(x2 + y2) dxdy .

Последний удобнее всего вычислять в полярной системе координат:

I =

2π∫
0

dϕ

R∫
0

ρ3 dρ =
π

2
R4 .

Замечание. Вычислим тот же интеграл непосредственным интегри-
рованием. При этом зададим уравнение кривой в следующей параметри-



44 Глава 1. Практикум по векторному анализу

ческой форме: x = R cos t, y = R sin t. В итоге получим:

I = R2

2π∫
0

[
(R2 cos2 t− 1) sin2 t+ (R2 sin2 t+ 1) cos2 t

]
dt =

= 2R4

2π∫
0

cos2 t sin2 t dt =
1

2
R4

2π∫
0

sin2 2t dt =
π

2
R4 .

Задачи для самостоятельной работы
Задача 3.7
С помощью формулы Грина, преобразовать криволинейный интеграл

I =

∮
L

√
x2 + y2 dx+ y

[
xy + ln

(
x+

√
x2 + y2

)]
dy ,

где контур L ограничивает конечную область S.
Задача 3.8
Применяя формулу Грина, вычислить криволинейный интеграл

I =

∮
L

(x+ y)2 dx− (x2 + y2) dy ,

где L – пробегаемый в положительном направлении контур треуголь-
ника ABC, с вершинами A(1, 1), B(3, 2), C(2, 5). Проверить найденный
результат, вычисляя интеграл непосредственно.

Задача 3.9
Применяя формулу Грина, вычислить следующий криволинейный инте-
грал:

I =

∮
L

(x+ y) dx− (x− y) dy ,

где L –эллипс
x2

a2
+
y2

b2
= 1 .

Задача 3.10
С помощью формулы Грина вычислить криволинейный интеграл:

I =

∮
x2+y2=R2

e−(x2−y2) (cos 2xy dx+ sin 2xy dy) .
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Задача 3.11
Какому условию должна удовлетворять дифференцируемая функция F (x, y),
чтобы криволинейный интеграл∫

AmB

F (x, y)(y dx+ x dy)

не зависел от выбора пути интегрирования?

Ответы

3.7.
∫∫
S

y2 dxdy. 3.8.−140

3
. 3.9.−2πab. 3.10. 0. 3.11. x

∂F

∂x
= y

∂F

∂y
.

Занятие 4. Поверхностные интегралы первого
рода

Необходимые сведения из теории
По аналогии с криволинейным интегралом 1-го рода, физическая ил-

люстрация которого состоит в нахождении массы материальной кривой
с известной линейной плотностью, поверхностный интеграл 1-го рода
выражает, к примеру, массу материальной поверхности по заданной по-
верхностной плотности. На языке математики, поверхностный интеграл
1-го рода ∫∫

S

f(x, y, z) dS (4.1)

равен пределу, при стремлении наибольшего диаметра разбиения к нулю,
интегральной суммы ∑

i

f(xi, yi, zi) ∆Si ,

где ∆Si площадь i-й площадки, на которые разбивают интегрируемую
поверхность S, а f(xi, yi, zi) –значение интегрируемой функции в произ-
вольной точке указанной площадки. Как обычно мы полагаем, что инте-
грируемая функция f задана в некоторой декартовой системе координат
(x, y, z). Кроме того за диаметр элементарной площадки ∆Si естественно
взять диаметр описывающего площадку шара.

Для вычисления поверхностного интеграла 1-го рода его сводят к
более привычному двойному интегралу. Напомним как это делается в
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r

r

v

u

Рис. 4.1: Кусок сферической поверхности, заданной параметрическими уравнения-
ми x = cos u sin v , y = sin u sin v , z = cos v; u ∈ [0, 2π] , v ∈ [0, π/3]. На поверхности
нанесены линии u = const и v = const. Здесь же изображены векторы �ru и �rv, каса-
тельные к поверхности в выбранной точке.

общем случае, когда поверхность задана векторным параметрическим
уравнением

�r = x(u, v)�i+ y(u, v)�j + z(u, v)�k . (4.2)

Пусть поверхность S взаимно-однозначно отображается векторной
функцией (4.2) на некую область Ω плоскости (u, v). Будем считать,
что входящие сюда функции непрерывно-дифференцируемы в области
Ω, что обеспечивает гладкость поверхности S и наличие в каждой из
ее точек единственной касательной плоскости. При этом поверхностный
интеграл 1-го рода по поверхности S сводится к двойному интегралу по
области Ω. Установим вид двойного интеграла. Для этого найдем, чему
равна площадь бесконечно малого dS элемента поверхности, отображае-
мого в прямоугольник площадью dΩ = dudv. Построим два касательных
к поверхности S вектора

∂u�r =
∂�r

∂u
du , ∂v�r =

∂�r

∂v
dv .

Очевидно, площадь упомянутого элемента поверхности S, с точностью
до бесконечно малой более высокого порядка, равна площади паралле-
лограмма, образованного векторами ∂u�r и ∂v�r:

dS = |[∂u�r × ∂v�r]| =

∣∣∣∣[∂�r∂u × ∂�r

∂v

]∣∣∣∣ du dv . (4.3)

Заменив в (4.1) dS на правую часть последнего равенства, а поверхность
интегрирования S на область Ω, придем к выводу, что поверхностный
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γ

Рис. 4.2: Седлообразная поверхность S, заданная явным уравнением z = 2+x2 − y2

(x ∈ [−1, 1] , y ∈ [−1, 1]). Здесь же изображен квадрат σ в плоскости (x, y), куда
проектируется данная поверхность. На поверхности нанесены кривые x = const и
y = const, разделяющие поверхность на элементарные площадки. Каждая из них
проектируется в свой квадратик на плоскости (x, y). Из центра одного из квадра-
тиков выпущена вертикальная прямая, соединяющая квадратик с соответствующим
элементом поверхности S. Косинус угла γ между нормалью �n к выбранному эле-
менту поверхности и вертикальной прямой равен отношению площади квадратика к
площади элемента поверхности.

интеграл 1-го рода следующим образом выражается через двойной ин-
теграл:∫∫

S

f(x, y, z) dS =

∫∫
Ω

f(x(u, v), y(u, v), z(u, v))

∣∣∣∣[∂�r∂u × ∂�r

∂v

]∣∣∣∣ du dv . (4.4)
При решении конкретных задач важно четко осознавать геометриче-

ский смысл множителя перед du dv. Поэтому поясним его еще раз. Пусть
dΩ –площадь бесконечно малой окрестности точки (u, v) области Ω, а
dS – площадь участка поверхности S, куда отображается упомянутая
окрестность. Отношение указанных площадей как раз и равно

dS

dΩ
=

∣∣∣∣[∂�r∂u × ∂�r

∂v

]∣∣∣∣ = |[�ru × �rv]] . (4.5)

Здесь применено, помимо стандартной формы записи частной производ-
ной, еще и более компактное обозначение:

∂�r

∂u
⇐⇒ �ru .
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Впоследствии мы будем считать их равноправными и прибегать как к
тем, так и другим обозначениям.

Упомянем один полезный частный случай формулы (4.4), когда по-
верхность, по которой ведется интегрирование, задана явно:

z = z(x, y) , (x, y) ∈ σ .

Здесь z(x, y) – известная функция, а σ – область в плоскости (x, y), куда
проектируется интегрируемая поверхность. При этом векторное уравне-
ние поверхности принимает вид:

�r =�i x+�j y + �k z(x, y) ,

и после вычисления отношения (1.25) получим:∫∫
S

f(x, y, z) dS =

∫∫
σ

f(x, y, z(x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dx dy . (4.6)

Здесь роль u и v играют координаты горизонтальной плоскости (x, y),
на которую в данном случае проектируется поверхность S.

Подчеркнем, что отношение (4.5) приобретает здесь особенно нагляд-
ный геометрический смысл. Оно равно 1/ cos γ, где γ – угол между го-
ризонтальной плоскостью и плоскостью, касательной к поверхности S, в
точке с координатами (x, y). Иначе говоря, справедливо следующее со-
отношение:

cos γ =
1√

1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2
. (4.7)

Часто это выражение трактуют еще как косинус угла между нормалью
к поверхности и осью z декартовой системы координат (x, y, z).

Задачи
Задача 4.1
Насколько отличаются друг от друга поверхностные интегралы

I1 =

∫∫
S

(
x2 + y2 + z2

)
dS и I2 =

∫∫
P

(
x2 + y2 + z2

)
dP ,

где S –поверхность сферы x2 + y2 + z2 = a2, а P –поверхность октаэдра,
|x| + |y| + |z| = a, вписанного в эту сферу.
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Рис. 4.3: Определение координат радиус-вектора �r в сферической системе коорди-
нат. Координата r равна длине радиус-вектора, координата θ –это угол между радиус-
вектором и осью z, а ϕ –угол между осью x и проекцией радиус-вектора на плоскость
z = 0.

Р е ш е н и е. Вычислим вначале интеграл по сфере. Для этого найдем
параметрическое уравнение сферы. Его можно получить из формул пре-
образования сферических координат в декартовы, приравняв радиаль-
ную координату r к радиусу нашей сферы a. При этом роль переменных
(u, v) будут играть угловые координаты (θ, ϕ):

x = a sin θ cosϕ ,
y = a sin θ sinϕ ,
z = a cos θ ,

где углы меняются в пределах

0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π .

Соответствующее векторное уравнение поверхности имеет вид:

�r(θ, ϕ) = a sin θ cosϕ�i+ a sin θ sinϕ�j + a cos θ �k .

Сосчитаем фигурирующее в формуле (4.4) векторное произведение

[�rθ × �rϕ] = a2

∣∣∣∣∣∣
�i �j �k

cos θ cosϕ cos θ sinϕ − sin θ
− sin θ sinϕ sin θ cosϕ 0

∣∣∣∣∣∣ .
Отсюда имеем:

[�rθ × �rϕ] =�i a2 sin2 θ cosϕ+�j a2 sin2 θ sinϕ+ �k a2 cos θ sin θ .
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Таким образом:

|[�rθ × �rϕ]| = a2
√

sin4 θ + cos2 θ sin2 θ = a2 sin θ .

Следовательно, поверхностный интеграл сводится к двойному интегра-
лу:

I1 =

2π∫
0

dϕ

π∫
0

a4 sin θ dθ = −2πa4 cos θ|π0 = 4πa4 .

Замечание 1. Обратим внимание на то, что использованное при
вычислении интеграла по сфере соотношение dS = a2 sin θ dθ dϕ мож-
но легко получить с помощью наглядных геометрических построений.
В самом деле, изменяя ϕ на dϕ, мы опишем на окружности θ = const
отрезок длиной lϕ = a sin θ dϕ. Изменив затем θ на dθ, мы продвинемся
в перпендикулярном направлении на расстояние lθ = a dθ. Это значит,
что на бесконечно малый прямоугольник dΩ = dθ dϕ в плоскости (θ, ϕ)
отображается элемент поверхности площадью dS = lϕ lθ = a2 sin θ dΩ.

Замечание 2. Мы могли бы вовсе избежать утомительных выкла-
док, если бы сразу заметили, что на поверхности сферы подынтегральное
выражение в I1 равно постоянной a2, а значит

I1 = a2 Ssf = 4πa4 ,

где 4πa2 –площадь сферы радиуса a.

Перейдем к вычислению интеграла I2. В силу симметрии поверхности
и подынтегрального выражения, достаточно взять интеграл по куску по-
верхности октаэдра, находящейся в 1-м квадранте x > 0, y > 0, z > 0, и
умножить результат на 8. В выбранном квадранте уравнение поверхно-
сти приобретает особенно простой вид: z = a−x−y. Применив формулу
(4.6) и заметив, что

dS =
√

1 + z′x
2 + z′y

2 dx dy =
√

3 dx dy ,

получим двойной интеграл

I2 = 8
√

3

∫∫
σ

[
x2 + y2 + (a− x− y)2

]
dx dy .

Область интегрирования σ представляет собой внутренность треуголь-
ника, ограниченного осями x, y и прямой y = a − x. Поэтому искомый
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интеграл сводится к повторному интегралу:

I2 = 8
√

3

a∫
0

dx

a−x∫
0

[
x2 + y2 + (a− x− y)2

]
dy .

Найдем внутренний интеграл. Хотя его легко свести к табличному,
попробуем вычислить этот интеграл, опираясь на геометрические сооб-
ражения. В дальнейшем мы часто будем прибегать к геометрическим
способам расчетов, имея ввиду, что ясное понимание геометрической
структуры подынтегральных выражений способствует более глубокому
пониманию сути конечного результата. Кроме того иногда “геометриче-
ский подход” легче ведет к цели, чем формальные аналитические вы-
кладки.

Обратив внимание, что площади криволинейных трапеций, отвечаю-
щих слагаемым y2 и (a− x− y)2 во внутреннем интеграле, одинаковы и

равны
(x− a)3

3
, будем иметь:

I2 = 8
√

3

a∫
0

(
x2(a− x) +

2

3
(a− x)3

)
dx .

Пользуясь такими же геометрическими соображениями, запишем остав-
шийся интеграл в более простой форме:

I2 = 8
√

3

a∫
0

(
ax2 − 1

3
x3

)
dx = 8

√
3a4

(
1

3
− 1

12

)
= 2a4

√
3 .

Таким образом, разность между заданными интегралами равна

I1 − I2 = 2a4(2π −
√

3) .

Задача 4.2
Вычислить поверхностный интеграл 1-го рода:

I =

∫∫
S

(
x2 + y2

)
dS ,

где S –граница тела
√
x2 + y2 ≤ z ≤ 1.
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Рис. 4.4: Иллюстрация к задаче 4.2: Конус, полученный вращением луча, прове-
денного из начала координат и наклоненного к горизонтальной плоскости z = 0 под
углом γ = 45o.

Р е ш е н и е. Поверхность, по которой ведется интегрирование, пред-
ставляет собой, расположенную в верхней полуплоскости z > 0, часть
конуса z =

√
x2 + y2, накрытую “крышкой” – кругом единичного радиу-

са в плоскости z = 1. Обсудим вначале интеграл по поверхности конуса.
Частные производные, необходимые для перехода от поверхностного ин-
теграла к двойному, равны:

∂z

∂x
=

x√
x2 + y2

,
∂z

∂y
=

y√
x2 + y2

.

Отсюда
dS =

√
1 + z′x

2 + z′y
2 dx dy =

√
2 dx dy ,

и искомый интеграл преобразуется к виду:

I =
(
1 +

√
2
)∫∫

σ

(x2 + y2) dx dy .

Здесь интегрирование ведется по кругу σ : x2 +y2 ≤ 1 в плоскости z = 0.
Единичка в скобке перед интегралом учитывает вклад от “крышки", а√

2 = 1/ cos γ, где γ = π/4 – угол между образующими конуса и горизон-
тальной плоскостью.

Переходя в интеграле к полярной системе координат и вспомнив, что
якобиан преобразования декартовых в полярные координаты равен ρ,
получим окончательно:

I =
(
1 +

√
2
) 2π∫

0

dϕ

1∫
0

ρ3 dρ =
π

2

(
1 +

√
2
)
.
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Рис. 4.5: Иллюстрация к задаче 4.3: График одного шага геликоида, образованного
равномерным вращением прикрепленного к оси z горизонтального отрезка, так же
равномерно поднимающегося вверх.

Задача 4.3
Вычислить интеграл

I =

∫∫
S

z dS ,

где S – часть поверхности геликоида

x = ρ cosϕ , y = ρ sinϕ , z = ϕ (0 < ρ < a , 0 < ϕ < 2π) .

Р е ш е н и е. Начнем с того, что мысленно представим поверхность
интегрирования. Для этого заметим, что при фиксированном ρ и меня-
ющемся ϕ, мы имеем уже знакомую по занятию 2 (задача 2.5) винтовую
линию, обвивающуюся вокруг оси z. Ее проекцией на плоскость (x, y)
служит окружность радиуса ρ с центром в начале координат. Совокуп-
ность винтовых линий, отвечающих разным значениям ρ, и образует ин-
тегрируемую поверхность. Образно говоря, наш геликоид представляет
собой винтовую полосу, образованную параллельным плоскости (x, y) от-
резком длины a, один конец которого вертикально движется по оси z, а
другой совершает еще и вращательное движение вокруг данной оси. По
форме геликоид напоминает винтовую лестницу или раскрытый веер.

Очевидно, имеется взаимно-однозначное соответствие между точка-
ми интересующей нас части поверхности геликоида – одного шага винто-
вой полосы – и ее проекции на плоскость (x, y) – точками круга радиуса
a. При этом переменные (ρ, ϕ) играют роль полярных координат в плос-
кости (x, y).

Вернемся к поставленной задаче. Чтобы перейти от поверхностного
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интеграла к двойному, запишем векторное уравнение поверхности

�r(ρ, ϕ) =�i ρ cosϕ+�j ρ sinϕ+ �k ϕ

и вычислим векторное произведение:

[�rρ × �rϕ] =

∣∣∣∣∣∣
�i �j �k

cosϕ sinϕ 0
−ρ sinϕ ρ cosϕ 1

∣∣∣∣∣∣ =�i sinϕ−�j cosϕ+ �k ρ .

Соответственно, модуль векторного произведения равен:

|[�rρ, �rϕ]| =
√

1 + ρ2 .

Мы могли бы получить это соотношение с помощью менее громоздких
выкладок, вовремя сообразив, что наклон геликоида к горизонтальной
плоскости, на которую мы его проектируем, не зависит от азимутального
угла ϕ, а лишь от расстояния до оси геликоида ρ. Поэтому при вычис-
лении определителя [�rρ × �rϕ] можно выбрать ϕ так, чтобы вычисления
были проще. К примеру, взяв ϕ = 0, будем иметь:

[�rρ × �rϕ]
∣∣∣
ϕ=0

=

∣∣∣∣∣∣
�i �j �k
1 0 0
0 ρ 1

∣∣∣∣∣∣ = −�j + �k ρ ⇒ ∣∣[�rρ, �rϕ]∣∣ =
√

1 + ρ2 .

Продолжим вычисление искомого интеграла. Из сказанного ясно, что
он сводится к повторному интегралу

I =

2π∫
0

ϕdϕ

a∫
0

√
1 + ρ2 dρ = 2π2

a∫
0

√
1 + ρ2 dρ .

Последний интеграл

J =

a∫
0

√
1 + ρ2 dρ

можно вычислить, например, заменой переменной интегрирования:

ρ = shµ ⇔ µ = ln
(
ρ+

√
1 + ρ2

)
.

Для этого нам понадобятся формулы связи гиперболических функций:

1 + sh 2µ = ch 2µ , ch 2µ =
1

2
(1 + ch 2µ) ,
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и
sh 2µ = 2 shµ chµ = 2 shµ

√
1 + sh 2µ .

Указанной заменой соответствующий неопределенный интеграл сводит-
ся к

J =

∫
ch 2µ dµ =

1

2

(∫
dµ+

∫
ch 2µ dµ

)
или

J =
1

2

(
µ+

1

2
sh 2µ

)
или

J =
1

2

(
µ+ shµ

√
1 + sh 2µ

)
.

Возвращаясь к старой переменной интегрирования, будем иметь:

J =
1

2

[
ln
(
ρ+

√
1 + ρ2

)
+ ρ
√

1 + ρ2
]
.

Разность значений этой первообразной функции при ρ = a и ρ = 0 дает
величину искомого интеграла:

J =
1

2

(
a
√

1 + a2 + ln
(
a+

√
1 + a2

))
.

Таким образом, окончательно:

I = 2π2 J = π2
[
a
√

1 + a2 + ln
(
a+

√
1 + a2

)]
.

Задача 4.4
Вычислить поверхностный интеграл 1-го рода

I =

∫∫
S

dS

r
,

где S – часть поверхности гиперболического параболоида z = xy, отсе-
ченная цилиндром x2 + y2 = R2, а r –расстояние от точки поверхности
до оси z.

Р е ш е н и е. Очевидно, в силу симметрии интегрируемой поверх-
ности и подынтегрального выражения, интеграл равен учетверенному
вкладу от куска поверхности, лежащей в 1-м октанте. Спроектируем его
на плоскость z = 0. В итоге получим:

I = 4

∫∫
σ

√
1 + x2 + y2√
x2 + y2

dxdy .
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Здесь σ – четверть круга в плоскости z = 0 с центром в начале коор-
динат и радиусом R. Выберем в качестве переменных интегрирования
полярные координаты. Это дает:

I = 4
π

2

R∫
0

√
1 + ρ2 dρ .

Используя результаты предыдущей задачи, получим окончательно:

I = π
[
ρ
√

1 + ρ2 + ln
(
ρ+

√
1 + ρ2

)]∣∣∣∣∣
R

0

=

= π
[
R
√

1 +R2 + ln
(
R +

√
1 +R2

)]
.

Задача 4.5
Вычислить интеграл

I =

∫∫
S

z2 dS ,

где S –часть поверхности конуса

x = ρ cosϕ sinα , y = ρ sinϕ sinα , z = ρ cosα

(0 ≤ ρ ≤ h , 0 ≤ ϕ ≤ 2π) α
(
0 ≤ α ≤ π

2

)
.

Р е ш е н и е. Поверхность S представляет собой часть координат-
ной поверхности θ = α сферической системы координат – вертикальную
“воронку”, упирающуюся в начало координат. Образующие “воронки” на-
клонены к оси z под углом α.

Запишем векторное уравнение поверхности:

�r(ρ, ϕ) = ρ cosϕ sinα�i+ ρ sinϕ sinα�j + ρ cosα�k .

Следовательно, входящее в двойной интеграл (1.24) векторное произве-
дение равно:

[
∂�r

∂ρ
× ∂�r

∂ϕ

]
=

∣∣∣∣∣∣
�i �j �k

cosϕ sinα sinϕ sinα cosα
−r sinϕ sinα r cosϕ sinα 0

∣∣∣∣∣∣ =

= −ρ cosϕ cosα sinα�i− ρ sinϕ cosα sinα�j + ρ sin2 α�k .
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Отсюда имеем: ∣∣∣∣[∂�r∂ρ × ∂�r

∂ϕ

]∣∣∣∣ =

= ρ

√
cos2 ϕ cos2 α sin2 α+ sin2 ϕ cos2 α sin2 α+ sin4 α = ρ sinα .

Как обычно, мы могли бы прийти к этому равенству из наглядных гео-
метрических соображений, найдя отношение площади dS = dr r sinα dϕ
элемента конуса, отображающегося в прямоугольник со сторонами dr и
dϕ на плоскости параметров (r, ϕ), к площади dΩ = dr dϕ указанного
прямоугольника.

Так или иначе, поверхностный интеграл сводится к двойному инте-
гралу:

I = cos2 α sinα

h∫
0

r3 dr

2π∫
0

dϕ =
π

2
h4 cos2 α sinα .

Замечание. Роскошь решить задачу только одним способом может
позволить себе разве что студент, рискующий лишь оценкой за невер-
ный ответ. Серьезные исследователи стремятся применить разные под-
ходы к поставленной проблеме. Поэтому предлагаем в качестве домаш-
него упражнения реализовать еще один путь решения, опирающийся на
тот факт, что интегрируемую поверхность можно задать в явном виде и
воспользоваться формулой (4.6).

Задача 4.6
Вычислить интеграл

I =

∫∫
S

dS

h
,

где S –поверхность эллипсоида, а h –расстояние от центра эллипсоида
до плоскости, касательной к элементарной площадке dS поверхности эл-
липсоида.

Р е ш е н и е. Очевидно, ответ не зависит от расположения эллипсои-
да. Поэтому для удобства аналитических выкладок возьмем эллипсоид,
заданный каноническим уравнением

x2

a2
+
y2

b2
+
z2

c2
= 1 .

Осуществим вначале переход от поверхностного к двойному интегралу.
Для этого запишем параметрическое уравнение эллипсоида, взяв за па-



58 Глава 1. Практикум по векторному анализу

M
h(M)

Рис. 4.6: Иллюстрация к задаче 4.6: Двумерный аналог эллипсоида, плоскости, каса-
ющейся эллипсоида в текущей точке интегрирования M , и перпендикулярного плос-
кости отрезка длиной h(M).

раметры углы сферической системы координат:

x = a sin θ cosϕ , y = b sin θ sinϕ , z = c cos θ (∗)
(0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π) .

Соответственно, векторное уравнение эллипсоида примет вид:

�r(θ, ϕ) = a sin θ cosϕ�i+ b sin θ sinϕ�j + c cos θ �k ,

а входящее в двойной интеграл векторное произведение оказывается рав-
ным:

[�rθ × �rϕ] =

∣∣∣∣∣∣
�i �j �k

a cos θ cosϕ b cos θ sinϕ −c sin θ
−a sin θ sinϕ b sin θ cosϕ 0

∣∣∣∣∣∣ =

= bc sin2 θ cosϕ�i+ ac sin2 θ sinϕ�j + ab cos θ sin θ �k .

Таким образом:

|[�rθ × �rϕ]| =

√
b2c2 sin4 θ cos2 ϕ+ a2c2 sin4 θ sin2 ϕ+ a2b2 cos2 θ sin2 θ

или, в более удобной для дальнейшего анализа форме:

|[�rθ × �rϕ]| = abc sin θ

√
sin2 θ cos2 ϕ

a2
+

sin2 θ sin2 ϕ

b2
+

cos2 θ

c2
.

Перейдем к обсуждению подынтегрального выражения
1

h
. Необходи-

мо записать его как функцию переменных интегрирования θ и ϕ. Однако
с первого взгляда неясно как это сделать. Поэтому начнем двигаться к
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цели издалека, пытаясь вспомнить знакомые формулы, ассоциирующи-
еся с поставленной задачей. К примеру, нам может прийти на ум урав-
нение плоскости, перпендикулярной единичному вектору �e, и удаленной
на расстояние h от начала координат:

(�e · �r) = h . (∗∗)
Чтобы эта плоскость касалась эллипсоида в некоторой его точке с ко-
ординатами (x, y, z), вектор �e должен быть перпендикулярным эллип-
соиду в выбранной точке. Сконструируем �e с помощью вспомогательной
функции

w(x, y, z) =
1

2

(
x2

a2
+
y2

b2
+
z2

c2

)
.

Ее поверхности равного уровня образуют эллипсоиды, один из которых,

отвечающий уровню w =
1

2
– наш эллипсоид. Градиент этой функции

gradw =
x

a2
�i+

y

b2
�j +

z

c2
�k ,

согласно геометрическому смыслу градиента, перпендикулярен, в точке
(x, y, z), эллипсоиду, проходящему через данную точку. Длина вектора
градиента

|gradw| =

√
x2

a4
+
y2

b4
+
z2

c4
.

Следовательно, фигурирующий в уравнении плоскости единичный век-
тор равен:

�e =
1√

x2

a4
+
y2

b4
+
z2

c4

( x
a2
�i+

y

b2
�j +

z

c2
�k
)
.

Подставив его, вместе с радиус-вектором �r = x�i + y�j + z �k исследуемой
точки эллипса, в уравнение плоскости (∗∗), отыщем искомое расстояние
от центра координат до плоскости, касающейся эллипсоида в этой точке:

h =
1√

x2

a4
+
y2

b4
+
z2

c4

(
x2

a2
+
y2

b2
+
z2

c2

)
.

Имея ввиду, что для нашего эллипсоида выражение в скобках равно еди-
нице, найдем искомое расстояние от начала координат до эллипсоида:

h =
1√

x2

a4
+
y2

b4
+
z2

c4

.
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Поместив сюда, вместо (x, y, z), параметрические уравнения эллипсоида
(∗), в итоге получим:

1

h
=

√
sin2 θ cos2 ϕ

a2
+

sin2 θ sin2 ϕ

b2
+

cos2 θ

c2
.

Замечание 4.1 Мы могли бы сэкономить время, если бы вспомнили
из курса аналитической геометрии уравнение плоскости, касательной к
эллипсоиду в некоторой точке (x1, y1, z1):

xx1

a2
+
y y1

b2
+
z z1

c2
= 1 ,

или в векторной форме (�l · �r) = 1, где

�l =
x1

a2
�i+

y1

b2
�j +

z1

c2
�k .

Длина этого вектора очевидно равна
1

h
. Вычислив ее, придем к уже зна-

комому равенству.

Продолжим наши вычисления. Подставив выражение для
1

h
в двой-

ной интеграл, к которому сводится наш поверхностный интеграл, будем
иметь:

I =

2π∫
0

dϕ

π∫
0

|[�rϕ × �rθ]|
h

dθ =

= abc

2π∫
0

dϕ

π∫
0

sin θ

(
sin2 θ cos2 ϕ

a2
+

sin2 θ sin2 ϕ

b2
+

cos2 θ

c2

)
dθ .

Сделав во внутреннем интеграле замену переменной u = − cos θ, и учи-
тывая четность относительно u подынтегрального выражения, получим

I = 2abc

2π∫
0

dϕ

1∫
0

(
(1 − u2) cos2 ϕ

a2
+

(1 − u2) sin2 ϕ

b2
+
u2

c2

)
du =

= 2abc

2π∫
0

(
2

3

1 + cos 2ϕ

2a2
+

2

3

1 − cos 2ϕ

2b2
+

1

3c2

)
dϕ.
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Здесь мы избавились от интеграла по u, заменив всюду u2 на площадь

криволинейной трапеции S =
1

3
. Заметив далее, что интегралы от синуса

и косинуса по целому числу периодов равны нулю, находим окончательно

I =
4π

3
abc

(
1

a2
+

1

b2
+

1

c2

)
.

В качестве проверки укажем, что для частного случая сферы a = b =
c, когда h ≡ a, эта формула дает заранее очевидный результат: I = 4πa.

Задачи для самостоятельной работы

Задача 4.7
Вычислить площадь поверхности геликоида, заданной уравнениями:

x = ρ cosϕ , y = ρ sinϕ , z = b ϕ

(0 < ρ < a , 0 ≤ ϕ ≤ 2π) .

Исследовать геометрический смысл полученного выражения в зависи-
мости от соотношения между радиусом геликоида a и (деленной на 2π)
высотой b.

Задача 4.8
Найти площадь части сферы x2 + y2 + z2 = a2, заключенной внутри
кругового цилиндра x2 + y2 = b2 (b ≤ a).

Задача 4.9
Найти площадь части цилиндра x2 + y2 = a2, вырезаемой из него цилин-
дром y2 + z2 = a2.

Задача 4.10
Вычислить поверхностный интеграл 1-го рода:

I =

∫∫
S

(x+ y + z) dS ,

где S – поверхность верхней полусферы

x2 + y2 + z2 = a2 , z ≥ 0 .
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Задача 4.11
Вычислить поверхностный интеграл 1-го рода:

I =

∫∫
S

dS

(1 + x+ y)2
,

где S – поверхность тетраэдра

x+ y + z ≤ 1 , x ≥ 0 , y ≥ 0 , z ≥ 0 .

Задача 4.12
Вычислить поверхностный интеграл 1-го рода:

I =

∫∫
S

|xyz| dS ,

где S – часть поверхности z = x2 + y2, отсекаемая плоскостью z = 1.

Задача 4.13
Вычислить поверхностный интеграл 1-го рода:

I =

∫∫
S

(xy + yz + zx) dS ,

где S – часть конической поверхности z =
√
x2 + y2, вырезанная поверх-

ностью x2 + y2 = 2ax.

Ответы

4.7. S = π

[
a
√
a2 + b2 + b2 ln

a+
√
a2 + b2

b

]
. 4.8. 4πa(a−√

a2 − b2. 4.9.

8a2. 4.10. πa3. 4.11.
3 −√

3

2
+(

√
3−1) ln 2. 4.12.

125 −√
5 − 1

420
. 4.13.

64

15
a4
√

2.

Занятие 5. Приложения поверхностного инте-
грала 1-го рода

Необходимые сведения
На прошлых занятиях мы уже освоили методы вычисления поверх-

ностных интегралов 1-го рода, оперируя при этом преимущественно гео-
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метрическими категориями. Однако для лучшего понимания сути по-
верхностных интегралов имеет смысл взглянуть на них еще и с физиче-
ской точки зрения. Поэтому сейчас мы продолжим обсуждение подобных
интегралов, отталкиваясь от физических задач, к ним приводящих.

В самом деле, поверхностные интегралы 1-го рода находят широкое
применение практически во всех разделах физики. Необходимость их вы-
числения диктуется потребностью отыскания интегральных свойств ма-
териальных поверхностей, вдоль которых распределена масса вещества,
электрический заряд, задана теплоемкость или другие, меняющиеся от
точки к точке, физические параметры поверхности. Перечисленные и
иные физические свойства материальной поверхности как единого цело-
го математически выражаются в форме поверхностных интегралов.

Поскольку очень трудно осветить все поистине необозримые возмо-
жности использования в физике поверхностного интеграла 1-го рода,
ограничимся здесь лишь тем, что укажем некоторые его механические
применения.

Напомним прежде всего, что если на всей поверхности S известна
ее поверхностная плотность 
(�r), то полная масса вещества поверхности
выражается поверхностным интегралом:

m =

∫∫
S


(�r) dS . (5.1)

Другой важной механической характеристикой материальной повер-
хности служит момент массы

�T =

∫∫
S


�r dS . (5.2)

Поделив последний на общую массу m (1), получим центр масс поверх-
ности:

�rc =
1

m
�T . (5.3)

Он играет важную роль при изучении движения тел: Центр масс вся-
кого тела, в том числе и материальной поверхности, движется так, как
если бы все внешние силы, действующие на тело, были приложены к
центру масс. Если в пространстве задана декартова система координат
(x, y, z), то вектор центра масс определяется своими проекциями на оси
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координат:

xc =
1

m

∫∫
S

x
(x, y, z) dS , yc =
1

m

∫∫
S

y
(x, y, z) dS , (5.4)

zc =
1

m

∫∫
S

z
(x, y, z) dS .

При описании вращательной способности материальной поверхности во-
круг некоторой оси необходимо знать момент инерции поверхности от-
носительно данной оси. Обозначим за r⊥(M) расстояние точки M по-
верхности до указанной оси. Тогда момент инерции материальной по-
верхности выражается следующим поверхностным интегралом:

J =

∫∫
S

r2
⊥(�r) 
(�r) dS . (5.5)

Ценность понятия момента инерции для механики объясняется его свя-
зью с энергией вращения. Кинетическая энергия тела, вращающегося во-
круг некоторой оси, равна половине момента инерции относительно этой
оси, умноженной на квадрат угловой скорости ω вращения: K = Jω2/2.

Задачи
Задача 5.1
Найти массу параболической оболочки

z =
1

2

(
x2 + y2

)
(0 ≤ z ≤ 1) ,

плотность которой меняется по закону 
 = z.

Р е ш е н и е. Масса оболочки выражается через ее плотность с по-
мощью поверхностного интеграла (5.1). В нашем случае указанный ин-
теграл имеет вид:

m =

∫∫
S

z dS .

Прежде чем вычислить его, запишем векторное уравнение параболиче-
ской оболочки, взяв в качестве параметров полярные координаты ρ и ϕ
в горизонтальной плоскости (x, y):

�r (ρ, ϕ) = ρ cosϕ�i+ ρ sinϕ�j +
ρ2

2
�k .
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Векторное произведение, связывающее площади dS элементов поверхно-
сти и площади отвечающих им бесконечно малых прямоугольников dρ dϕ
на плоскости параметров, в данном случае равно:

[�rρ × �rϕ] =

∣∣∣∣∣∣
�i �j �k

cosϕ sinϕ ρ
−ρ sinϕ ρ cosϕ 0

∣∣∣∣∣∣ = −ρ2 cosϕ�i− ρ2 sinϕ�j + ρ�k .

Следовательно,

dS = |[�rρ × �rϕ]| dρ dϕ = ρ
√

1 + ρ2 dρ dϕ .

По укоренившейся привычке обсудим геометрический смысл правой
части последнего равенства. Множитель ρ здесь равен якобиану преоб-
разования от декартовых (x, y) к полярным (ρ, ϕ) координатам. Другой
множитель

√
1 + ρ2 можно было бы найти, сообразив, что тангенс угла

наклона γ плоскости, касательной к параболоиду в точке, отстоящей на
расстоянии ρ от оси z, равен ρ. Найдем косинус угла γ, вспомнив школь-
ную тригонометрию. А именно построив прямоугольный треугольник, с
прилежащим катетом единичной длины и противолежащим углу γ кате-
том длины ρ. Косинус γ равен длине прилежащего катета, деленной на
длину гипотенузы: cos γ = 1/

√
1 + ρ2.

С учетом сказанного, искомый поверхностный интеграл сводится к
повторному:

m =

∫ 2π

0

dϕ

∫ √
2

0

ρ2

2
ρ
√

1 + ρ2 dρ .

Последний, в силу симметрии области интегрирования и подынтеграль-
ного выражения, распадается на 2 определенных интеграла. Интеграл по
ϕ равен 2π. Сведем оставшийся интеграл к табличному, сделав замену
переменной интегрирования:√

1 + ρ2 = t ⇒ ρ2 = t2 − 1 ⇒ ρ dρ = t dt .

Это дает:

m = π

∫ √
3

1

(t2 − 1)t2 dt = π

(
t5

5
− t3

3

)∣∣∣∣
√

3

1

= π

(
9
√

3

5
−

√
3 − 1

5
+

1

3

)
=

=
π

15

(
27
√

3 − 15
√

3 − 3 + 5
)

=
2π

15

(
6
√

3 + 1
)
.

Задача 5.2
Вычислить момент инерции однородной конической оболочки

x2

a2
+
y2

a2
− z2

b2
= 0 (0 ≤ z ≤ b) ,
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постоянной плотности 
0, относительно прямой

x

1
=
y

0
=
z − b

0
.

Р е ш е н и е. Прямая, относительно которой требуется вычислить мо-
мент инерции, расположена вдоль оси x, на пересечении плоскостей y = 0
и z = b. Сам момент инерции равен интегралу по поверхности оболочки
от ее плотности, умноженной на квадрат расстояния точек поверхности
до прямой:

J = 
0

∫∫
S

r2
⊥ dS .

Найдем искомый квадрат расстояния r2
⊥, опустив на указанную прямую,

из точки с координатами (x, y, z), перпендикуляр. Очевидно, он достига-
ет заданную прямую в точке с координатами (x, 0, b). А значит квадрат
длины перпендикуляра

r2
⊥ = y2 + (z − b)2 .

Следовательно, искомый интеграл принимает вид:

J = 
0

∫∫
S

(
y2 + (z − b)2

)
dS .

Преобразуем интеграл к двойному, записав явное уравнение оболочки:

z =
b

a

√
x2 + y2

и спроектировав ее на горизонтальную плоскость (x, y). Принимая во
внимание, что образующие конической оболочки наклонены к плоскости
(x, y) под одним и тем же углом γ (tg γ = b/a), получим

dS =

√
1 +

b2

a2
dx dy .

В итоге приходим к двойному интегралу:

J = 
0

√
a2 + b2

a

∫∫
σ

[
y2 +

(
b

a

√
x2 + y2 − b

)2
]
dx dy .

Здесь σ – круг x2 + y2 ≤ a2 в плоскости (x, y). Перейдя в интеграле к
полярным координатам, будем иметь:

J =

0

a

√
a2 + b2

∫ 2π

0

dϕ

∫ a

0

[
ρ2 sin2 ϕ+

(
b

a
ρ− b

)2
]
ρ dρ .
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Вычислим вначале интеграл от первого слагаемого:∫ 2π

0

sin2 ϕdϕ

∫ a

0

ρ3 dρ = π

∫ a

0

ρ3dρ =
πa4

4
.

Интеграл от второго слагаемого равен:

b2

a2

∫ 2π

0

dϕ

∫ a

0

(ρ− a)2ρ dρ = 2π
b2

a2

∫ a

0

ρ2(a− ρ)dρ =

= 2π
b2

a2

(
aρ3

3
− ρ4

4

)∣∣∣∣a
0

= 2πb2a2

(
1

3
− 1

4

)
=
πb2a2

6
.

Здесь мы для упрощения интеграла воспользовались тем геометрически
очевидным фактом, что график функции y = f(a − ρ) получается из
графика y = f(ρ) зеркальным отражением относительно вертикальной
прямой x = a/2. В нашем случае это означает, что площади криволиней-
ных трапеций, ограниченных кривыми (ρ− a)2ρ и ρ2(a− ρ), одинаковы.

Объединив вычисленные интегралы и домножив их на коэффициент
при выписанном выше двойном интеграле, определяющем момент инер-
ции оболочки, получим окончательно:

J = 
0

√
a2 + b2

a

(
πa4

4
+
πb2a2

6

)
= 
0

πa

12

√
a2 + b2

(
3a2 + 2b2

)
.

Чтобы детальнее осмыслить физический смысл и структуру той или
иной обнаруженной закономерности, всегда полезно обследовать ее раз-
ные предельные случаи. Применительно к данной задаче, положив b = 0,
найдем момент инерции

J = 
0π
a4

4
однородной круглой пластинки относительно оси, лежащей в плоскости
круга и проходящей через его центр.

Исследуем другой предельный случай a → 0. Здесь конус вырожда-
ется в “указку” – отрезок прямой, лежащий на оси y, соединяющий точки
y = 0 и y = b и обладающей линейной плотностью

µ(y) = µ0
y

b
где µ0 = 2πa
0 .

Выразив в решении задачи 
0 через µ0 и положив затем a = 0, найдем
момент инерции “указки” относительно ее тяжелого конца:

J = µ0
b3

12
.
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Задача 5.3
Найти координаты центра масс однородной поверхности

z =
√
x2 + y2 ,

вырезанной цилиндром x2 + y2 = ax.

Р е ш е н и е. Радиус-вектор центра масс произвольной однородной
поверхности задается интегралом:

�rc =
1

m

∫∫
S

�r dS ,

гдеm – масса поверхности, которую в данном контексте надо приравнять
ее площади:

m =

∫∫
S

dS =
√

2

∫∫
σ

dx dy =

√
2

4
πa2 . (∗)

Здесь σ – круг (x− a/2)2 + y2 ≤ a2/4 в плоскости (x, y), куда проектиру-
ется наша поверхность, а πa2/4 – его площадь. Кроме того учтено, что
косинус угла между образующими конуса и горизонтальной плоскостью
равен 1/

√
2.

Приступим к вычислению координат центра масс. Так:

xc =
1

m

∫∫
S

x dS .

Перейдя к двойному интегралу по указанному кругу, имеем:

xc =

√
2

m

∫∫
σ

x dxdy =
1

m0

∫∫
σ

x dxdy . (∗∗)

Здесь мы еще раз обратили внимание, что площадь m (∗) исследуемого
куска конической поверхности связана с площадью m0 – круга в плос-
кости z = 0 равенством: m0 = m/

√
2 . Отсюда и из (∗∗) заключаем, что

искомая x координата центра масс обсуждаемой поверхности совпадает
с x координатой центра масс круга. Очевидно, последняя равна xc = a/2.

Аналогично, приняв во внимание симметрию рассматриваемой мате-
риальной поверхности относительно плоскости y = 0, имеем: yc = 0.



Занятие 5. Приложения поверхностного интеграла 1-го рода 69

Вычислим наконец z координату центра масс. После перехода к двой-
ному интегралу по указанному кругу и выбора полярной системы коор-
динат (ρ, ϕ) на плоскости (x, y), находим:

zc =
1

m

∫∫
S

z dS =

√
2

m

∫∫
σ

√
x2 + y2 dx dy =

=

√
2

m

∫ π
2

−π
2

dϕ

∫ a cosϕ

0

ρ2 dρ = 2

√
2

m

a3

3

∫ π
2

0

cos3 ϕdϕ =
4
√

2

9m
a3 =

16

9π
a .

В последнем равенстве учтено полученное ранее выражение (∗) для мас-
сы поверхности, а также попутно вычислен элементарный интеграл∫ π

2

0

cos3 ϕdϕ =

∫ 1

0

(1 − u2) du (u = sinϕ) .

Задача 5.4
С какой силой притягивает однородная усеченная коническая поверх-
ность

x = ρ cosϕ , y = ρ sinϕ , z = ρ (0 ≤ ϕ ≤ 2π , 0 < b ≤ ρ ≤ a) ,

плотностью 
0, материальную точку массы m, помещенную в вершине
этой поверхности?

Р е ш е н и е. Из курса физики известно, что гравитационная сила,
действующая на расположенную в точке �r0 точечную массу, со стороны
материальной поверхности S плотности 
, равна:

�F = γm

∫∫
S

�r − �r0
|�r − �r0|3
 dS .

Здесь γ – гравитационная постоянная. В нашем случае �r0 = 0, 
 = 
0 =
const, и интеграл сводится к виду:

�F = γm
0

∫∫
S

�r

r3
dS .

Из соображений симметрии ясно, что искомая сила имеет лишь проек-
цию на ось z, равную:

Fz = γm
0

∫∫
S

z

r3
dS .
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Сведем этот интеграл к двойному, спроектировав интегрируемый кусок
конической поверхности на плоскость z = 0, в кольцо между концентри-
ческими окружностями, радиусами b и a (b < a). Выразим радиус-вектор
поверхности через угловые координаты:

�r =�i ρ cosϕ+�j ρ sinϕ+ �k ρ .

При этом векторное произведение, входящее в формулу перехода от по-
верхностного к двойному интегралу, равно:

[�rρ × �rϕ] =

∣∣∣∣∣∣
�i �j �k

cosϕ sinϕ 1
−ρ sinϕ ρ cosϕ 0

∣∣∣∣∣∣ = −�iρ cosϕ+�jρ sinϕ+ �kρ .

Отсюда получаем:

dS = |[�rρ × �rϕ]| dρ dϕ =
√

2ρ dρ dϕ .

Следовательно

Fz = γm
0

∫ 2π

0

dϕ

∫ a

b

dρ

2ρ
= γm
0π ln

a

b
.

Здесь учтено, что расстояние от материальной точки до точек поверх-
ности следующим образом выражается через используемую в двойном
интеграле радиальную координату:

r =
√

2ρ .

Задачи для самостоятельной работы
Задача 5.5
Найти массу полусферы

x2 + y2 + z2 = a2 (z ≥ 0) ,

плотность которой в каждой ее точке M(x, y, z) равна z/a.

Задача 5.6
Найти моменты однородной треугольной пластинки

x+ y + z = a (x ≥ 0 , y ≥ 0 , z ≥ 0 )

относительно координатных плоскостей.
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Задача 5.7
Вычислить момент инерции, относительно оси Oz, однородной сфериче-
ской оболочки

x2 + y2 + z2 = a2 (z ≥ 0) ,

плотности 
0.

Ответы

5.5. πa3. 5.6.
a3

2
√

3
. 5.7.

4

3
πa3ρ0.

Занятие 6. Поверхностные интегралы второго
рода

Необходимые сведения из теории

Основательно освоившись на предыдущих занятиях с поверхностны-
ми интегралами 1-го рода, перейдем ко второму типу поверхностных
интегралов, играющих для физических приложений существенно более
важную роль, чем поверхностные интегралы 1-го рода. Это связано с
тем, что поверхностные интегралы 2-го рода приспособлены для вычис-
ления потоков самых разнообразных физических величин – потоков теп-
ла, жидкости, электрического поля – через выделенные участки поверх-
ностей.

При определении потока, а вместе с ним и поверхностного интеграла
2-го рода, принципиальную роль играет понятие стороны поверхности,
сквозь которую направлен поток. Поэтому прежде всего выясним, что
подразумевают под стороной поверхности. Напомним, в каждой внут-
ренней (не принадлежащей границе) точке гладкой поверхности можно
указать два направления, перпендикулярные поверхности в данной точ-
ке. Выделив одно из них – восстановив единичный вектор нормали �n в
заданном направлении – определяют сторону поверхности в указанной
точке. Как правило, задание стороны гладкой поверхности в одной ее
точке автоматически выделяет сторону всей поверхности. Для этого по
поверхности проводят кривую, соединяющую исходную точку с произ-
вольной точкой поверхности, и движутся от исходной к искомой точке,
непрерывно перестраивая направление нормали к точкам кривой.

Оказывается однако, что описанная процедура позволяет однозначно
указать сторону – совокупность всех точек поверхности с приписанны-



72 Глава 1. Практикум по векторному анализу

Рис. 6.1: Типичный пример двусторонней поверхности. На графике изобра-
жен также вектор нормали, восстановленный из точки выбранной стороны
поверхности.

ми им упомянутым способом направлениями вектора нормали, лишь в
случае двусторонней поверхности.

Определение 6.1 Гладкая поверхность S называется двусторонней,
если обход по любому замкнутому контуру, лежащему на поверхности
S и не имеющему общих точек с ее границей, не меняет направление
нормали к поверхности.

Чтобы различать стороны некоторой гладкой двусторонней поверх-
ности S, обозначим за S+ ту ее сторону, из которой восстановлен еди-
ничный вектор нормали �n.

Большинство встречающихся поверхностей – двусторонние. Однако
существуют и односторонние поверхности. Так называют поверхности,
где имеется хотя бы один замкнутый контур, при обходе которого направ-
ление нормали меняется на противоположное. Примером односторонней
поверхности служит знаменитый лист Мебиуса. Его можно получить,
склеив два конца плоской ленточки, предварительно повернув один из
них на 180 градусов.

Вернемся к определению поверхностного интеграла 2-го рода. Проще
всего сконструировать его в некоторой декартовой системе координат,
где компонентами единичного вектора нормали �n служат направляющие
косинусы – косинусы углов наклона нормали к осям координат:

�n(�r) = {cosα, cos β, cos γ} . (6.1)

Здесь
α = (�̂n, x) , (�̂n, y) , (�̂n, z) ,

– углы между нормалью �n и осями координат. Косинусы этих углов рав-
ны скалярным произведениям вектора �n и ортов {�i, �j, �k} – единичных
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Рис. 6.2: Лист Мебиуса. На рисунке хорошо видно, что если пойти поперек
линий вдоль листа, отслеживая непрерывное изменение вектора нормали, то
при возвращении в исходную точку направление нормали сменится на проти-
воположное.

векторов, расположенных вдоль осей декартовой системы координат:

cosα = (�n ·�i) , cos β = (�n ·�j) , cos γ = (�n · �k) .

Пусть в каждой точке двусторонней поверхности S определены три
непрерывные функции

P = P (x, y, z) , Q = Q(x, y, z) , R = R(x, y, z) . (6.2)

Определение 6.2 Поверхностный интеграл 2-го рода равен следующе-
му поверхностному интегралу 1-го рода:

I =

∫∫
S

(P cosα+Q cos β +R cos γ) dS . (6.3)

Замечание 6.1 Нетрудно сообразить, что данное определение имеет
смысл лишь для двусторонних поверхностей, для которых можно од-
нозначно указать направление нормали во всех точках поверхности.

Замечание 6.2 Функции (6.2) естественно рассматривать как компо-
ненты в декартовой системе координат (x, y, z) некоторого векторного
поля:

�A(�r) = P�i+Q�j +R�k . (6.4)

При этом подынтегральное выражение в (6.3) равно скалярному произ-
ведению вектора �A(�r) и нормали в соответствующей точке поверхности.
Поэтому поверхностный интеграл 2-го рода физики часто предпочитают
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записывать в другой, более компактной и не зависящей от конкретного
задания системы координат, форме:

I =

∫∫
S

(
�A · �n

)
dS . (6.5)

Напомним, поверхностный интеграл 2-го рода имеет ясный физиче-
ский смысл: Он равен сумме потоков векторного поля �A(�r ) через состав-
ляющие поверхность элементарные площадки dS в направлениях векто-
ра нормали �n, своего для каждой элементарной площадки. Подчеркнем
еще, что при переходе к другой стороне поверхности (от S+ к S−), по-
верхностный интеграл 2-го рода меняет знак на обратный.

Замечание 6.3 В математике обычно пользуются другой формой за-
писи поверхностного интеграла 2-го рода:∫∫

S+

P dy dz +Qdz dx+Rdx dy , (6.6)

символизирующей тот факт, что первое слагаемое в интеграле равно по-
току вектора �A через проекцию элементарной площадки dS поверхности
на плоскость, параллельную координатной плоскости (y, z), и так далее.

Для вычисления поверхностного интеграла 2-го рода необходимо вы-
разить его через двойной интеграл по некоторой плоской области. Ука-
жем как это можно сделать. Пусть интегрируемая поверхность задана в
векторной параметрической форме:

�r = x(u, v)�i+ y(u, v)�j + z(u, v)�k , (6.7)

где x, y, z – непрерывно-дифференцируемые функции параметров u, v,
а исследуемая поверхность S взаимно-однозначно проектируется этой
векторной функцией на некоторую квадрируемую область Ω плоскости
(u, v). Тогда поверхностный интеграл 2-го рода по заданной поверхности
S сводится к двойному интегралу по области Ω.

Установим вид двойного интеграла. Для этого сконструируем еди-
ничный вектор нормали с помощью векторов �ru и �rv, касательных к по-
верхности в рассматриваемой точке. Обратим внимание, что векторное
произведение указанных векторов перпендикулярно касательной плос-
кости к поверхности, то есть направлено по нормали к ней. Поделив век-
торное произведение на его модуль, найдем искомый единичный вектор
нормали:

�n =
[�ru × �rv]

|[�ru × �rv]| . (6.8)
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Осталось заметить, что данная формула справедлива, лишь если вхо-
дящее сюда векторное произведение направлено в ту же сторону, что и
выбранное направление нормали к поверхности. Чтобы это было дей-
ствительно так, векторы

�ru , �rv , �n ,

должны образовывать правую тройку. В противном случае надо поме-
нять местами векторы �ru и �rv.

Вспомнив еще знакомое из теории поверхностных интегралов 1-го ро-
да соотношение

dS = |[�ru × �rv]| du dv , (6.9)

запишем окончательную формулу, выражающую поверхностный инте-
грал 2-го рода через двойной интеграл:∫∫

S

(
�A · �n

)
dS =

∫∫
Ω

(
�A ,�ru , �rv

)
du dv . (6.10)

Сюда вошло так называемое смешанное произведение, равное скалярно-
му произведению 1-го вектора с векторным произведением двух остав-
шихся векторов:

(�a ,�b ,�c ) = (�a · [�b× �c ]) .

Напомним геометрический смысл смешанного произведения: Его модуль
равен объему параллелепипеда, построенного на указанных трех векто-
рах. При этом смешанное произведение положительно, если входящие в
него векторы образуют правую тройку.

Общее соотношение (6.10) служит достаточно эффективным инстру-
ментом вычисления поверхностных интегралов 2-го рода. Однако оно
обладает существенным недостатком, характерным для большинства об-
щих формул – отображение поверхности S на некую абстрактную плос-
кость параметров {u, v} лишает формулу (6.10) геометрической нагляд-
ности. Гораздо более наглядные и простые в обращении формулы возни-
кают, если поверхность удается спроектировать на координатные плоско-
сти. Продемонстрируем сказанное на примере поверхностного интеграла
от векторного поля, ориентированного вдоль оси z:

�R = R(x, y, z)�k , (6.11)

по поверхности, заданной в явной форме z = z(x, y).
Заметим прежде всего, что в данном случае уместно называть раз-

ные стороны поверхности – верхней и нижней сторонами. Верхней сторо-
ной S+ назовем ту, вектор нормали к которой образует с осью z острый
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угол γ. Соответственно, косинус этого угла больше нуля. Напротив, для
нижней стороны S−: cos γ < 0. Выбрав в качестве параметров {u, v} ко-
ординаты {x, y} точек плоскости z = 0 и записав векторное уравнение
поверхности в виде:

�r = x�i+ y�j + z(x, y)�k , (6.12)

после несложных выкладок придем к следующим выражениям для на-
правляющих косинусов нормали

cosα± =
∓zx√

1 + z2
x + x2

y

, cos β± =
∓zy√

1 + z2
x + x2

y

,

cos γ± =
±1√

1 + z2
x + x2

y

.
(6.13)

Здесь знак плюс в левых частях равенств соответствует верхней, а ми-
нус – нижней стороне поверхности. Кроме того напомним знакомое по
поверхностным интегралам 1-го рода соотношение

dS =
√

1 + z2
x + x2

y dxdy =
dxdy

| cos γ| . (6.14)

Пусть заданная поверхность S взаимно-однозначно проектируется на
область σ плоскости z = 0. Тогда, согласно (6.11), (6.14),∫∫

S

(�R · �n )dS =

∫∫
S

R cos γ dS =

∫∫
σ

R
cos γ

| cos γ|dxdy

или окончательно

∫∫
S±

(�R · �n )dS = ±
∫∫
σ

R(x, y, z(x, y)) dxdy . (6.15)

Иногда интегрируемая поверхность может быть разбита на несколько
кусков, каждый из которых, с помощью своего уравнения z = zm(x, y),
взаимно-однозначно проектируется на некоторую область σm плоскости
z = 0. Тогда имеет место формула∫∫

S

(�R · �n )dS =
∑
m

δm

∫∫
σm

R(x, y, zm(x, y)) dxdy , (6.16)

где суммирование производится по всем упомянутым кускам поверхно-
сти S, а δm равно 1, если интегрирование ведется по верхней стороне
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m-го куска, и −1, если по нижней его стороне. Аналогичные соотноше-
ния справедливы и для поверхностных интегралов 2-го рода по другим,
составляющим векторное поле �A (4), компонентам �P =�i P , �Q = �j Q.

В заключение дадим еще одну рабочую формулу, справедливую при
явном задании z = z(x, y) поверхности S, взаимно-однозначно проекти-
рующейся на область σ плоскости (x, y). Подставив (6.13), (6.14) в (6.3),
будем иметь ∫∫

S±

(
�A · �n

)
dS = ∓

∫∫
σ

(P zx +Qzy −R) dxdy . (6.17)

Задачи

Задача 6.1
Вычислить поверхностный интеграл 2-го рода

I =

∫∫
S

(y − z) dy dz + (z − x) dz dx+ (x− y) dx dy ,

где S – внешняя сторона конической поверхности

x2 + y2 = z2 (0 ≤ z ≤ h) .

Сосчитать интеграл двумя способами: в цилиндрических координатах и
при явном задании поверхности.

Р е ш е н и е. Чтобы максимально использовать симметрию поверх-
ности, перейдем в цилиндрическую систему координат:

x = ρ cosϕ
y = ρ sinϕ
z = ρ

(
0 ≤ ϕ ≤ 2π
0 ≤ ρ ≤ h

)
.

Тогда векторные уравнения поверхности и подынтегрального векторного
поля принимают вид:

�r = ρ cosϕ�i+ ρ sinϕ�j + ρ�k ,

�A = (y − z)�i+ (z − x)�j + (x− y)�k =

= ρ(sinϕ− 1)�i+ ρ(1 − cosϕ)�j + ρ(cosϕ− sinϕ)�k .
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Рис. 6.3: Цилиндрическая система координат. Чтобы получить цилиндриче-
ские координаты некоторого радиус-вектора, надо спроектировать его на плос-
кость (x, y). Полярные координаты проекции дают пару цилиндрических ко-
ординат ρ и ϕ. Третьей координатой служит координата z декартовой системы
координат, на основе которой построена цилиндрическая система координат.

Заметим еще, что векторы �rϕ , �rρ и вектор нормали �n к внешней сто-
роне конической поверхности образуют правую тройку векторов. Поэто-
му входящее в двойной интеграл (6.10) смешанное произведение равно:

(
�A ,�rϕ, �rρ

)
=

∣∣∣∣∣∣
ρ(sinϕ− 1) ρ(1 − cosϕ) ρ(cosϕ− sinϕ)
−ρ sinϕ ρ cosϕ 0

cosϕ sinϕ 1

∣∣∣∣∣∣ =

= ρ2
(
cosϕ sinϕ− cosϕ− sin2 ϕ cosϕ+ sin3 ϕ− cos3 ϕ+

cos2 ϕ sinϕ+ sinϕ− cosϕ sinϕ
)

=

ρ2 (sinϕ− cosϕ− cosϕ+ sinϕ) = 2ρ2 (sinϕ− cosϕ) .

Таким образом, данный поверхностный интеграл 2-го рода сводится к
следующему двойному интегралу:

I =

∫ 2π

0

dϕ

∫ h

0

(
�A ,�rϕ, �rρ

)
dρ =

∫ 2π

0

(sinϕ− cosϕ) dϕ

∫ h

0

ρ2 dρ = 0 .

Мы видим, что двойной интеграл распался на произведение определен-
ных интегралов, один из которых – по ϕ – равен нулю.

Вычислим теперь указанный интеграл, используя явное задание по-
верхности:

z =
√
x2 + y2 ,

{
(x, y) : σ ⇐⇒ x2 + y2 ≤ h2

}
.
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Воспользовавшись формулой (6.17) и имея ввиду, что интегрирование
ведется по нижней стороне поверхности, получим

I =

∫∫
σ

(P zx +Qzy −R) dxdy .

Запишем подынтегральное выражение в явном виде, подставив в него

P = (y − z) , Q = (z − x) , R = (x− y) ,

zx =
x√

x2 + y2
=
x

z
, zy =

y√
x2 + y2

=
y

z
.

После несложных выкладок имеем:

(P zx +Qzy −R) = (y − z)
x

z
+ (z − x)

y

z
− x+ y =

1

z
(yx− zx+ zy − xy − xz + yz) =

2

z
(yz − xz) = 2(y − x) .

В итоге, искомый двойной интеграл приобретает вид:

I = 2

∫∫
σ

(y − x) dx dy . (∗)

Перейдем в нем к полярной системе координат:

I = 2

∫ h

0

ρ2 dρ

∫ 2π

0

(sinϕ− cosϕ) dϕ = 0 .

Замечание. Мы могли бы опустить последние выкладки, сопоста-
вив в интеграле (∗) симметрию области интегрирования с симметрией
подынтегрального выражения, и сразу придя к выводу, что I = 0. Обла-
дая физическим складом ума, можно было бы сообразить, что интеграл
(∗) пропорционален разности x и y координат момента массы горизон-
тально расположенного однородного круга с центром в начале координат,
и снова прийти к уже упомянутому выводу.

Задача 6.2
Вычислить интеграл

I =

∫∫
S

(
dy dz

x
+
dz dx

y
+
dx dy

z

)
,

где S –внешняя сторона эллипсоида

x2

a2
+
y2

b2
+
z2

c2
= 1 .
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Р е ш е н и е. Представим уравнение эллипсоида в следующей пара-
метрической форме:

x = a sin θ cosϕ
y = b sin θ sinϕ
z = c cos θ

(
0 ≤ ϕ ≤ 2π
0 ≤ θ ≤ π

)
.

При этом подынтегральное векторное поле и векторное уравнение по-
верхности примут вид:

�A =
�i

a sin θ cosϕ
+

�j

b sin θ sinϕ
+

�k

c cos θ
,

�r =�i a sin θ cosϕ+�j b sin θ sinϕ+ �k c cos θ ,

векторы �rθ и �rϕ образуют правую тройку с внешней нормалью, а сме-
шанное произведение в правой части формулы (6.10) окажется равным:

(
�A ,�rθ , �rϕ

)
=

∣∣∣∣∣∣∣∣
1

a sin θ cosϕ

1

b sin θ sinϕ

1

c cos θ
a cos θ cosϕ b cos θ sinϕ −c sin θ
−a sin θ sinϕ b sin θ cosϕ 0

∣∣∣∣∣∣∣∣ =

bc

a
sin θ +

ac

b
sin θ +

ab

c
sin θ sin2 ϕ+

ab

c
sin θ cos2 ϕ

или, после несложных преобразований,(
�A,�rϕ, �rθ

)
=

(
ab

c
+
ac

b
+
bc

a

)
sin θ .

Подставив это выражение в двойной интеграл, получим окончательно:

I =

(
ab

c
+
ac

b
+
bc

a

)∫ 2π

0

dϕ

∫ π

0

sin θ dθ = 4π

(
ab

c
+
ac

b
+
bc

a

)
.

Замечание 1.Приведенное решение задачи оставляет чувство неудо-
влетворенности по крайней мере по двум причинам: Во-первых, выбран-
ный метод решения чересчур формален и не способствует осмыслению
геометрической сути результата. Кроме того, довольно сложные проме-
жуточные выкладки не гарантируют правильный ответ. В его пользу
пожалуй свидетельствует лишь гармония окончательного выражения.
Поэтому имеет смысл проверить результат, решив задачу другим спо-
собом.
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Прежде всего разобьем интеграл на 3 части и попытаемся вначале
вычислить последнее слагаемое

Iz =

∫∫
S

dxdy

z

при явном задании поверхности

z = ±c
√

1 − x2

a2
− y2

b2
.

Очевидно, вклады от нижней и верхней половинок эллипсоида в иссле-
дуемый интеграл одинаковы, а значит Iz равно удвоенному интегралу по
верхней половинке эллипсоида. Заметив еще, что, согласно (6.15), этот
поверхностный интеграл равен двойному интегралу по плоской области
σ –внутренности эллипса

x2

a2
+
y2

b2
= 1 ,

лежащего в плоскости z = 0, будем иметь:

Iz =
2

c

∫∫
σ

dxdy√
1 − x2

a2
− y2

b2

.

Для удобства дальнейших выкладок перемасштабируем оси координат
в плоскости {x, y} так, чтобы область интегрирования превратилась в
круг единичного радиуса. Иными словами, сделаем в двойном интеграле
замену переменных

u =
x

a
, v =

y

b
.

В итоге интеграл примет вид:

Iz = 2
ab

c

∫∫
Σ

dudv√
1 − u2 − v2

,

где Σ –круг u2 + v2 ≤ 1. Перейдя к интегрированию по полярным коор-
динатам:

u = r cosϕ , v = r sinϕ , dxdy = rdrdϕ ,

найдем, что

Iz = 2
ab

c

∫ 2π

0

dϕ

∫ 1

0

r dr√
1 − r2

= 4π
ab

c
. (∗∗)



82 Глава 1. Практикум по векторному анализу

Этот результат можно получить также, используя параметрическое
представление эллипсоида, если в формуле (6.10) положить

�A =
�i

a sin θ cosϕ
.

Рекомендуем читателю убедиться в этом.

Замечание 2. Геометрический смысл результата (∗∗) достаточно
прозрачен: Чем меньше c, тем ближе поверхность эллипсоида к плоско-
сти z = 0, где интегрируемая функция 1/z имеет бесконечную особен-
ность, и следовательно тем больше оказывается значение поверхностного
интеграла. Напротив, с уменьшением a и b, “съеживается” эллипс в плос-
кости z = 0, а вместе с ним уменьшается и поток векторного поля �k/z
через заданную поверхность.

Из соображений симметрии ясно, что вклады остальных слагаемых Iy
и Ix в искомый интеграл I могут быть получены круговой перестановкой
a, b и c в правой части (∗∗). Следовательно, приходим к уже знакомому
ответу

I = 4π

(
ab

c
+
ac

b
+
bc

a

)
.

Задача 6.3
Вычислить интеграл

I =

∫∫
S

x2 dydz + y2 dzdx+ z2 dxdy ,

где S – внешняя сторона сферы

(x− a)2 + (y − b)2 + (z − c)2 = R2 .

Р е ш е н и е. Интуиция и опыт решения предыдущей задачи подска-
зывают, что вклады в интеграл от каждого подынтегрального слагаемого
должны быть в чем-то схожи. Поэтому, пытаясь избежать чересчур гро-
моздких выкладок, вычислим вначале интеграл от первого слагаемого,
представив его в форме “полноценного” поверхностного интеграла 2-го
рода:

Ix =

∫∫
S

x2 dydz =

∫∫
S

(
�P · �n

)
dS .

Здесь введено вспомогательное, ориентированное вдоль оси x, векторное
поле

�P = x2�i+ 0�j + 0�k .
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Намереваясь свести искомый поверхностный интеграл к двойному, по
прямоугольнику (0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π) в плоскости (ϕ, θ), запишем
уравнение сферы в виде:

x = a+R sin θ cosϕ
y = b+R sin θ sinϕ
z = c+R cos θ

(
0 ≤ θ ≤ π
0 ≤ ϕ ≤ 2π

)
.

При таком выборе параметров векторное уравнение поверхности и инте-
грируемое векторное поле примут вид:

�r = (a+R sin θ cosϕ)�i+ (b+R sin θ sinϕ)�j + (c+R cos θ)�k ,

�P = (a+R sin θ cosϕ)2�i .

Заметим еще, что правую тройку с нормалью �n к внешней стороне сферы
образуют векторы �rθ и �rϕ.

Сосчитаем требуемое векторное произведение:

(
�P ,�rθ , �rϕ

)
=

∣∣∣∣∣∣
(a+R sin θ cosϕ)2 0 0

R cos θ cosϕ R cos θ sinϕ −R sin θ
−R sin θ sinϕ R sin θ cosϕ 0

∣∣∣∣∣∣ =

= R2 (a+R sin θ cosϕ)2 sin2 θ cosϕ =

= R2 a2 sin2 θ cosϕ+ 2aR3 sin3 θ cos2 ϕ+R4 sin4 θ cos3 ϕ .

Сообразив, что интегралы от нечетных степеней cosϕ по периоду 2π рав-
ны нулю, обнаружим, что ненулевой вклад в интеграл дает лишь второе
слагаемое в правой части:

I1 = 2aR3

∫ 2π

0

cos2 ϕdϕ

∫ π

0

sin3 θ dθ .

Причем интеграл по ϕ равен π, а интеграл по θ вычисляется элементарно:∫ π

0

sin3 θ dθ = −
∫ π

0

(1 − cos2 θ) d cos θ =

=

∫ 1

−1

(1 − u2) du = 2

(
1 − 1

3

)
=

4

3
.

Таким образом:

Ix =
8

3
πR3a .
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Отсюда видно, что интуиция нас не подвела, и по форме ответа нетрудно
выяснить, чему равны интегралы от оставшихся двух слагаемых исход-
ного интеграла. Надо лишь заменить в полученной формуле a поочеред-
но на b и c и записать окончательно:

I =
8

3
πR3(a+ b+ c) .

Замечание. Хотя мы полностью уверены в правильности ответа, не
будет лишним проверить его, вычислив интеграл другим способом. Как
и прежде, разобьем интеграл на три части, но теперь подробно изучим
последнее слагаемое

Iz =

∫∫
S

z2dxdy .

Представим интегрируемую поверхность в виде двух половинок S+ и S−,
каждая из которых задана своим явным уравнением

S+ : z = c+
√
R2 − (x− a)2 − (y − b)2 ,

S− : z = c−
√
R2 − (x− a)2 − (y − b)2 .

Проектируя каждую из половинок сферы на круг

σ : (x− a)2 + (y − b)2 ≤ R2

в плоскости z = 0, и учитывая, что интегрирование ведется по верхней
стороне верхней половинки и по нижней стороне нижней половинки, в
соответствии с равенством (16) будем иметь:

Iz =

∫∫
σ

[(
c+

√
. . .
)2 − (c−√

. . .
)2]

dxdy =

4c

∫∫
σ

√
R2 − (x− a)2 − (y − b)2 dxdy .

Последующий переход к полярной системе координат

x = a+ ρ cosϕ , y = b+ ρ sinϕ , dxdy = ρdρdϕ ,

дает:

Jz = 4c

∫ 2π

0

dϕ

∫ R

0

√
R2 − ρ2 ρ dρ =

8

3
πcR3 .

Аналогично
Iy =

8

3
πbR3 ,

и мы приходим к прежнему результату:

I = Ix + Iy + Iz =
8

3
π R3(a+ b+ c) .
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Задачи для самостоятельной работы
Задача 6.4
Вычислить поверхностный интеграл 2-го рода:

I =

∫∫
S

f(x) dydz + g(y) dzdx+ h(z) dxdy ,

где f(x), g(y), h(z) – непрерывные функции и S – внешняя сторона по-
верхности параллелепипеда 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

Задача 6.5
Вычислить следующий поверхностный интеграл 2-го рода∫∫

S

y2z dxdy + xz dydz + x2y dzdx ,

где S – внешняя сторона замкнутой поверхности, расположенной в пер-
вом октанте и составленной из параболоида вращения z = x2 + y2, ци-
линдра x2 + y2 = 1 и координатных плоскостей x = 0, y = 0, z = 0.

Ответы

6.4. abc
(
f(a) − f(0)

a
+
g(b) − g(0)

b
+
h(c) − h(0)

c

)
. 6.5.

π

8
.

Занятие 7. Вычисление объема с помощью по-
верхностного интеграла

Необходимые сведения из теории
До сих пор мы учились вычислять непосредственно поверхностные

интегралы. Во многих приложениях однако оказывается полезной зна-
менитая формула Гаусса-Остроградского, выражающая поверхностные
интегралы 2-го рода через объемные. Она предоставляет в наше рас-
поряжение гибкий инструмент анализа, позволяющий формулировать
проблемы поверхностных интегралов на языке интегралов объемных и
наоборот.

Напомним формулу Гаусса-Остроградского. Для этого возьмем неко-
торое векторное поле, заданное в декартовой системе координат:

�A(�r) = P (x, y, z)�i+Q(x, y, z)�j +R(x, y, z)�k .
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Согласно формуле Гаусса-Остроградского, поверхностный интеграл 2-го
рода по замкнутой поверхности S, ограничивающей некоторую область
V , следующим образом выражается через объемный интеграл по этой
области:

I =

∫∫
S

(
�A · �n

)
dS =

∫∫∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx dy dz . (7.1)

Здесь �n – внешний вектор нормали к поверхности S. Взяв в качестве
векторного поля �A радиус-вектор произвольной точки трехмерного про-
странства:

�r = x�i+ y�j + z �k ,

придем к соотношению

V =
1

3

∫∫
S

(�r · �n) dS , (7.2)

выражающему объем рассматриваемой области через поверхностный ин-
теграл по ее границе. На этом занятии мы будем пользоваться данным
частным следствием формулы Гаусса-Остроградского для вычисления
объемов разных тел.

Задачи
Задача 7.1
Вычислить объем тела, ограниченного эллипсоидом

x2

a2
+
y2

b2
+
z2

c2
= 1 .

Р е ш е н и е. Для нахождения этого объема воспользуемся форму-
лой (7.2), предварительно задав радиус-вектор точек эллипсоида в уже
знакомой по предыдущим занятиям параметрической форме:

�r = a sin θ cosϕ�i+ b sin θ sinϕ�j + c cos θ �k

(0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π) .

Заметив далее, что векторы (�rθ , �rϕ , �n) образуют правую тройку и перей-
дя от поверхностного интеграла к двойному по прямоугольной области
в плоскости параметров ϕ , θ, перепишем соотношение (2) в виде:

V =
1

3

∫ 2π

0

dϕ

∫ π

0

(�r, �rθ, �rϕ) dθ .
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Вычислим входящее сюда смешанное произведение:

(�r, �rθ, �rϕ) = abc

∣∣∣∣∣∣
sin θ cosϕ sin θ sinϕ cos θ
cos θ cosϕ cos θ sinϕ − sin θ
− sin θ sinϕ sin θ cosϕ 0

∣∣∣∣∣∣ =

= abc sin θ
(
sin2 θ cos2 ϕ+ sin2 θ sin2 ϕ+ cos2 θ sin2 ϕ+ cos2 θ cos2 ϕ

)
=

= abc sin θ .

Таким образом, искомый объем оказывается равным:

V =
1

3
abc

∫ 2π

0

dϕ

∫ π

0

sin θ dθ =
4

3
π abc .

В частности, при a = b = c получаем отсюда известную из школы фор-
мулу объема шара.

Задача 7.2
Доказать, что объем конуса, ограниченного гладкой конической поверх-
ностью F (x, y, z) = 0 и плоскостью Ax+By + Cz +D = 0, равен:

V =
1

3
SH ,

где S –площадь основания конуса, расположенного в данной плоскости,
и H –его высота.

Р е ш е н и е. Как всегда начнем с уяснения геометрического смыс-
ла поставленной задачи. Напомним – конической называют поверхность,
построенную следующим образом: Возьмем некоторую фиксированную
точку �O – вершину конической поверхности, и произвольный контур L
. Коническую поверхность образует совокупность образующих – лучей,
выходящих из вершины �O, и проходящих через точки контура L. В на-
шем случае контур L лежит в плоскости, указанной в условии задачи, а
вершина отстоит от нее на расстоянии H.

Не имея представления, как решать задачу в общем случае, обсудим
вначале частную ситуацию, когда вершина конуса расположена в начале
координат. Разобьем поверхностный интеграл в правой части формулы
(7.2) на две части – на интеграл по поверхности конуса – обозначим ее Sc,
и на интеграл по его плоскому основанию – Sp. Заметим, что для любой
точки выбранной конической поверхности, ее радиус-вектор и нормаль к
поверхности перпендикулярны. Поэтому интеграл по конической поверх-
ности равен нулю. Чтобы вычислить интеграл по плоскому основанию
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конической поверхности, заметим, что во всех его точках скалярное про-
изведение (�r · �n) принимает одно и то же значение, равное кратчайшему
расстоянию между плоскостью основания и началом координат, то есть
высоте нашего конуса:

(�r · �n) = H .

Таким образом, согласно сказанному, формула (7.2) превращается в об-
суждаемом случае в:

V =
1

3

∫∫
Sp

(�r · �n) dS =
1

3
H

∫∫
Sp

dS =
1

3
HS ,

что и требовалось доказать.
Перейдем теперь к искомому общему случаю, когда вершина конуса

расположена не в начале координат, а в произвольной точке с радиус-
вектором �a. Чтобы воспользоваться плодами решения предыдущей част-
ной проблемы, представим радиус-вектор точек конуса в виде суммы:

�r = �a+ �ρ ,

где �ρ – вектор, испущенный из вершины конуса. При этом поверхност-
ный интеграл (7.2), выражающий объем рассматриваемой нами области,
распадется на два интеграла:

V =
1

3

∫∫
S

(�a · �n) dS +
1

3

∫∫
S

(�ρ · �n) dS .

Второй из этих интегралов мы только-что вычислили. Он равен SH/3.
Первый же интеграл равен нулю. Чтобы убедиться что так оно и есть, до-
статочно преобразовать указанный поверхностный интеграл в объемный
с помощью формулы Гаусса-Остроградского (7.1). Поскольку частные
производные компонент постоянного вектора �a тождественно равны ну-
лю, то равен нулю объемный интеграл, а вместе с ним и поверхностный
интеграл: ∫∫

S

(�a · �n) dS ≡ 0 . (∗)

Следовательно, и в общем случае справедлива доказываемая нами фор-
мула.

Замечание 1. Отметим физический смысл тождества (∗). Оно озна-
чает, что поток постоянного векторного поля через любую замкнутую
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поверхность равен нулю — сколько в нее “втекает”, столько и “вытекает”.

Замечание 2. Ясное понимание геометрического смысла поставлен-
ной задачи помогло бы нам опустить последние выкладки. Действитель-
но, объем конуса не зависит от расположения в пространстве, а лишь
от его формы. Поэтому помещение вершины конуса в начало коорди-
нат не ограничивает общности ответа. Кстати, при таком геометриче-
ском подходе мы получили бы тождество (∗) не как следствие теоремы
Гаусса-Остроградского, а как побочный результат геометрических рас-
суждений.

Задача 7.3
Найти объем тела, ограниченного поверхностями z = ±c и

x = a cos u cos v + b sin u sin v ,
y = a cos u sin v − b sinu cos v ,
z = c sin u .

(a > 0, b > 0, c > 0)

Р е ш е н и е. Поверхность, ограничивающая область, объем которой
нам надо найти, состоит из “крышки” z = c, “дна” z = −c, и боковой
поверхности, заданной достаточно замысловатыми уравнениями. Чтобы
наглядно представить, что из себя представляет боковая поверхность,
попробуем исключить углы u и v, надеясь прийти к одному из знако-
мых канонических уравнений. Для этого возведем в квадрат выражения
для x и y, и сложим квадраты. Группируя по отдельности слагаемые,
пропорциональные a2, b2 и ab, в итоге получим:

x2 + y2 = a2 cos2 u+ b2 sin2 u .

Выразим правую часть последнего равенства через z2:

x2 + y2 = a2 + (b2 − a2)
z2

c2
. (∗)

Отсюда видно, что боковая поверхность является эллипсоидом враще-
ния (если a > b), или гиперболоидом вращения (если a < b). Их осью
вращения служит ось z. В обоих случаях сечение боковой поверхности
плоскостью z = 0 представляет собой окружность радиуса a, а сечения
плоскостями “дна и крышки” (z = ±c) – окружность радиуса b. Разо-
бьем поверхностный интеграл (7.2), выражающий объем области, на три
части: интегралы по плоским дну и крышкам, и интеграл по боковой
поверхности Sl (lateral area). Опираясь на опыт решения предыдущей
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Рис. 7.1: Графики тела из задачи 3 при c = 4, a = 3, b = 2 (слева) и a = 2, b = 3
(справа). На рисунке хорошо видны круговые координатные линии u = const
и винтообразные координатные линии v = const.

задачи, сразу сообразим, что вклад дна и крышки равен их площадям,
умноженным на расстояние до начала координат. Таким образом, иско-
мый объем выражается следующей формулой:

V =
2

3
πb2c+W .

Здесь за W обозначен интеграл по боковой поверхности:

W =
1

3

∫∫
Sl

(�r · �n) dS .

Преобразуем его к двойному интегралу. Но вначале запишем уравнение
боковой поверхности в форме, максимально использующей ее симмет-
рию – как поверхности вращения вокруг вертикальной оси z. А именно,
перейдем в цилиндрическую систему координат (ρ, ϕ, z). Из (∗) вытека-
ет, что уравнение боковой поверхности можно записать в виде: ρ = R(z),
где

R(z) =
√
a2 + k z2 , k =

b2 − a2

c2
.

Ему эквивалентно следующее векторное уравнение боковой поверхности:

�r = R cosϕ�i+R sinϕ�j + z �k .

Еще раз обратим внимание на то, что вместо исходных параметров (u, v),
мы теперь используем геометрически более наглядные параметры (ϕ, z).
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Заметив далее, что векторы �rϕ, �rz, �n образуют правую тройку, перейдем
от оставшегося поверхностного интеграла к двойному

W =

∫∫
Ω

(�r, �rϕ, �rz) dϕ dz .

Здесь Ω – прямоугольник {ϕ ∈ [0, 2π], z ∈ [−1, 1]} в плоскости (ϕ, z),
точки которого взаимно-однозначно отображаются на боковую поверх-
ность.

Вычислим входящее в двойной интеграл смешанное произведение:

(�r , �rϕ , �rz) =

∣∣∣∣∣∣
R cosϕ R sinϕ z
−R sinϕ R cosϕ 0
R′ cosϕ R′ sinϕ 1

∣∣∣∣∣∣ .
Прежде чем начать считать полученный довольно громоздкий определи-
тель, упростим его, используя свойства симметрии боковой поверхности.
Из геометрических соображений ясно, что при фиксированном z и из-
менении угла ϕ, величина и взаимное расположение векторов �r, �rϕ, �rz
меняться не будут. Соответственно, не будет зависеть от ϕ и искомое
смешанное произведение. Поэтому, для упрощения вычислений, можно
положить в определителе ϕ = 0, что дает:

(�r, �rϕ, �rz) =

∣∣∣∣∣∣
R 0 z
0 R 0
R′ 0 1

∣∣∣∣∣∣ = R2 − zRR′ = a2 .

Подставив это выражение в двойной интеграл, будем иметь:

W =
1

3
a2

∫ 2π

0

dϕ

∫ c

−c
dz =

4

3
πa2c .

Следовательно, окончательное выражение для объема таково:

V =
2π

3
b2c+W =

2π

3
c
(
b2 + 2a2

)
.

Задачи для самостоятельной работы
Задача 7.4
Найти объем тела, ограниченного тором:

x = (b+ a cosψ) cosϕ ,
y = (b+ a cosψ) sinϕ ,
z = a sinψ

(0 < a ≤ b) .
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Задача 7.5
Найти объем тела, ограниченного эллиптическим параболоидом

z =
x2

a2
+
y2

b2

и плоскостью z = h. Проверить результат, вычисляя объем с помощью
определенного интеграла.

Ответы

7.4. 2a2bπ2. 7.5. πab
h2

2
.

Занятие 8. Основные понятия теории поля

Необходимые сведения из теории
Данное занятие посвящено знакомству с основными понятиями и диф-

ференциальными операциями теории поля. Как известно, математиче-
ская теория поля изучает свойства функций, аргументами которых слу-
жат точки 3-х мерного пространства.

Определение 8.1 Пусть Ω – некоторая область в 3-х мерном про-
странстве. Будем говорить, что в данной области задано скалярное
поле, если определена однозначная скалярная функция U(M), отобра-
жающая все точки M ∈ Ω в точки числовой оси R.

Типичным примером скалярного поля может служить поле темпера-
тур неравномерно нагретого тела.

Определение 8.2 Будем говорить, что в области Ω задано вектор-
ное поле �A(M), если каждой точке M этой области поставлен в од-
нозначное соответствие вектор (свой для каждой точки).

Характерной иллюстрацией векторного поля являются электрическое
и магнитное поле земли, поле скоростей движения воздуха.

Пусть в пространстве задана декартова система координат, ставящая
в соответствие каждой точке M ее координаты (x, y, z). Тогда скаляр-
ное поле эквивалентно некоторой функции 3-х аргументов U(x, y, z), а
векторное поле представимо в виде:

�A = P (x, y, z)�i+Q(x, y, z)�j +R(x, y, z)�k . (8.1)
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Рис. 8.1: График линий уровня двумерного скалярного поля U(x, y) = x2 +
2y2 +sin(xy) для равноотстоящих значений уровня C. Видно, что чем быстрее
возрастает функция, тем теснее расположены линии уровня.

Здесь {P, Q, R} – проекции векторного поля на декартовы оси с базис-
ными векторами {�i, �j, �k}. В дальнейшем будем считать, что все пе-
речисленные функции непрерывно дифференцируемы для всех (x, y, z),
принадлежащих рассматриваемой области Ω ⊂ R

3.
Простейшим примером векторного поля служит радиус-вектор

�r = x�i+ y�j + z �k , (8.2)

выходящий из начала координат в точку с координатами (x, y, z). С его
помощью скалярные и векторные поля трактуют как функции вектор-
ного аргумента �r и обозначают их, соответственно, U(�r ) и �A (�r ).

Определим еще два важных понятия, способствующие лучшему гео-
метрическому восприятию скалярных и векторных полей.

Определение 8.3 Поверхностью уровня скалярного поля U(�r ), опреде-
ленного в области Ω, называют геометрическое место точек, в кото-
рых поле принимает заданное фиксированное значение C:

U(�r ) = C .

Очевидно, что поверхности уровня заполняют всю область Ω опреде-
ления функции, и что любые две поверхности U(�r ) = C1 и U(�r ) = C2,
отвечающие различным значения уровня C1 �= C2, не имеют общих то-
чек: через каждую точку проходит только одна поверхность уровня.

Эффективным средством визуализации векторных полей служат их
векторные линии:



94 Глава 1. Практикум по векторному анализу

Рис. 8.2: Изображение векторов векторного поля �A = y�i + z�j − x�k. Видно,
что векторы в разных точках пространства, выстраиваясь в хвост друг другу,
образуют цепочки, близкие к векторным линиям.

Определение 8.4 Пусть в области Ω 3-х мерного пространства за-
дано векторное поле �A(�r ). Кривую L ∈ Ω называют векторной линией
векторного поля �A(�r ), если в каждой точке этой кривой направление
касательной к ней совпадает с направлением поля �A в этой точке.

Замечание 8.1 В физике векторные линии часто называют силовыми
линиям, особенно когда речь идет о силовых полях, например о грави-
тационном силовом поле.

Дифференциальные операции со скалярными и векторными
полями. К скалярным и векторным полям применимы дифференци-
альные операции градиента, производной по направлению, дивергенции
и ротора. Они обладают тем замечательным свойством, что результат
их действия не зависит от системы координат, а лишь от геометриче-
ских свойств скалярных и векторных полей. Последнее делает упомяну-
тые дифференциальные операции ценным инструментом описания зако-
нов природы, справедливых безотносительно того, в каких координатах
исследуется то или иное природное явление. Сами же системы коорди-
нат играют подчиненную роль: они как бы служат каркасом, позволяю-
щим перевести геометрические соотношения и свойства на язык функ-
циональных зависимостей.

Определим операции градиента, дивергенции и ротора в инвариант-
ной, не связанной с какой-либо системой координат, форме. Для этого
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нам понадобится понятие производной по объему. В отличие от стан-
дартных производных, производная по объему применима к функциям,
аргументами которых служат не точки числовой оси, а области 3-х мер-
ного пространства. Подобные функции часто называют функционалами.
Пусть T – произвольная область с кусочно-гладкой границей S и объе-
мом V (T), а F (T) – скалярный или векторный функционал, отобража-
ющий области T в точки числовой оси (скалярный функционал) или в
элементы множества векторов в трехмерном пространстве (векторный
функционал). Будем считать области T ограниченными, то есть имею-
щими конечный диаметр d <∞.

Определение 8.5 Диаметром области в трехмерном пространстве
назовем диаметр наименьшего шара, в который вписывается данная
область.

Определение 8.6 Производная по объему от функции области F (T) в
точке M равна пределу

lim
T→M

F (T)

V (T)
(8.3)

– отношения функции области T к ее объему, при стремлении диамет-
ра области T к нулю.

Замечание 8.2 Иногда говорят о пределе при стягивании области T

в точку M , поскольку подразумевается, что при любом d → 0 точка
M ∈ T, а область сжимается в указанную предельную точку.

Теперь мы полностью подготовлены к тому чтобы дать инвариантное
определение градиента:

Определение 8.7 Градиентом скалярного поля U(M) называют про-
изводную по объему от векторного функционала

�F (T) =

∫∫
S

�n (M)U(M) dS .

Здесь �n (M) – внешняя единичная нормаль в точкеM замкнутой кусоч-
но-гладкой поверхности S, ограничивающей область T, а U(M) – ска-
лярное поле, градиент которого мы собираемся вычислить.

Еще раз подчеркнем: данное определение градиента “не привязано” к
какой-либо конкретной системе координат. С другой стороны, с его по-
мощью можно найти явное выражение градиента в любой координатной
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системе. Пусть, к примеру, скалярное поле представимо в виде функции
3-х декартовых координат точки M : U(�r ) = U(x, y, z). Тогда нетрудно
показать, выбрав за область T куб с гранями, параллельными коорди-
натным плоскостям, и вычислив предел

lim
T→M

1

V (T)

∫∫
S

�n (�r )U(�r ) dS ,

что градиент скалярной функции U(x, y, z) равен

gradU =
∂U

∂x
�i+

∂U

∂y
�j +

∂U

∂z
�k . (8.4)

Опираясь на эту формулу, легко убедиться в справедливости соотноше-
ний

grad [f(�r ) + g(�r )] = grad f(�r ) + grad g(�r ) ,

grad f(�r ) g(�r ) = g(�r ) grad f(�r ) + f(�r ) grad g(�r ) ,
(8.5)

переносящих на случай градиента правила дифференцирования суммы и
произведения функций, а также правило дифференцирования сложной
функции:

gradU (h(�r )) =
dU

dh
gradh(�r ) . (8.6)

Само собой, перечисленные свойства градиента, будучи выведены в де-
картовой системе координат, остаются справедливыми, в какой бы си-
стеме координат мы не работали.

Градиент также служит удобным инструментом анализа геометриче-
ских свойств скалярных полей. Поясним сказанное на примере понятия
производной по направлению:

Определение 8.8 Производной, в направлении единичного вектора ��,
от скалярной функции U(�r ), называют предел

∂U

∂�
= lim

t→0

U(�r + t��) − U(�r )

t
.

Нетрудно показать, что производная по направлению �� равна скалярно-
му произведению градиента функции U и данного единичного вектора:

∂U

∂�
=
(
gradU · ��

)
. (8.7)

Раскроем, с помощью понятия производной по направлению, геомет-
рический смысл градиента. Он состоит в следующем:
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Вектор gradU указывает направление наибыстрейшего возрастания
скалярного поля U , а величина градиента равна производной поля вдоль
этого направления.

Действительно, согласно (8.7) и геометрическому смыслу скалярного
произведения, производная по направлению равна

∂U

∂�
= |gradU | cosϕ , (8.8)

где ϕ – угол между векторами gradU и ��. Отсюда видно, что производ-
ная по направлению принимает наибольшее значение, равное величине
градиента, лишь если gradU ‖ �� (то есть ϕ = 0, а cosϕ = 1).

Как уже отмечалось, наилучшее визуальное представление о поведе-
нии скалярных полей в пространстве дают поверхности равного уровня,
вдоль которых поле принимает одинаковые значения: U(�r ) = const. Оче-
видно, производная по направлениям, касательным к поверхности уров-
ня, равна нулю. Отсюда и из формулы (8.8) вытекает еще одно важное
свойство градиента:
Градиент поля U в любой точке M перпендикулярен поверхности

уровня поля U в данной точке.
Заметим еще, что с помощью градиента скалярного поля удобно запи-

сывать его дифференциал. Пусть d�r – дифференциал радиус-вектора в
направлении единичного вектора ��. Его можно записать в виде: d�r = �� dr,
где dr –длина вектора d�r. Помножив обе части равенства (8.7) на dr, бу-
дем иметь:

dU = (gradU · d�r) .
Важно заметить, что это соотношение имеет обратную силу. А имен-
но, если удается представить дифференциал некоего скалярного поля
U(�r ) в форме dU = ( �A · d�r), то вектор �A(�r ) и есть градиент скаляр-
ного поля U(�r ). Для примера найдем таким способом градиент модуля
радиус-вектора �r. Очевидно:

r2 = (�r · �r ) ⇒ 2r dr = 2(�r · d�r ) ⇒ dr =

(
�r

r
· d�r
)
.

Отсюда имеем:

grad r =
�r

r
.

Перейдем к инвариантному определению дивергенции векторного по-
ля �A (M). Для этого построим скалярный функционал

F (T) =

∫∫
S

(
�n (M) · �A (M)

)
dS , (8.9)
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где, как и прежде, S – замкнутая поверхность ограниченной области T.

Определение 8.9 Дивергенцией векторного поля �A (M) называют про-
изводную по объему от данного функционала:

div �A (M) = lim
T→M

1

V (T)

∫∫
S

(
�n (M) · �A (M)

)
dS . (8.10)

Входящий сюда функционал имеет физический смысл потока век-
торного поля �A (M) сквозь замкнутую поверхность S. Если он не равен
нулю внутри некоторой области T, то говорят, что внутри области T рас-
положены источники, порождающие поле �A (M). Таким образом, дивер-
генция векторного поля в точке M обычно трактуется как плотность
источников (стоков) векторного поля в этой точке: источники, если ди-
вергенция положительна, и стоки, если дивергенция отрицательна.

Пользуясь инвариантным определением дивергенции, нетрудно пока-
зать, что в декартовой системе координат дивергенция векторного поля
может быть вычислена по формуле

div �A =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
. (8.11)

Дадим в заключение инвариантное определение ротора векторного
поля �A. Наиболее подходящее, с точки зрения физических приложений,
определение ротора связано с циркуляцией векторного поля вдоль неко-
торого бесконечно малого контура L, окаймляющего плоскую площадку
S:

Определение 8.10 Пусть �n – единичный вектор нормали к одной из
сторон указанной площадки, содержащей точку M , где мы намерены
вычислить ротор векторного поля �A. Проекцией вектора ротора поля
�A на направление �n называют предел(

rot �A · �n
)

= lim
S→M

1

S

∮
L

(
�A · d�r

)
. (8.12)

Здесь S – площадь указанной площадки, d�r элемент контура, ориенти-
рованный в выбранном направлении обхода, а направление обхода кон-
тура L согласовано c выбранным направлением нормали к площадке S.

Напомним:



Занятие 8. Основные понятия теории поля 99

Определение 8.11 Нормаль двусторонней поверхности и обход огра-
ничивающего ее контура считают согласованными, если при обходе кон-
тура по стороне, отвечающей выбранному направлению нормали, по-
верхность остается слева. При этом согласованное направление обхода
плоской площадки совпадает с движением против часовой стрелки, ес-
ли смотреть со стороны, указанной вектором нормали �n.

Раскрывая предел (8.12) в декартовой системе координат и пооче-
редно ориентируя площадку S перпендикулярно разным осям, нетрудно
показать, что ротор векторного поля (8.1) вычисляется по формуле

rot �A(�r ) =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣ =

(
∂R

∂y
− ∂Q

∂z

)
�i+

(
∂P

∂z
− ∂R

∂x

)
�j +

(
∂Q

∂x
− ∂P

∂y

)
�k .

(8.13)

Потенциальные и соленоидальные поля. Заметим в заключе-
ние, что в теории поля выделяют два сорта векторных полей: потен-
циальные и соленоидальные поля. Последние называют еще вихревыми
полями.

Определение 8.12 Потенциальными называют поля, равные градиен-
ту некоторого скалярного поля:

�A = gradU(�r) .

При этом скалярное поле U называют потенциалом векторного поля
�A. Потенциал любого потенциального векторного поля определяется с
точностью до произвольной постоянной.

Нетрудно показать, что необходимым и достаточным условием по-
тенциальности векторного поля в некоторой области Ω является тожде-
ственное равенство нулю ротора поля в этой области.

Определение 8.13 Векторное поле �B называют соленоидальным, ес-
ли найдется другое векторное поле �Ψ, такое, что его ротор равен ис-
ходному полю:

�B = rot �Ψ .
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При этом поле �Ψ называют векторным потенциалом соленоидального
поля �B. Причем векторный потенциал определяется с точностью до по-
тенциального векторного поля.

Необходимым и достаточным условием соленоидальности векторно-
го поля в некоторой области Ω является тождественное равенство нулю
дивергенции поля в этой области.

Можно задаться вопросом – какими еще, кроме потенциальных и со-
леноидальных, могут быть векторные поля. На него дает ответ основная
теорема векторного анализа:
Любое непрерывно-дифференцируемое векторное поле представимо

представлено в виде суммы потенциального и соленоидального полей.
На этом занятии мы решим несколько задач, нацеленных на обсуж-

дение геометрического смысла скалярных и векторных полей, и резуль-
татов применения к ним описанных выше дифференциальных операций
векторного анализа.

Задачи
Задача 8.1
Используя формулы (8.4), (8.11), (8.13) вычислить grad r, div�r, rot�r, где
�r = x�i+ y�j + z �k – радиус-вектор точки M(x, y, z), а r = |�r|.

Р е ш е н и е. Имеем

grad r = grad
√
x2 + y2 + z2 =

=
x√

x2 + y2 + z2
�i+

y√
x2 + y2 + z2

�j +
z√

x2 + y2 + z2
�k =

�r

r
,

div�r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3,

rot�r =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
x y z

∣∣∣∣∣∣∣∣ =

=

(
∂z

∂y
− ∂y

∂z

)
�i+

(
∂x

∂z
− ∂z

∂x

)
�j +

(
∂y

∂x
− ∂y

∂y

)
�k = �0 .

Задача 8.2
Пусть U = xy − z2. Найти величину и направление вектора gradU в
точкеM(−9, 12, 10). Чему равна производная ∂U/∂� в направлении бис-
сектрисы координатного угла xOy?
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Р е ш е н и е. Несложные вычисления по формуле (8.4) дают:

gradU = y�i+ x�j − 2z �k

и, в частности, в заданной точке

gradU(M) = 12�i− 9�j − 20�k .

Величина этого вектора равна:

|gradU(M)| =
√

144 + 81 + 400 = 25 .

Направление вектора принято характеризовать значениями направляю-
щих косинусов: косинусов углов вектора к осям координат. Они в нашем
случае равны:

cosα =
(
�i · gradU(M)

)
=

12

25
, cos β =

(
�j · gradU(M)

)
= − 9

25
,

cos γ =
(
�k · gradU(M)

)
= −4

5
. (∗)

Вычислим требуемую производную по направлению. Для этого вы-
пишем единичный вектор, направленный по биссектрисе координатного
угла xOy:

�� =
1√
2
�i+

1

r
√

2
�j .

Соответственно:
∂U

∂�
=
(
gradU · ��

)
=

12√
2
− 9√

2
=

3√
2
.

Замечание. Из решения видно, что производная по направлению
в указанной точке существенно меньше модуля градиента функции в
данной точке. Иными словами, направление биссектрисы координатного
угла xOy не оптимально в том смысле, что сильно отличается от направ-
ления быстрейшего возрастания функции. Выясним степень неоптималь-
ности выбранного направления, вычислив угол ϕ между направлением
градиента и направлением биссектрисы. Косинус этого угла равен ска-
лярному произведению вектора �� и единичного вектора

�n =
12

25
�i− 9

25
�j − 4

5
�k

– координатами которого служат направляющие косинусы (∗):

cosϕ =
(
�� · �n

)
=

3

25
√

2
� 0.085 .
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Рис. 8.3: Иллюстрация к задаче 8.3: Линии равного уровня скалярного поля
(∗∗), представляющие собой вложенные друг в друга эллипсы. Видно, что чем
дальше от общего центра, тем более округлыми становятся эллипсы.

Отсюда следует, что угол между направлением наибыстрейшего возрас-
тания функции и направлением биссектрисы координатного угла xOy:
ϕ = arccos 0.085 � 85◦ -близок к углу 90◦ между направлением гра-
диента и касательной к поверхности равного уровня, проходящей через
рассматриваемую точку.

Задача 8.3
Построить поверхность уровня скалярного поля

U =
√
x2 + y2 + (z + 8)2 +

√
x2 + y2 + (z − 8)2 ,

проходящую через точку M (9, 12, 28). Чему равен maxU в области x2 +
y2 + z2 ≤ 36?

Р е ш е н и е. Заметим прежде всего, что координаты x и y входят
уравнение в виде симметричной комбинации x2 + y2, а значит поверх-
ности равного уровня образуют фигуры вращения. Их можно получить,
вращая сечение поверхностей уровня плоскостью y = 0 вокруг оси z. По-
этому мы составим полное представление о форме поверхностей уровня,
если положим в исходном уравнении y = 0 и обсудим форму кривых
равного уровня функции

U =
√
x2 + (z + 8)2 +

√
x2 + (z − 8)2 . (∗∗)

Правая часть здесь имеет наглядный геометрический смысл – это сумма
расстояний произвольной точки плоскости (x, z) до двух точек с коор-
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динатами (0, c) и (0,−c), где c = 8. Как мы знаем из курса аналитиче-
ской геометрии, эллипс представляет собой геометрическое место точек,
сумма расстояний которых до его фокусов одинакова. Таким образом,
кривые равного уровня являются эллипсами с фокусами в указанных
точках, симметрично расположенных на оси z.

Следуя стандартным обозначениям, принятым в аналитической гео-
метрии, обозначим заданное значение нашей функции на эллипсе рав-
ного уровня за U = 2a, и заметим, что a – это длина большой полуоси
эллипса, лежащей на оси z. Вспомним еще, что длина малой полуоси,
расположенной на оси x, равна b =

√
a2 − c2 =

√
a2 − 64 . Отсюда (или

из неравенства треугольника) следует, что наименьшее значение функ-
ции (∗∗), равно Umin = 2c = 16. Оно достигается на вырожденном эллипсе
– отрезке оси z между фокусами F1(0,−8) и F2(0, 8).

С ростом U > 16 эллипсы равного уровня становятся “все более
округлыми”, асимптотически приближаясь по форме к концентрическим
окружностям.

Искомую поверхность уровня, проходящую через точку M(9, 12, 28),
найдем, подставив координаты этой точки в заданное в условии задачи
уравнение поверхности:

U = U(M) =
√

81 + 144 + 1296 +
√

81 + 144 + 400

=
√

1521 +
√

625 = 39 + 25 = 64 .

Отсюда бо̀льшая ось проходящего через эту точку эллипсоида вращения
равна

a = U/2 = 32 → a2 = 210 = 1024 ,

а малая ось

b =
√
a2 − c2 =

√
1024 − 64 =

√
960 = 8 → b2 = 960 .

Таким образом, интересующая нас поверхность – эллипсоид вращения,
заданный каноническим уравнением:

x2

960
+

y2

960
+

z2

1024
= 1 .

Этим завершается решение первой части поставленной задачи. При-
ступим ко второй ее части: Найдем максимальное значение поля U в
шаре x2 + y2 + z2 ≤ 36. Для этого заметим, опираясь на опыт решения
первой части задачи, что шар полностью лежит в эллипсоиде уровня,
чья полуось на оси x равна 6. Кроме того очевидно, что значения по-
ля U внутри эллипсоида уровня меньше, чем на его поверхности. Ины-
ми словами, искомое максимальное значение поля U достигается в точ-
ках соприкосновения шара с эллипсоидом уровня, например, в точке
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(x = 6, y = 0, z = 0). Следовательно, требуемое максимальное значение
найдем, приравняв квадрат полуоси эллипса b2 к 36:

b2 = 36 ⇒ a2 = b2 + c2 = 36 + 64 = 100 ⇒ a = 10 ⇒ U = 2a = 20 .

Задача 8.4
Найти grad f(r), где r =

√
x2 + y2 + z2.

Р е ш е н и е. Используя правило вычисления градиента сложной
функции (8.6) и результат задачи 8.1, имеем:

grad f(r) = f ′(r) grad r = f ′(r)
�r

r
.

Замечание. Геометрический смысл полученного результата ясен и
состоит в том, что градиент центрально-симметричного скалярного по-
ля, зависящего лишь от расстояния до центра координат, ориентирован
в направлении от центра к выбранной точке, если f ′(r) > 0, или в про-
тивоположном направлении, если f ′(r) < 0. Соответственно, входящий в
выражение для градиента центрально-симметричной функции единич-
ный вектор

�n =
�r

r
перпендикулярен ее поверхностям равного уровня – концентрическим
сферам с центром в начале координат.

Задача 8.5
Найти производную поля

u =
x2

a2
+
y2

b2
+
z2

c2

в данной точке M(x, y, z) в направлении радиус-вектора �r этой точки.
В каком случае эта производная равна величине градиента?

Градиент заданного скалярного поля имеет вид:

gradu = 2
(
�i
x

a2
+�j

y

b2
+ �k

z

c2

)
,

а производная по направлению �n радиус-вектора равна:

∂u

∂n
=

(
gradu,

�r

r

)
=

2

r

(
x2

a2
+
y2

b2
+
z2

c2

)
=

2u

r
,

где, как и прежде, r =
√
x2 + y2 + z2 – длина радиус-вектора, а �n = �r/r

– единичный вектор в направлении радиус-вектора.



Занятие 8. Основные понятия теории поля 105

Найдем теперь, в каком случае производная в направлении радиус-
вектора будет равна модулю градиента:

∂u

∂n
= |gradu| .

Это легко выяснить из геометрических соображений: Производная по
направлению равна модулю градиента, лишь если выбранные направ-
ления перпендикулярны поверхностям равного уровня, и направлены в
сторону увеличения уровня. Выбранные направления перпендикулярны
концентрическим сферам с центром в начале координат. Поэтому произ-
водная по направлению будет всюду совпадать с величиной градиента,
лишь если поверхности равного уровня нашего поля будут совпадать с
указанными концентрическими сферами. Из уравнения поля видно, что
последнее имеет место лишь если a = b = c.

Задача 8.6
Определить силовые линии векторного поля

�A = x�i+ y�j + 2z �k .

Р е ш е н и е. Напомним, силовой или векторной линией векторного
поля называют кривую, чей касательный вектор в каждой точке кри-
вой направлен вдоль данного векторного поля. Зададим искомую сило-
вую линию некоторого векторного поля �A(�r) в параметрической форме
�r = �r(t), где t – параметр, отсчитываемый вдоль силовой линии. В мате-
матической форме данное выше определение силовой линии запишется
в виде:

d�r

dt
= λ �A(�r) ,

где λ �= 0 – произвольная постоянная. Очевидно, ее можно приравнять к
единице подходящим выбором масштаба параметра t. При этом уравне-
ние силовой линии сводится к системе 3-х обыкновенных дифференци-
альных уравнений:

d�r

dt
= �A(�r) . (∗ ∗ ∗)

В развернутой форме и для заданного в условии задачи векторного поля
они имеют вид

dx

dt
= x ,

dy

dt
= y ,

dz

dt
= 2z .

Общие решения этих уравнений таковы:

x = C1e
t , y = C2e

t , z = C3e
2t .
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Исключив t, к примеру, с помощью 1-го уравнения, получим окончатель-
но:

y = c1x , z = 2x
2 .

Здесь введены новые произвольные постоянные c1 =
C2

C1

и c2 =
C3

C2
1

.

Замечание. Более прямой путь решения поставленной задачи сво-
дится к записи уравнений силовой линии в следующей геометрически
наглядной форме:

dx

P
=
dy

Q
=
dz

R
.

В нашем случае отсюда вытекают уравнения

dy

dx
=
y

x
,

dz

dx
=

2z

x
,

решения которых нам уже известны.

Задача 8.7
Найти векторные линии поля �A = [�c× �r ], где �c – постоянный вектор.

Р е ш е н и е. Применяя соотношение (∗ ∗ ∗), получим дифференци-
альное уравнение в векторной форме

d�r

dt
= [�c× �r ]

для нахождения векторной линии. Умножая обе части этого уравнения
скалярно на �c и используя свойства смешанного произведения, находим(

�c · d�r
dt

)
=

d

dt
(�c · �r ) = 0.

Откуда следует, что
(�c · �r) = c1.

Умножая еще раз исходное дифференциальное уравнение скалярно на �r,(
�r · d�r

dt

)
=

d

dt
(�r · �r ) = 0,

получим
(�r · �r ) = c2.

Итак, векторные линии являются линиями пересечения плоскостей
(�c · �r) = c1 со сферами (�r · �r ) = c2.
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Задача 8.8
Жидкость, заполняющая пространство, вращается вокруг оси z против
часовой стрелки с постоянной угловой скоростью ω. Найти дивергенцию
векторного поля скорости �v и векторного поля ускорения частиц жидко-
сти �w в произвольной точке M(x, y, z) пространства в текущий момент
времени.

Р е ш е н и е. Сконструируем поле скорости из вектора угловой ско-
рости вращения жидкости �ω = �k ω и радиус-вектора �r. Как известно,
векторное поле скорости движения жидкости равно векторному произ-
ведению указанных векторов

�v(�r) = [�ω × �r ] =

∣∣∣∣∣∣
�i �j �k
0 0 ω
x y z

∣∣∣∣∣∣ = −ωy�i+ ωx�j .

Найдем векторное поле ускорения. Для этого мысленно выделим ма-
териальную точку жидкости, движение которой с течением времени опи-
сывается некоторой функцией �r = �r (t). Зная скорость движения жидко-
сти в каждой ее точке, нетрудно записать уравнение движения матери-
альной точки:

d�r

dt
= �v = [�ω × �r (t)] .

Дифференцируя это равенство по времени, получим:

�w =
d2�r

dt2
=

[
�ω × d�r

dt

]
= [�ω × �v ] .

Расписывая векторное произведение, будем иметь:

�w = [�ω × �v ] =

∣∣∣∣∣∣
�i �j �k
0 0 ω

−ωy ωx 0

∣∣∣∣∣∣ = −ω2x�i− ω2y�j = −ω2�ρ .

Здесь выделен перпендикулярный вектору угловой скорости вспомога-
тельный вектор �ρ = x�i + y�j, величина которого равна расстоянию от
точки пространства до оси z.

Вычислим теперь дивергенцию полей скорости и ускорения равномер-
но вращающейся вокруг оси z жидкости. Пользуясь формулой (1.62), в
нашем случае имеем:

div�v = −ω∂y
∂x

+ ω
∂x

∂y
= 0 ,

div �w = −ω2∂x

∂x
− ω2∂y

∂y
= −2ω2 .
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Задача 8.9
Найти величину и направление вектора rot �A, в точке M(1, 2, −2), если

�A =
y

z
�i+

z

x
�j +

x

y
�k .

Р е ш е н и е. Ротор в декартовой системе координат равен определи-
телю (1.64). Откуда имеем:

rot �A =

(
− x

y2
− 1

x

)
�i+

(
− y

z2
− 1

y

)
�j +

(
− z

x2
− 1

z

)
�k .

Подставив сюда координаты заданной точки, получим:

rot �A(M) =

(
−1

4
− 1

)
�i+

(
−1

2
− 1

2

)
�j +

(
2 +

1

2

)
�k .

Таким образом, окончательно:

rot �A(M) =
5

4
�i−�j +

5

2
�k .

Соответственно, величина этого вектора и его направляющие косинусы
равны

|rot �A(M)| =
1

4

√
25 + 16 + 100 =

1

4

√
141 ,

cosα = − 5√
141

, cos β = − 4√
141

, cos γ =
10√
141

.

Задачи для самостоятельной работы
Задача 8.10
Найти величину и направление градиента поля

U = x2 + 2y2 + 3z2 + xy + 3x− 2y − 6z

в точках а) O(0, 0, 0); б) A(1, 1, 1) и в) (2, 0, 1). В какой точке градиент
поля равен нулю?

Задача 8.11
Дано скалярное поле

U = ln
1

r
,

где r =
√

(x− a)2 + (y − b)2 + (z − c)2. В каких точках пространства
имеет место равенство |gradU | = 1?
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Задача 8.12
Найти угол ϕ между градиентами поля

U =
x

x2 + y2 + z2

в точках A(1, 2, 2) и B(−3, 1, 0).

Задача 8.13
Найти производную поля U =

1

r
, где r =

√
x2 + y2 + z2, в направлении

��{cosα, cos β, cosγ}. В каком случае эта производная равна нулю?

Задача 8.14
Найти производную скалярного поля U(x, y, z) в направлении градиента
поля V (x, y, z). В каком случае эта производная равна нулю?

Задача 8.15
Определить, имеет ли поле �A = 3x2�i − xy2�j + z2 �k источники (стоки) в
точках P1(1, 2, 3), P2(1, 5,−1) и P3(1, 4, 1).

Задача 8.16
Найти величину и направление ротора поля �A = yz�i + (y + x)z�j + xz �k
а) в точке P1(−3, 5, 1), б) в точке P2(0, 5, 5).

Задача 8.17
Найти gradU(M0) и

∂U(M0)

∂�
, если направление �� задано вектором �a:

1) U =
√
x2 + 4y − 2z, M0(2, 2,−2), �a = (2,−1, 2),

2) U = ln(5x2 + 3y + z), M0(−1, 1, 1), �a = (0, 4, 3),
3) U =

√
9 − (x2 + y2 + z2), M0(0, 2, 1), �a = (

√
7, 5, 2),

4) U = x2y2 + y2z2 + z2x2, M0(1,−2, 1), �a = (6, 8, 0).

Задача 8.18
Найти производную

∂U(M0)

∂�
в направлении от точки M0 к точке M1:

1) U = x2y + xz2 − 2, M0(1, 1,−1), M1(2,−1, 3),

2) U =
x

y
− y

x
+
x

z
, M0(1, 1, 1), M1(2, 3, 4).

Задача 8.19
Найти векторные линии поля �A = f(r)�r.
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Ответы

8.10. а) |gradU(O)| = 7, cosα =
3

7
, cos β = −2

7
, cos γ = −6

7
;

б) |gradU(A)| = 3
√

5, cosα =
2√
5
, cos β = − 1√

5
, cos γ = 0;

в) |gradU(B)| = 7, cosα = 1, cos β = 0, cos γ = 0;

gradU(M) = 0 в точке M(−2, 1, 1). 8.11. r = 1. 8.12. cosϕ = −8

9
.

8.13.
∂U

∂�
= −cos(��, �r )

r2
;
∂U

∂�
= 0, если ��⊥�r. 8.14.

∂U

∂�
=

(gradU · gradU)

|gradU | ;

∂U

∂�
= 0, если ��⊥�r. 8.15. В точке P1 имеется источник, в точке P2 – сток,

в точке P3 нет источников (стоков). 8.16. а) |rot �A(P1)| = 5, cosα =
3

5
,

cos β =
4

5
, cos γ = 0; б) rot �A(P2) = �0. Направление ротора в точке P2

неопределено. 8.17. 1) gradU(M0) =
1

4
(2�i + 2�j − �k),

∂U(M0)

∂�
= 0; 2)

gradU(M0) =
1

9
(−10�i + 3�j + �k),

∂U(M0)

∂�
=

1

3
; 3) gradU(M0) = −2�j − �k,

∂U(M0)

∂�
= −2; 4) gradU(M0) = 10�i− 8�j + 10�k,

∂U(M0)

∂�
= −2

5
. 8.18. 1)

∂U(M0)

∂�
= −

√
7

3
; 2)

∂U(M0)

∂�
= − 4√

14
. 8.19. y = c1x, z = c2x.

Занятие 9. Действия с вектором “набла”

Необходимые сведения из теории
На этом занятии мы продолжим учиться находить градиент скаляр-

ных полей, а также дивергенцию и ротор векторных полей. Подобные
вычисления обычно оказываются проще и геометрически нагляднее, ес-
ли записывать их на языке оператора Гамильтона, который чаще на-
зывают вектором набла. Это дифференциальный оператор, имеющий в
декартовой системе координат вид:

�∇ =
∂

∂x
�i+

∂

∂y
�j +

∂

∂z
�k . (9.1)

Название “набла” происходит от греческого слова ναβλα – арфа – имени
музыкального инструмента, напоминающего по форме значок �∇. Между
арфой и �∇ можно усмотреть и более глубокое родство. Как арфа обре-
тает звучание лишь в руках музыканта, так и оператор �∇ наполняется
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содержанием лишь в совокупности со скалярными или векторными по-
лями, к которым его применяют. Действительно, в отличие от обычного
вектора, компонентами вектора набла служат не числа, а дифференци-
альные операторы. Поэтому сам по себе вектор набла не имеет величи-
ны и направления. Тем не менее, будучи приложенным к скалярному
или векторному полю, он порождает обычные, векторные или скаляр-
ные, поля. К примеру, домножив вектор набла справа на скалярное поле
U(x, y, z) или, как еще говорят, подействовав оператором набла на поле
U , получим его градиент:

�∇U =
∂U

∂x
�i+

∂U

∂y
�j +

∂U

∂z
�k = gradU . (9.2)

Аналогично, дивергенция векторного поля равна скалярному произведе-
нию вектора набла и заданного векторного поля �A:

div �A = (�∇ · �A) =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
, (9.3)

а ротор равен векторному произведению набла с данным вектором:

rot �A = [�∇× �A] = rot �A(M) =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣ . (9.4)

Здесь {P,Q,R} – компоненты вектора �A в выбранной декартовой системе
координат.

Популярность вектора набла среди физиков и инженеров обусловлена
именно тем, что многие нетривиальные свойства скалярных и векторных
полей удается раскрыть, обращаясь с вектором набла как с обычным
вектором, и пользуясь привычными правилами векторной алгебры. Так
довольно громоздкие выкладки показывают, что имеют место тождества:

rot gradU ≡ �0 , div rot �A ≡ 0 .

Сюда вошел нулевой вектор �0 все компоненты которого равны нулю. В то
же время эти тождества, будучи выраженными на языке вектора набла:

[�∇× �∇U ] = [�∇× �∇]U = �0U ≡ �0 , (�∇ · [�∇× �A ]) = (�∇, �∇, �A ) ≡ 0 ,

кажутся очевидными – как бы вытекают из геометрического смысла век-
торного и смешанного произведений. В самом деле, левая часть первого
из них содержит векторное произведение двух “параллельных векторов”
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�∇, отличающихся лишь “скалярным множителем” U . А как известно,
векторное произведение коллинеарных векторов всегда равно нулю. Вто-
рое же тождество справедливо, поскольку в нем присутствует смешанное
произведение трех векторов, два из которых одинаковы. Конечно, подоб-
ное слишком вольное обращение с выражениями, содержащими вектор
набла, может давать и сбои. Так несмотря на то, что векторное произ-
ведение [�∇U × �∇V ] содержит два “параллельных вектора” �∇U и �∇V ,
нетрудно убедиться, что данное векторное произведение нулем вообще
говоря не является, поскольку векторные поля gradU и gradV в одной и
той же точке могут иметь разные направления.

Тем не менее можно строго доказать, что преобразование выражений,
содержащих вектор набла, по правилам векторной алгебры всегда дает
правильный результат, если придерживаться двух естественных правил.

Прежде всего не стоит забывать, что вектор набла – линейный диф-
ференциальный оператор 1-го порядка. Поэтому, действуя им на про-
изведение полей, необходимо руководствоваться известными правилами
вычисления производной сумм и произведений.

Проиллюстрируем сказанное на примере дивергенции произведения
скалярного и векторного полей:

div (U �A) = (�∇ · U �A ) .

Согласно законам дифференциального исчисления, оператор набла дол-
жен вначале действовать на первый сомножитель, а затем на второй.
Запишем сказанное на языке формул:

(�∇ · U �A ) = (�∇· ↓
U �A ) + (�∇ · U

↓
�A ) .

Здесь вертикальная стрелка указывает на тот сомножитель, к которому
в данном слагаемом применяется оператор �∇. Оставшийся множитель
можно “высвободить” из под оператора �∇, что дает:

(�∇ · U �A ) = (�∇U · �A ) + U(�∇ · �A ) . (9.5)

В итоге мы вывели полезную формулу векторного анализа. Запишем ее
еще раз, в форме, не привлекающей вектор набла:

div(U �A) = ( �A · gradU) + Udiv �A .

Второе правило обращения с вектором набла состоит в том, что для
получения осмысленных формул надо, пользуясь свойствами скалярных
и векторных произведений обычных векторных полей, переставлять век-
тор набла до тех пор, пока вектор набла не примет “надлежащее поло-
жение” – слева от поля, на которое он должен действовать.
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Пример 9.1 Найдем, с учетом обоих правил, еще одно важное соотно-
шение. А именно выясним, чему равна дивергенция векторного произве-
дения векторных полей. Согласно дифференциальной природе вектора
набла имеем:

(�∇ · [ �A× �B]) = (�∇ · [
↓
�A × �B]) + (�∇ · [ �A×

↓
�B]) . (9.6)

Воспользуемся далее тем хорошо известным фактом, что смешанное про-
изведение не меняется при циклической перестановке входящих в него
векторов:

(�∇ · [
↓
�A × �B]) = ( �B · [�∇× �A]) = ( �B · rot �A ) .

Мы убрали вертикальную стрелку во второй части равенства, поскольку
уже нет сомнений, на какое из полей действует вектор �∇.

Во втором слагаемом в (9.6) поменяем вначале местами векторы �A и
�B, из-за чего знак векторного произведения сменится на обратный, а уж
затем воспользуемся циклической перестановкой:

(�∇ · [ �A×
↓
�B]) = −(�∇ · [

↓
�B × �A]) = −( �A · [�∇× �B]) = ( �A · rot �B ) .

Таким образом, придерживаясь упомянутых правил обращения с векто-
ром набла, мы довольно легко вывели еще одну важную формулу век-
торного анализа:

div [ �A× �B ] = ( �B · rot �A) − ( �A · rot �B) . (9.7)

Пример 9.2 Мы уже достаточно набили руку на манипуляциях с век-
тором набла и в состоянии вывести довольно часто встречающуюся в
приложениях формулу для градиента скалярного произведения вектор-
ных полей:

grad ( �A · �B ) = �∇ ( �A · �B ) .

Следуя 1-му условию, разобьем его на сумму двух слагаемых:

�∇ ( �A · �B ) = �∇ (
↓
�A · �B ) + �∇ ( �A·

↓
�B ) . (9.8)

Вспомним затем знаменитую формулу “bac минус cab” для двойного век-
торного произведения

[�a× [�b× �c ]] = �b (�a · �c ) − �c (�a ·�b ) , (9.9)
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которую перепишем в подходящей для наших целей форме:

�c (�a ·�b ) = [�a× [�c×�b ]] + (�a · �c )�b .

Положим здесь �c = �∇, �a = �A и �b = �B. В итоге придем к равенству,
раскрывающему действие вектора набла во втором слагаемом справа в
(9.8):

�∇ ( �A·
↓
�B ) = [ �A× [�∇× �B ]] + ( �A · �∇) �B .

Аналогично, для первого слагаемого в (9.8) имеем:

�∇ (
↓
�A · �B ) = �∇ ( �B·

↓
�A ) = [ �B × [�∇× �A]] + ( �B · �∇) �A .

Подставив последние два равенства в (9.8), получаем:

�∇ ( �A · �B ) = [ �A× [�∇× �B ]] + [ �B × [�∇× �A ]] + ( �A · �∇) �B + ( �B · �∇) �A .

Таким образом, оперируя с вектором набла, мы вывели следующую фор-
мулу векторного анализа:

grad ( �A · �B ) = [ �A× rot �B] + [ �B × rot �A] + ( �A · �∇) �B + ( �B · �∇) �A . (9.10)

Наиболее часто в приложениях возникает ее частный случай при �A ≡ �B:

1

2
gradA2 = [ �A× rot �A ] + ( �A · �∇) �A . (9.11)

Замечание 9.1 В последнее слагаемое вошел оператор ( �A · �∇), род-
ственный оператору производной по направлению. В декартовой системе
координат он принимает вид:

( �A · �∇) = P
∂

∂x
+Q

∂

∂y
+R

∂

∂z
. (9.12)

Иногда его записывают в форме производной по вектору:

( �A · �∇) =
d

d �A
(9.13)

и переписывают равенство (9.10) в виде

grad ( �A · �B ) = [ �A× rot �B] + [ �B × rot �A] +
d �A

d�B
+
d �B

d �A
.
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В качестве справки приведем одну полезную частную формулу, отража-
ющую свойства оператора (9.13). А именно, выясним чему равно дей-
ствие этого оператора на радиус-вектор. Несложные выкладки в декар-
товой системе координат дают:

d�r

d �A
= ( �A · �∇)�r = �A . (9.14)

Пример 9.3 Дадим еще один пример вывода, с помощью вектора наб-
ла, полезной формулы векторного анализа, содержащей производную по
векторному полю (9.13). Обсудим ротор векторного произведения

rot [ �A× �B] =
[
�∇× [ �A× �B]

]
= [�∇× [

↓
�A × �B] ] + [�∇× [ �A×

↓
�B] ] .

Согласно формуле bac минус cab имеем

[�∇× [
↓
�A × �B] ] = �A(�∇ · �B ) − �B(�∇ · �B ) =

(�∇ · �B ) �A− �B div �A =
d �A

d�B
− �B div �A .

Аналогично

[�∇× [ �A×
↓
�B] ] = −d

�B

d �A
+ �A div �B .

Таким образом окончательно

rot [ �A× �B] = �A div �B − �B div �A+
d �A

d�B
− d �B

d �A
. (9.15)

На данном занятии мы решим несколько задач, закрепляющих навы-
ки обращения с вектором набла. При этом мы не будем ограничиваться
лишь дифференциальными операторами 1-го порядка, поскольку вектор
набла позволяет успешно “расправляться” и с выражениями более высо-
ких порядков.

Напоследок укажем еще одну замечательную особенность примене-
ния вектора набла. Оперируя им, мы не привязаны к какой-либо, напри-
мер, декартовой системе координат. И в этом содержится глубокий смысл
и большое преимущество вектора набла, поскольку операции градиента,
дивергенции и ротора, которые мы записываем на языке вектора набла,
отражают объективные свойства исследуемых скалярных и векторных
полей, не зависящие от выбора систем координат.
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Прежде, чем приступить к решению задач, сделаем одно полезное
замечание: Результаты задачи 8.1 с использованием оператора “набла”
можно записать так:

�∇�r =
�r

r
, (�∇ · �r ) = 3, [�∇× �r ] = �0.

Задачи
Задача 9.1
Доказать, что

1) grad (�c, �r) = ∇ (�c, �r ) = �c,

2) div [�c, �r] = (∇, [�c, �r ]) = 0,

3) rot [�c, �r] = [∇, [�c, �r ]] = 2�c.

где �c – постоянный вектор и �r – радиус-вектор из начала координат.

Р е ш е н и е. 1) Вычислим вначале grad (�c, �r) “в лоб”, пользуясь
представлением градиента в декартовой системе координат:

grad (�c · �r) = grad(�c · �r) = grad(cxx+ cyy + czz) =�icx +�jcy + �kcz = �c .

Геометрический смысл результата предельно ясен, поскольку поверхно-
сти равного уровня скалярного поля U = (�c · �r ) представляют собой
плоскости, перпендикулярные вектору �c.

Пожалуй данный пример чуть ли не единственный, когда прямые вы-
числения оказываются проще выкладок с использованием вектора набла.
Тем не менее, для тренировки в обращении с �∇, решим задачу еще раз.
Повторяя рассуждения, приведшие нас к формуле (9.10), запишем:

�∇(�c · �r ) = [�c× [�∇× �r ]] + (�c · �∇)�r .

Пользуясь тем, что rot�r = 0, а

(�c· �∇)�r =
d�r

d�c
=

(
cx
∂

∂x
+ cy

∂

∂y
+ cz

∂

∂z

)
(x�i+y�j+z �k) = cx�i+cy�j+cz �k = �c ,

получаем старый результат.

Более элегантное решение задачи основано на тесной связи градиента
с дифференциалом скалярной функции векторного аргумента. А именно,
заметив, что

d(�c · �r ) = (�c · d�r ) ,
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заключаем: grad (�c · �r ) = �c.

2) Используя свойство смешанного произведения, получаем

div [�c, �r ] = (∇, [�c, �r ]) = −(�c, [∇, �r ]) = 0.

3) При вычислении rot [�c, �r ] = [∇, [�c, �r ]] надо применить , как это
отмечено ранее, формулу для двойного векторного произведения:

[�a, [�b,�c ]] = �b (�a,�c ) − �c (�a,�b ) = �b (�a,�c ) − (�b,�a )�c.

Мы вынуждены были изменить вид второго слагаемого, так как оператор
∇ “дифференцирует” переменный вектор �r и не должен “дифференциро-
вать” постоянный вектор �c. Итак имеем

[∇, [�c, �r ]] = �c (∇, �r ) − (�c,∇)�r = 3�c− �c = 2�c.

Задача 9.2
Найти grad {∣∣[�c× �r]

∣∣2} (�c – постоянный вектор).

Р е ш е н и е. Прежде чем решить задачу, выразим квадрат векторного
произведения под знаком градиента через более привычные скалярные
произведения. С этой целью выведем предварительно полезную форму-
лу векторной алгебры. Возьмем квадрат векторного произведения [�a×�b ]

двух произвольных векторов �a и �b и обозначим угол между ними за ϕ.
Как известно, модуль векторного произведения равен площади паралле-
лограмма, построенного на входящих в него векторах. Следовательно,
квадрат векторного произведения равен:

[�a×�b ]2 = a2b2 sin2 ϕ = a2b2 (1 − cos2 ϕ) = a2b2 − (�a ·�b)2 .

Применительно к нашему случаю использование данного соотношения
ведет к равенству:

grad {∣∣[�c× �r ]
∣∣2} = grad c2r2 − grad (�c · �r)2 .

Вспомнив еще правило дифференцирования сложных функций, которое
применимо и к операции вычисления градиента, получим:

grad {∣∣[�c× �r ]
∣∣2} = c2grad r2 − 2 (�c · �r ) grad (�c · �r ) .

Учитывая затем, что grad r2 = 2�r и результат предыдущей задачи, будем
иметь:

grad {∣∣[�c× �r ]
∣∣2} = 2�r c2 − 2�c (�c · �r) . (∗)



118 Глава 1. Практикум по векторному анализу

l=
c
c

r

l  (  r   , l  )r
|| =
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Рис. 9.1: Иллюстрация разложения вектора �r на взаимно-перпендикулярные
компоненты �r‖ и �r⊥ – параллельную и перпендикулярную заданному вектору
�c.

Замечание. При анализе векторных полей естественно стремление
представить их в геометрически наиболее прозрачной форме. Чтобы до-
биться этого в данном случае, введем единичный вектор, совпадающий
по направлению с вектором �c:

�� =
�c

c
.

С его помощью перепишем ответ (∗) в виде:

grad {∣∣[�c× �r ]
∣∣2} = c2

[
�r − ��(�� · �r)

]
. (∗∗)

Обратим внимание на то, что входящий сюда вектор

�� (�� · �r) = �r‖

имеет наглядный геометрический смысл: Это проекция радиус-вектора
на направление единичного вектора ��. Иными словами это параллель-
ная вектору �c компонента радиус-вектора. Соответственно, в квадрат-
ных скобках в (∗∗) расположена перпендикулярная вектору �c компонента
радиус-вектора:

�r⊥ = �r − �r‖ = �r − �� (�� · �r) .
Пользуясь формулой bac минус cab, вектор �r⊥ иногда записывают в более
компактной форме:

�r⊥ =
[
��× [�r × ��]

]
.

Таким образом окончательная, геометрически наглядная, форма записи
ответа (∗) такова:

grad {∣∣[�c× �r ]
∣∣2} = 2c2 �r⊥ ,
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Отсюда видно, что результирующее векторное поле всюду перпендику-
лярно вектору �c и обращается в нуль на прямой, проходящей через на-
чало координат и параллельной вектору �c.

Приведем для полноты картины еще один способ решения данной
задачи. Запишем дифференциал фигурирующего в условии скалярного
поля

d
∣∣[�c× �r ]

∣∣2 = 2 ([�c× �r] · d[�c× �r]) = 2 ([�c× �r] · [�c× d�r]) .

Пользуясь тем, что при циклической перестановке смешанное произве-
дение не меняется, перепишем последнее равенство в виде:

d
∣∣[�c× �r ]

∣∣2 = 2 (d�r · [[�c× �r] × �c]) .

Отсюда
grad

∣∣[�c× �r ]
∣∣2 = 2[[�c× �r] × �c] = 2c2�r⊥ .

Задача 9.3
Найти div[grad f(r)], где r =

√
x2 + y2 + z2. В каком случае

div[grad f(r)] = 0?

Р е ш е н и е. Вычислим вначале grad f(r). Согласно правилу диффе-
ренцирования сложной функции имеем:

grad f(r) = f ′(r)�n , (∗)
где

�n =
�r

r
– единичный вектор в направлении радиус-вектора.

Мы уже выводили формулу (∗) при решении третьей задачи. Возьмем
формулу (∗) на заметку, поскольку в дальнейшем неоднократно придется
ею пользоваться. Из нее следует в частности, что grad r = �n.

Продолжим решение задачи. Заменив далее дивергенцию скалярным
произведением вектора набла на полученное векторное поле и привлекая
правило (9.5), будем иметь:

div[grad f(r)] =

(
�∇ · f

′(r)
r

�r

)
=

(
�r · �∇f ′(r)

r

)
+
f ′(r)
r

(
�∇ · �r

)
.

Вычислив по формуле (∗) градиент от скалярной функции
f ′(r)
r

и учи-

тывая, что (�∇ · �r ) = div�r = 3, придем к соотношению:

div[grad f(r)] =

[
1

r
f ′′(r) − 1

r2
f ′(r)

](
�r

r
· �r
)

+ 3
f ′(r)
r

= f ′′(r) +
2

r
f ′(r) .
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Замечание 1. Укажем еще один, пожалуй более поучительный, путь
рассуждений, приводящий к тому же результату. А именно заметим, что

div[grad f(r)] =
(
�∇ · �∇f(r)

)
=
(
�∇ · �∇

)
f(r) = �∇2f(r) = ∆f(r) .

Объединив начало и конец равенства, получим окончательно:

div[grad f(r)] = ∆f(r) . (∗∗)

Сюда вошел дифференциальный оператор 2-го порядка, равный скаляр-
ному произведению вектора набла самого на себя. Это так называемый
оператор Лапласа или просто — лапласиан, играющий исключительную
роль в математической физике. В декартовой системе координат он ра-
вен:

�∇2 = ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Замечание 2. Мы вывели формулу (∗∗) применительно к сфери-
чески симметричному скалярному полю f(r), линиями равного уровня
которого являются концентрически вложенные сферы с центром в нача-
ле координат. Естественно поинтересоваться – нельзя ли обобщить фор-
мулу на случай произвольных дважды непрерывно-дифференцируемых
векторных полей f(�r ). С привлечением вектора набла проверка данной
гипотезы оказывается ничуть не труднее предыдущих выкладок, и мы
убеждаемся, что в самом деле:

div[grad f(�r )] = ∆f(�r ) .

Вернемся к обсуждению решения. Мы установили, что искомое поле
равно лапласиану от исходного скалярного поля f(r). Чтобы расшифро-
вать действие оператора Лапласа на сферически симметричное скаляр-
ное поле f(r), достаточно обсудить действие первого слагаемого лапла-
сиана:

∂2

∂x2
f(r) =

∂

∂x

(
x

r

d

dr
f(r)

)
=

1

r

d

dr
f(r) +

x2

r

d

dr

(
1

r

d

dr
f(r)

)
.

Сложив это выражение с аналогичными результатами действия на f(r)
остальных двух слагаемых оператора Лапласа и учитывая, что x2 + y2 +
z2 = r2, будем иметь:

∆f(r) =
3

r

d

dr
f(r) + r

d

dr

(
1

r

d

dr
f(r)

)
=

2

r

d

dr
f(r) +

d2

dr2
f(r) .
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Иногда это выражение записывают в более компактной форме:

∆f(r) =
1

r2

d

dr
r2 d

dr
f(r) ,

и называют радиальной частью лапласиана в сферической системе ко-
ординат.

Найдем теперь, в каком случае дивергенция градиента сферически
симметричной функции всюду обращается в нуль. Чтобы выяснить это,
надо решить дифференциальное уравнение:

f ′′(r) +
2

r
f ′(r) = 0 .

Введением вспомогательной функции y = f ′(r) оно сводится к линейному
однородному уравнению 1-го порядка:

y′ +
2

r
y = 0 .

Решение последнего находится стандартной процедурой:

dy

y
= −2dr

r
⇐⇒ ln |y| = −2 ln |r| + ln |c1| .

Отсюда
y = −c1

r2
⇐⇒ f(r) =

c1
r

+ c2 .

Дивергенция этой функции равна нулю всюду, за исключением начала
координат, где она недифференцируема.

Задача 9.4
Найти div(U · gradU).

Р е ш е н и е. Пользуясь упомянутыми правилами обращения с век-
тором набла, получим:

div(U gradU) =
(
�∇ · U �∇U

)
=

(
�∇· ↓

U �∇U
)

+

(
�∇ · U �∇ ↓

U

)
=

=
(
�∇U · �∇U

)
+ U

(
�∇ · �∇

)
U = (gradU · gradU) + U∆U .

Привлекая свойства градиента как дифференциального оператора 1-
го порядка, удается извлечь отсюда еще одну полезную формулу теории
поля. А именно заметив, что

div(U gradU) =
1

2
div gradU2 =

1

2
∆U2 ,
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придем к соотношению

∆U2 = 2
[
(�∇U)2 + U∆U

]
,

раскрывающему алгоритм действия лапласиана на квадрат скалярного
поля.

Задача 9.5
Найти дивергенцию гравитационного силового поля, создаваемого ко-
нечной системой притягивающих центров.

Р е ш е н и е. Как известно из физики, система материальных частиц,
массами mi, расположенных в точках с координатами (xi, yi, zi), создает
силовое поле

�F = −
∑
i

mi

r3
i

�ri .

Здесь введено удобное для наших целей обозначение:

�ri = (x− xi)�i+ (y − yi)�j + (z − zi)�k .

Согласно правилу дифференцирования суммы, дивергенция суммы фун-
кций равна сумме дивергенций, поэтому вычислим вначале дивергенцию
отдельного слагаемого. Опустив индекс, с учетом свойств вектора набла
получим:

div

(
�r

r3

)
=

(
�∇ · 1

r3
�r

)
=

=

(
�∇ 1

r3
· �r
)

+
1

r3

(
�∇ · �r

)
= − 3

r4

(
�r

r
· �r
)

+
3

r3
= − 3

r3
+

3

r3
= 0 .

Таким образом, во всем пространстве, кроме точек где расположены ча-
стицы, дивергенция их силового поля равна нулю.

Задача 9.6
Найти rot [f(r)�r ].

Р е ш е н и е.

rot [f(r)�r ] =
[
�∇× f(r)�r

]
=
[
�∇ f(r) × �r

]
+ f(r)

[
�∇× �r

]
=

=
f ′(r)
r

[�r × �r ] + 0 ≡ 0 .
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Замечание. Легко объяснить геометрический смысл полученного
тождества, опираясь на опыт, накопленный при решении 3-й задачи. Вы-
численный там градиент сферически симметричного (то есть зависящего
лишь от расстояния до начала координат) скалярного поля

gradU(r) = U ′(r)
�r

r

– имеет структуру векторного поля f(r)�r под знаком ротора в условии
задачи. Следовательно, поле f(r)�r потенциально.1 Известно, что ротор
потенциального векторного поля равен нулю. Потенциал поля, заданного
в условии задачи, легко отыскать, решая дифференциальное уравнение:

U ′ = r f(r) ⇒ U(r) =

∫
r f(r) dr .

Задача 9.7
Найти rot [�c× f(r)�r ].

Р е ш е н и е. Придерживаясь правил обращения с вектором набла,
получим:

rot [�c× f(r)�r ] =
[
�∇× [�c× f(r)�r ]

]
=
[
�∇ f(r) × [�c× �r ]

]
+ f(r)

[
�∇× [�c× �r ]

]
=

=
f ′(r)
r

[�r × [�c× �r ]] + f(r)
[
�∇× [�c× �r ]

]
.

Применив к первому слагаемому правило bac минус cab, а ко второму –
результат задачи 9.1, получим окончательно:

rot [�c× f(r)�r ] =
f ′(r)
r

[�c (�r · �r ) − �r (�r · �c )] + 2f(r)�c .

Замечание 1. Мы пришли к абсолютно правильному но “непро-
зрачному” соотношению, геометрический смысл которого неясен. При
обсуждении геометрических следствий, вытекающих из подобных соот-
ношений, полезно пытаться преобразовать их к более наглядной форме.
Чтобы добиться этого в данном случае, используем уже знакомый еди-
ничный вектор в направлении радиус-вектора точки наблюдения:

�n =
�r

r
.

1Потенциальным называют любое векторное поле �A(�r ), равное градиенту некото-
рого скалярного поля: �A = gradV (�r ).
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С его помощью наше соотношение перепишется в форме:

rot [�c× f(r)�r ] = 2f(r)�c+ r f ′(r) {�c− �n (�n · �c )} .
Обратим внимание, что разность векторов в фигурной скобке равна пер-
пендикулярной вектору �n компоненте вектора �c:

�c⊥ = �c− �n (�n · �c ) = [�n× [�c× �n ]] .

C учетом сказанного исследуемое поле преобразуется к виду:

rot [�c× f(r)�r ] = 2f(r)�c+ r f ′(r)�c⊥ .

В свою очередь, разложив �c в первом слагаемом правой части на попе-
речную и параллельную вектору �n компоненты, придем к искомой, гео-
метрически наиболее наглядной, форме записи обсуждаемого векторного
поля:

rot [�c× f(r)�r ] = 2f(r)�c‖ +
1

r

d

dr

(
r2f(r)

)
�c⊥

– в виде разложения на взаимно-перпендикулярные компоненты – про-
дольную и поперечную вектору �c.

Замечание 2. Кому-то подобное жонглирование различными фор-
мами записи одного и того-же векторного поля может показаться излиш-
ним. Однако именно так порой обнаруживают физические закономерно-
сти. Вполне можно вообразить, что в некоторой физической проблеме
ключевую роль играет тот, изначально совсем не очевидный факт, что
как только скалярное поле f(r) обращается в нуль, так сразу векторное
поле rot [�c× f(r)�r ] становится перпендикулярным радиус-вектору �r.

Задача 9.8
Жидкость, заполняющая пространство, вращается вокруг оси

��{cosα, cos β, cos γ}
с постоянной угловой скоростью ω. Найти ротор вектора линейной ско-
рости �v в произвольной точке пространстваM(x, y, z) в текущий момент
времени.

Р е ш е н и е. Линейная скорость выражается через угловую равен-
ством:

�v = [�ω × �r ] = ω [�l × �r ] .

где �� – единичный вектор с указанными в условии задачи направляющи-
ми косинусами:

�� = cosα�i+ cos β�j + cos γ �k .
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Используя результат задачи 1.88, получим

rot�v = [�∇× [��× �r ]] = 2��.

Замечание. Убедимся в правильности полученного результата с по-
мощью “более прозрачных” выкладок.

Разложим ротор вектора линейной скорости по направляющим ко-
синусам единичного вектора ��. Для этого представим вектор угловой
скорости в виде суперпозиции трех векторов �ω = �ω1 + �ω2 + �ω3, первый
из которых равен �ω1 = �i ω cosα и так далее. Каждый из них порож-
дает свою компоненту векторной суммы rot�v = rot�v1 + rot�v2 + rot�v3.
Вычислим первый из векторов, составляющих rot�v. Для этого найдем
отвечающий ему вектор линейной скорости:

�v1 = [�ω1 × �r ] = ω cosα

∣∣∣∣∣∣
�i �j �k
1 0 0
x y z

∣∣∣∣∣∣ = ω cosα(−z�j + y �k) .

Соответственно, ротор этого вектора равен:

rot�v1 = ω cosα

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
0 −z y

∣∣∣∣∣∣∣∣ = 2ω cosα�i .

Геометрический смысл результата состоит в том, что вектор ротора rot�v1

направлен туда же, куда и вектор �ω1, только в 2 раза длиннее последне-
го. Очевидно, этот вывод не зависит от ориентации вектора �ω1, выбора
декартовой системы координат, и справедлив в общем случае. Поэтому,
не проводя дополнительных выкладок, сразу заключаем: Ротор линей-
ной скорости направлен вдоль вектора угловой скорости и отличается от
него на 2. То есть окончательный ответ: rot�v = �ω = 2ω��. Естественно,
ответ совпадает с полученным ранее, путем манипулирования вектором
набла.

Задачи для самостоятельной работы
Задача 9.9
Доказать, что

а) div(�a+�b) = div�a+ div�b,

б) div (U�c) = (�c · gradU) (�c – постоянный вектор, U – скалярное поле).
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Задача 9.10
Найти дивергенцию от градиента скалярного поля U .

Задача 9.11
Вычислить дивергенцию векторного поля

�r

r
.

Задача 9.12
Вычислить дивергенцию векторного поля [f(r)�c ], где �c – постоянный
вектор.

Задача 9.13
Найти дивергенцию векторного поля [f(r)�r ]. В каком случае диверген-
ция этого вектора равна нулю?

Задача 9.14
Найти дивергенцию от произведения скалярного поля U на градиент
скалярного поля V .

Задача 9.15
Доказать, что

a) rot( �A+ �B ) = rot �A+ rot �B ,

б) rot (U �A) = U rot �A+
[
gradU × �A

]
.

Задача 9.16
Найти ротор векторного поля �c f(r).

Задача 9.17
Вычислить

1) grad (div (grad r)),

2) grad (div�r
√
r),

3) grad

(
�c,
�r

r2

)
,

4) grad
[�c, �r ]2

r2
,

где �c – постоянный вектор, а �r – радиус-вектор точки M0(2, 1,−2). При
вычислениях положить �c = 4�i+ 2�j + 5�k.

Задача 9.18
Вычислить
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1) div

(
grad

1

r3

)
,

2) div

[
�c, grad

1

r

]
,

3) rot[�c, grad r],

4) rot(�c, �r ) [�c, �r ].

где �c – постоянный вектор.

Задача 9.19
Вычислить

1) grad
1

|�r − �r0| , 2) div
�r − �r0
|�r − �r0|2 ,

где �r0 – радиус-вектор фиксированной точки M0(x0, y0, z0).

Ответы

9.10. ∆U . 9.11.
2

r
. 9.12.

f ′(r)
r

(�c · �r ). 9.13. rf ′(r) + 3f(r); f(r) =
c

r2
,

где c – постоянная. 9.14. (gradU · gradV )+U ·∆V . 9.16.
f ′(r)
r

[�r×�c ].

9.17. 1) −2

9
(2�i + �j − 2�k); 2)

7

12
√

3
(2�i + �j − 2�k); 3)

1

9
(4�i + 2�j + 5�k);

4) −10

9
(2�i +�j − 2�k). 9.18. 1)

18

r5
; 2) 0; 3)

2�c

r
; 4) 2�c (�c, �r ). 9.19. 1)

�r − �r0
|�r − �r0|3 ; 2)

1

|�r − �r0|2 .

Занятие 10. Формула Гаусса-Остроградского

Необходимые сведения из теории

Мы уже привлекали формулу Гаусса-Остроградского на седьмом за-
нятии для вычисления объемов тел. Здесь же займемся систематическим
применением этой формулы к анализу различных поверхностных и объ-
емных интегралов. В отличие от восьмого занятия, где формула Гаусса-
Остроградского записывалась в декартовой системе координат:∫∫

S

(
�A · �n

)
dS =

∫∫∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx dy dz , (10.1)



128 Глава 1. Практикум по векторному анализу

ниже будем преимущественно использовать ее инвариантную, независя-
щую от выбора системы координат, форму:∫∫

S

(
�A · �n

)
dS =

∫∫∫
V

div �AdV . (10.2)

Здесь �n – единичный вектор внешней нормали к замкнутой поверхности
S, ограничивающей область V интегрирования в объемном интеграле.

При решении задач данного занятия полезно вспомнить, что в декар-
товой системе координат компонентами вектора �n служат направляющие
косинусы {cosα, cos β, cos γ} – косинусы углов наклона этого вектора
к осям координат (x, y, z). Напомним еще, что {P,Q,R} – компоненты,
вдоль указанных осей, интегрируемого векторного поля �A.

Замечание 10.1 Физики предпочитают записывать соотношение (10.2)
на языке вектора набла:∫∫

S

(
�A · �n

)
dS =

∫∫∫
V

(
�∇ · �A

)
dS .

Эту формулу легко запомнить, пользуясь мнемоническим правилом, со-
гласно которому при переходе от поверхностного интеграла к объемному
надо просто заменить в скалярном произведении вектор �n на вектор на-
бла.

Инвариантность соотношения (10.2) – его независимость от выбора
системы координат, обусловлена инвариантностью понятия дивергенции,
обсужденной на занятии 8. Подчеркнем, представление формулы Гаусса-
Остроградского в инвариантной форме демонстрирует ее фундаменталь-
ный характер и делает более естественным использование этой формулы
в разнообразных приложениях.

Кроме извлечения выгод из инвариантной формы записи формулы
Гаусса-Остроградского, еще одной особенностью данного занятия будет
проведение вычислений на языке вектора набла, делающее операции с
векторными полями проще и нагляднее.

В заключение отметим, что формула Гаусса-Остроградского лежит
в основе многих фундаментальных законов природы. Проиллюстрируем
сказанное парой примеров, иллюстрирующих использование формулы
Гаусса-Остроградского при выводе основных уравнений математической
физики.

Пример 1. Вывод уравнения непрерывности. Пусть в простран-
стве движется сплошная среда, плотность которой в произвольной точке
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с радиус-векто ром �r и в текущий момент времени t равна ρ(�r , t). Мыс-
ленно выделим произвольную неподвижную область V пространства,
ограниченную замкнутой поверхностью S. Масса среды, заключенной
в данной области в момент t, равна объемному интегралу

M(t) =

∫∫∫
V

ρ(�r , t) dV .

Пусть далее �G (�r t) – векторная плотность потока, такая что масса среды,
протекающей через элементарную площадку dS в направлении единич-
ного вектора нормали �n за время dt, равна dm = (�G·�n )dS dt. Если внутри
области V нет источников и стоков, то скорость убывания массы среды
в выбранном объеме V равна полному потоку среды из ограничивающей
его замкнутой поверхности S:

−dm
dt

= −
∫∫∫

V

∂ρ

∂t
dV =

∫∫
S

(�G · �n ) dS . (10.3)

Здесь, как и всюду прежде, �n – единичный вектор внешней нормали к
поверхности S. Заменив, с помощью формулы Остроградского-Гаусса,
входящий в (10.3) поверхностный интеграл на объемный, придем к тож-
деству: ∫∫∫

V

{
∂ρ

∂t
+ div �G

}
dV ≡ 0 .

Из произвольности области V следует, что тождество это будет справед-
ливо лишь если всюду равно нулю подынтегральное выражение:

∂ρ(�r , t)

∂t
+ div �G (�r , t) = 0 . (10.4)

Элементарные физические соображения подсказывают, что поток спло-
шной среды равен �G = ρ �u, где �u(�r, t) – поле скорости движения среды.
Таким образом, мы пришли к одному из фундаментальных уравнений
гидромеханики – уравнению непрерывности

∂ρ

∂t
+ div (ρ �u) = 0 . (10.5)

Пусть в начальный момент времени t = 0 плотность среды всюду
была одинаковой: ρ(�r, t = 0) = ρ0 = const. Если среда несжимаема, то ее
плотность и в дальнейшем останется неизменной: ρ(�r, t) = ρ0 = const, а
уравнение непрерывности вырождается в тождество

div �u(�r, t) ≡ 0 . (10.6)
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Векторные поля, удовлетворяющие данному тождеству называют вих-
ревыми поскольку их векторные линии не имеют начала и конца и об-
разуют замкнутые контуры. Физическими примерами вихревых полей
служат поля скорости практически несжимаемых атмосферы и океана.

Пример 2. Уравнение диффузии. Получим, с помощью форму-
лы Гаусса-Остроградского, еще одно важное уравнение математической
физики. Пусть ρ(�r, t) – концентрация частиц чернильной капли, поме-
щенной в стакан воды. Из физики известно, что за счет хаотических
столкновений молекул чернил с молекулами воды чернильная капля с
течением времени расплывается. Причем, согласно закону Фика, вектор-
ная плотность потока чернил равна

�G = −D grad ρ(�r, t) . (10.7)

Здесь D – так называемый коэффициент диффузии. Подставив правую
часть закона Фика в уравнение (1.83), придем к знаменитому уравнению
диффузии:

∂ρ

∂t
= D∆ρ . (10.8)

Замечание 10.2 Можно показать, что точно такому же уравнению
подчиняется поле температур неравномерно нагретого однородного те-
ла. Только коэффициент D в этом случае заменяется на коэффициент
температуропроводности.

Задачи

Задача 10.1
Применяя формулу Гаусса-Остроградского, преобразовать следующий
поверхностный интеграл

I =

∫∫
S

x cosα+ y cos β + zcosγ√
x2 + y2 + z2

dS

в объемный. Здесь поверхность S ограничивает конечный объем V , а

{cosα , cos β , cos γ}

– направляющие косинусы внешней нормали к гладкой поверхности S.
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Р е ш е н и е. Из вида поверхностного интеграла легко установить,
чему равны компоненты векторного поля �A:

P =
x√

x2 + y2 + z2
, Q =

y√
x2 + y2 + z2

, R =
z√

x2 + y2 + z2
.

Его геометрический смысл очевиден: это единичный вектор, направлен-
ный из начала координат в точку наблюдения с координатами (x, y, z):

�A =
�r

r
, r =

√
x2 + y2 + z2 .

Дивергенцию данного векторного поля вычислим, оперируя вектором
набла:

div �A =

(
�∇ · �r

r

)
=

(
�r · �∇1

r

)
+

1

r

(
�∇ · �r

)
и вспомнив из предыдущих занятий, что

�∇f(r) = f ′(r)
�r

r
=⇒ �∇1

r
= − �r

r3
.

Следовательно, искомая дивергенция поля �A примет вид:

div �A = − 1

r3
(�r · �r ) +

3

r
=

2

r
.

Подставив полученное выражение в правую часть формулы Гаусса-Ост-
роградского (10.2), получим окончательно:

I = 2

∫∫∫
V

dV√
x2 + y2 + z2

= 2

∫∫∫
V

dV

r
.

Задача 10.2
Преобразовать к объемному поверхностный интеграл:∫∫

S

[(
∂R

∂y
− ∂Q

∂z

)
cosα+

(
∂P

∂z
− ∂R

∂x

)
cos β +

(
∂Q

∂x
− ∂P

∂y

)
cos γ

]
dS .

(∗)
Р е ш е н и е. Внимательно взглянув на подынтегральное выражение,

нетрудно догадаться, что интегрируемое векторное поле, обозначим его

�B = rot �A = [�∇× �A ]
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– равно ротору векторного поля �A = �i P + �j Q + �k R. Следовательно,
исследуемый интеграл равен∫∫

S

(rot �A · �n )dS .

А как мы знаем из предыдущего занятия, дивергенция ротора произ-
вольного векторного поля тождественно равна нулю: (�∇ · [�∇× �A ]) ≡ 0.
Соответственно, равен нулю объемный∫∫∫

V

div rot �AdV ,

а вслед за ним и исследуемый интеграл.

Задача 10.3
С помощью формулы Гаусса-Остроградского вычислить интеграл:

I =

∫∫
S

(x− y + z) dydz + (y − z + x) dzdx+ (z − x+ y) dxdy ,

где S – внешняя сторона поверхности

|x− y + z| + |y − z + x| + |z − x+ y| = 1 .

Р е ш е н и е. Интегрируемое векторное поле равно:

�A = (x− y + z)�i+ (y − z + x)�j + (z − x+ y)�k .

Его дивергенцию легко сосчитать, пользуясь выражением для диверген-
ции в декартовой системе координат:

div �A =
∂

∂x
(x− y + z) +

∂

∂y
(y − z + x) +

∂

∂z
(z − x+ y) = 3 .

Таким образом, поверхностный интеграл сводится к объемному интегра-
лу:

I = 3

∫∫∫
V

dxdydz .

Осталось вычислить объем фигуры, ограниченной указанной в усло-
вии поверхностью. Проблема однако состоит в том, что мы плохо пред-
ставляем себе геометрическую форму фигуры, объем которой предстоит



Занятие 10. Формула Гаусса-Остроградского 133

-1

-0.5

0

0.5

1

u

-1

-0.5

0

0.5

1
v

-1

-0.5

0

0.5

1

w

-1

-0.5

0

0.5u

-1

-0.5

0

0.5
v

Рис. 10.1: Иллюстрация к задаче 10.3: График октаэдра в новой системе коор-
динат (u, v, w). На октаэдре нанесены линии пересечения его координатными
плоскостями.

найти. Поэтому естественно перейти в новую систему координат, в кото-
рой данная поверхность описывается геометрически более наглядными
выражениями.

Первое, что приходит в голову – взять за новые координаты стоящие
под знаком модулей комбинации x, y, z:

u = x− y + z ,
v = y − z + x ,
w = z − x+ y .

При этом уравнение поверхности примет “более прозрачный” вид:

|u| + |v| + |w| = 1 .

Вычислим прежде всего якобиан

J =
D(x, y, z)

D(u, v, v)

перехода от старых координат x, y, z к новым u, v, w. Он необходим
чтобы свести объемный интеграл в пространстве (x, y, z) к объемному
интегралу в пространстве u, v, w. Поскольку мы не располагаем явными
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формулами, выражающими старые координаты через новые, воспользу-
емся известным равенством:

1

J
=

D(u, v, w)

D(x, y, z)
.

Отсюда имеем:

1

J
=

∣∣∣∣∣∣
1 −1 1
1 1 −1

−1 1 1

∣∣∣∣∣∣ = 4 ⇐⇒ J =
1

4
.

Заметим еще, что в деформированном пространстве, где (u, v, w) игра-
ют роль декартовых координат, интересующая нас область V ′ приобрела
простую геометрическую форму – это симметричный октаэдр, ограни-
ченный в каждом октанте плоскостью, отсекающей от осей единичные
отрезки. Так в первом октанте u > 0, v > 0, w > 0 это плоскость, задан-
ная уравнением u+v+w = 1. Соответственно, кусок октаэдра в 1-м (как
и во всех остальных) октанте представляет из себя пирамиду с площа-
дью основания, равной 1/2 и высотой 1. Объем такой пирамиды равен
1/6, а объем всего октаэдра равен 8/6 = 4/3. Следовательно:

I =
3

4

∫∫∫
V ′

du dv dw =
3

4
· 4

3
= 1 .

Те кто забыл объем пирамиды или предпочитают более формальный
подход к решению задачи, могут непосредственно вычислить интеграл
по области, находящейся в 1-м октанте:

I =
3

4
8

∫∫∫
u+ v + w ≤ 1

u ≥ 0, v ≥ 0, w ≥ 0

du dv dw = 6

∫ 1

0

du

∫ 1−u

0

dv

∫ 1−u−v

0

dw = 1 .

Задача 10.4
Вычислить интеграл

I =

∫∫
S

(x2 cosα+ y2 cos β + z2 cos γ) dS ,

где S – часть конической поверхности x2 + y2 = z2 (0 ≤ z ≤ h), а cosα,
cos β, cos γ – направляющие косинусы ее внешней нормали.
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Р е ш е н и е. Чтобы иметь возможность применить формулу Гаусса-
Остроградского, замкнем коническую поверхность “крышкой” – кругом в
плоскости z = h: x2+y2 < h2. Найдем вначале вклад от круглой крышки.
Он равен:

L =

∫∫
σ

h2dxdy ,

где σ – указанный круг радиуса h и площадью π h2. Здесь учтено также,
что

cosα = cos β = 0 cos γ = 1 а на поверхности крышки z = h .

Следовательно, L = π h4.
Из теоремы Гаусса-Остроградского следует, что сумма вкладов кони-

ческой поверхности и крышки равна объемному интегралу:

I + L = I + π h4 = 2

∫∫∫
V

(x+ y + z) dV .

По-видимому, исходя из симметрии области интегрирования, получен-
ный объемный интеграл удобнее всего вычислить, перейдя в цилиндри-
ческую систему координат:

x = ρ cosϕ , y = ρ sinϕ , z = z , ⇒ dV = ρ dρdϕ dz .

В итоге получим:

I + π h4 = 2

∫ 2π

0

dϕ

∫ h

0

dz

∫ z

0

ρ dρ[ρ(cosϕ+ sinϕ) + z] .

Учитывая, что интегралы от тригонометрических функций по периоду
2π равны нулю, имеем:

I + π h4 = 2

∫ 2π

0

dϕ

∫ h

0

z dz

∫ z

0

ρ dρ =

∫ 2π

0

dϕ

∫ h

0

z3 dz = 2π
h4

4
= π

h4

2
.

Отсюда

I = −πh
4

2
.

Задача 10.5
Доказать формулу:∫∫∫

V

dxdydz

r
=

1

2

∫∫
S

cos(
∧
�r, �n) dS ,
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где S – замкнутая поверхность, ограничивающая объем V , �n – внешняя
нормаль к поверхности S в текущей ее точке (x, y, z),

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 ,

и �r – радиус-вектор, идущий от точки наблюдения (x0, y0, z0) к точке
поверхности (x, y, z).

Р е ш е н и е. Перепишем поверхностный интеграл в более привыч-

ной для нас векторной форме. Для этого заметим, что cos(
∧
�r, �n) равен

скалярному произведению единичной нормали �n и единичного вектора
�r/r, направленного вдоль радиус-вектора �r:

cos(
∧
�r, �n) =

(
�r

r
· �n
)
.

Следовательно, поверхностный интеграл в формуле Гаусса может быть
записан в виде: ∫∫

S

(
�r

r
· �n
)
dS ,

где �n – единичный вектор внешней нормали. Формула Гаусса-Остроград-
ского преобразует этот интеграл в объемный от дивергенции

div
�r

r
=

2

r
.

Замечание. Мы сразу выписали результат, поскольку уже вычисля-
ли дивергенцию единичного вектора в направлении радиус-вектора на
этом занятии, в задаче 1. Тот факт, что прежде радиус-вектор был вы-
пущен из начала координат, а сейчас из некоторой точки с координатами
(x0, y0, z0), не меняет сути дела, поскольку дивергенция векторного поля
не зависит от системы координат, а лишь от поведения в окрестности
рассматриваемой точки, в нашем случае точки с координатами (x, y, z).

Таким образом, мы доказали требуемую формулу.

Задача 10.6
Вычислить интеграл Гаусса

I(x, y, z) =

∫∫
S

cos(
∧
�r , �n )

r2
dS ,
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где S – простая замкнутая гладкая поверхность, ограничивающая объем
V , �n – внешняя нормаль к поверхности S в ее точке (x, y, z), �r – радиус-
вектор, соединяющий точку (x, y, z) с точкой (x0, y0, z0), а

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 .

Рассмотреть два случая:
а) когда поверхность не окружает точку (x0, y0, z0),
б) когда поверхность окружает точку (x0, y0, z0).

Р е ш е н и е. Мы еще не понимаем, чем отличаются случаи, об-
говоренные в условии задачи. Поэтому не будем различать их, пока не
столкнемся с непредвиденными затруднениями. Запишем интеграл Гаус-
са в векторной форме:

I =

∫∫
S

(
�A · �n

)
dS ,

где векторное поле �A равно:

�A =
�r

r3
.

Преобразуем поверхностный интеграл с помощью формулы Гаусса-Ост-
роградского, для чего вычислим дивергенцию фигурирующего в поверх-
ностном интеграле векторного поля:(

�∇ · �r
r3

)
=

(
�r · �∇ 1

r3

)
+

1

r3
(�∇ · �r) = − 3

r5
(�r · �r) +

3

r3
= − 3

r3
+

3

r3
= 0 .

Поскольку дивергенция векторного поля �A всюду равна нулю, равен ну-
лю объемный интеграл от дивергенции, а значит, по формуле Гаусса-
Остроградского, равен нулю и поверхностный гауссов интеграл.

Аккуратно проверим цепочку рассуждений, приводящих к послед-
нему выводу. Внимательно проанализировав ее мы поймем, что она без-
упречна, лишь если точка (x0, y0, z0) лежит вне области V , ограниченной
интегрируемой замкнутой поверхностью. В этом случае векторное поле
�A внутри области V и на ее границе непрерывно дифференцируемо, а
его дивергенция равна нулю.

Напомним еще, что замкнутая поверхность S – простая, то есть мо-
жет быть получена непрерывными деформациями сферы. При этом все
пространство разделяется на внутренность V поверхности S и внешнее
пространство. Следовательно, мы строго доказали лишь, что интеграл



138 Глава 1. Практикум по векторному анализу

Σ

nVE

S

Рис. 10.2: Иллюстрация к задаче 10.6: Здесь изображен двумерный аналог
поверхности S и вырезанной из ее внутренности сферы Σ с центром в точке
наблюдения. Указаны две внешние нормали к общей поверхности S + Σ. От-
тенена внутренняя область Vε, где дивергенция поля �A тождественно равна
нулю

Гаусса равен нулю для всех точек пространства, лежащих вне поверх-
ности S, поскольку только в этом случае дивергенция интегрируемого
поля заведомо существует и непрерывна в объеме V .

Пусть теперь точка (x0, y0, z0) является внутренней точкой области
V . В этой точке векторное поле недифференцируемо, и не имеет смысла
говорить о каком-либо значении дивергенции в данной точке. Соответ-
ственно, теперь уже нельзя утверждать, что объемный интеграл от div �A
равен нулю.

Чтобы обойти возникшую проблему, окружим данную точку сферой
Σ с центром в этой точке и радиусом ε – настолько малым, чтобы сфера Σ
целиком находилась внутри поверхности S. Применим формулу Гаусса-
Остроградского к области Vε, находящейся между поверхностями S и Σ.
Поскольку особая точка (x0, y0, z0) вырезана из области интегрирования
Vε, то объемный интеграл вновь равен нулю, и мы приходим к равенству
I + Iε = 0, где за Iε обозначен интеграл по указанной сфере:

Iε =

∫∫
±

(�r · �n )

r3
dS .

Его легко вычислить. Действительно, входящее сюда скалярное произве-
дение всюду одинаково и равно (�r , �n ) = −ε (знак минус появился здесь
потому, что вектор нормали, внешний к области Vε, направлен внутрь
сферы). Кроме того и r во всех точках сферы принимает одинаковое
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значение r = ε. Таким образом,

Iε = − 1

ε2
· 4πε2 = −4π .

Следовательно, если точка (x0, y0, z0) находится внутри поверхности S,
то гауссов интеграл равен I = −Iε = 4π.

n

n
+

−

S

Рис. 10.3: Иллюстрация замечания к задаче 10.6: Двумерный аналог расчета
заданного поверхностного интеграла с помощью телесных углов в случае, ко-
гда точка наблюдения находится вне поверхности. Расположенные внутри те-
лесного угла участки поверхности вносят в интеграл одинаковый вклад. При-
чем вклад от ближнего участка поверхности берется со знаком минус, а даль-
него – со знаком плюс.

Замечание 1.При хорошем пространственном воображении мы мог-
ли бы прийти к полученным результатам с помощью более наглядных
геометрических аргументов. Для этого достаточно сообразить, что

cos(
∧

�r , �n )

r2
dS = ±dΩ ,

где dΩ – телесный угол, под которым из точки (x0, y0, z0) виден беско-
нечно малый элемент поверхности dS. Причем телесный угол берется

со знаком плюс, если векторы �r и �n образуют острый угол, а cos(
∧

�r , �n )
больше нуля, и со знаком минус в противном случае. В итоге, если точка
(x0, y0, z0) находится вне поверхности, то вклады в интеграл Гаусса от
“противостоящих” элементов поверхности, вырезанных одной и той же
векторной трубкой векторного поля �r, взаимно уничтожаются, и гауссов
интеграл равен нулю. Напротив, если точка (x0, y0, z0) находится внутри
поверхности S, то сумма всех бесконечно малых телесных углов, состав-
ляющих гауссов интеграл, равна полному телесному углу

Ω = 4π.
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Замечание 2. Следуя описанной геометрической интерпретации га-
уссова интеграла, мы легко можем ответить на более сложный, чем в
условии задачи, вопрос: Что будет, если точка наблюдения лежит на
поверхности S ?

Ответ на данный вопрос звучит так: Если это точка гладкого участ-
ка поверхности, к которой можно провести единственную касательную
плоскость, то мы “видим” заключенную внутри поверхности область под
телесным углом 2π. Ему, соответственно, равен и гауссов интеграл. Ес-
ли же область V имеет форму куба, то интеграл Гаусса в вершине куба
равен 4π/8 = π/2.

Замечание 3. Наличие аналогичной проблемы несуществования ди-
вергенции векторного поля внутри области интегрирования V , когда на-
чало координат попадает в эту область, мы “прозевали” при решении
первой задачи данного занятия. Более строгие рассуждения, подобные
приведенным в последней задаче, показывают однако, что интеграл по
маленькой сфере, окружающей начало координат, стремится к нулю при
стремлении радиуса сферы к нулю. А значит формула (∗) первой задачи
справедлива всегда.

Задачи для самостоятельной работы
Задача 10.7
Применяя формулу Гаусса-Остроградского, преобразовать поверхност-
ный интеграл

I =

∫∫
S

x3dydz + y3dzdx+ z3dxdy ,

где гладкая поверхность S ограничивает область V конечного объема.

Задача 10.8
Преобразовать поверхностный интеграл

I =

∫∫
S

yz dydz + zx dzdx+ xy dxdy .

Задача 10.9
Доказать, что поверхностный интеграл∫∫

S

∂U

∂n
dS = 0,
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где S – замкнутая поверхность, ограничивающая область V , �n – внешняя
нормаль к S, а U(x, y, z) – гармоническая функция.

Задача 10.10
Доказать, что интеграл

∫∫
S

∂U

∂n
dS пропорционален объему области V ,

ограниченной поверхностью S, если U(x, y, z) – многочлен второй степе-
ни.

Задача 10.11
Доказать, что если S – замкнутая простая поверхность, и �� – любое по-
стоянное направление, то

I =

∫∫
S

cos(
∧
�n , �� ) dS = 0 .

Задача 10.12
Вычислить ∫∫

S

(1 + x)2 dydz + xy dzdx− 3xz dxdy,

где S – внешняя сторона параллелепипеда 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤
c.

Задача 10.13
Вычислить ∫∫

S

x2 dydz + x2 dzdx+ z2 dxdy,

где замкнутая поверхность S – внешняя сторона цилиндра x2 + y2 ≤ a2,
0 ≤ z ≤ h.

Задача 10.14
Вычислить∫∫

S

x3y2 sin z dydz + x2y3 sin z dzdx+ 6x2y2 cos z dxdy,

где S – внешняя сторона части параболоида z = 4 − (x2 + y2) (z ≥ 0).

Ответы

10.7. 3

∫∫∫
V

r2 dV . 10.8. 0. 10.12. 2abc. 10.13. πa2h2. 10.14 16π.
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Занятие 11. Формула Стокса

Необходимые сведения из теории

На этом занятии мы будем практиковаться в использовании форму-
лы Стокса, сводящей интеграл по некоторому замкнутому контуру L
к поверхностному интегралу по произвольной гладкой поверхности S,
натянутой на этот контур. В инвариантной, не зависящей от выбора си-
стемы координат, форме формула Стокса имеет вид:∮

L

( �A · �τ ) d� =

∫∫
S

(�n · rot �A ) dS . (11.1)

Здесь �τ – единичный вектор, касательный к контуру в текущей точке,
а �n – орт нормали к той стороне поверхности S, по которой ведется ин-
тегрирование. Формула Стокса справедлива лишь если обход контура (в
направлении касательного вектора �τ) и сторона поверхности (из кото-
рой выпущен вектор нормали �n) согласованы между собой. В противном
случае надо поставить минус перед поверхностным интегралом.

Определение 11.1 Сторону поверхности и ограничивающий ее кон-
тур L называют согласованными, если левая рука “контуроходца”, иду-
щего по выбранной стороне поверхности вдоль контура L в выбранном
направлении, указывает внутрь поверхности. При этом нормаль “про-
низывает” ходока в направлении от ног к голове.

Замечание 11.1 Если контур плоский, а мы смотрим на выбранную
сторону поверхности, то указанный обход отвечает движению против ча-
совой стрелки.

Имеются разные формы записи формулы Стокса. Иногда ее представля-
ют в виде: ∮

L

( �A · d�r ) =

∫∫
S

([�∇× �A ] · d�S) . (11.2)

Здесь d�r = �τd� –дифференциал радиус-вектора, скользящего вдоль кон-
тура L в выделенном направлении. Справа же применена геометрически
более наглядная запись ротора на языке оператора набла и использован
ориентированный элемент поверхности d�S = �ndS.

Если в пространстве задана декартова система координат (x, y, z),
то в практических вычислениях часто оказывается удобной следующая
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n

τ
τ

Рис. 11.1: Изображение двусторонней поверхности, вектора нормали �n к вы-
бранной стороне и двух векторов �τ , касательных к ограничивающему поверх-
ность контуру в разных его точках. Направления нормали к поверхности и
обхода контура согласованы так, что для наблюдателя, смотрящего на выбран-
ную сторону поверхности, обход осуществляется против хода часовой стрелки.

запись формулы Стокса

∮
L

P dx+Qdy +Rdz =

∫∫
S

∣∣∣∣∣∣∣∣
cosα cos β cos γ
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣ dS . (11.3)

Сюда явно входят компоненты {P, Q, R} интегрируемого векторного по-
ля

�A = P (x, y, z)�i+Q(x, y, z)�j +R(x, y, z)�k (11.4)

и направляющие косинусы нормали к поверхности

�n = cosα�i+ cos β�j + cos γ �k (11.5)

в выбранной декартовой системе координат, а также явно расписано ска-
лярное произведение нормали к поверхности �n и ротора векторного поля
�A. Кроме того, в левой части формулы (11.3) принято во внимание, что

( �A · d�r ) = P dx+Qdy +Rdz ,

где (dx, dy, dz) – компоненты дифференциала d�r.
Подчеркнем, что формула Стокса лежит в основе многих фундамен-

тальных физических законов, прежде всего законов электродинамики. С
другой стороны, гибкость этой формулы, оставляющей за исследовате-
лем право широкого выбора поверхностей S, по которым ведется инте-
грирование в поверхностном интеграле, делает ее эффективным инстру-
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ментом анализа, позволяющим подчас существенно упрощать вычисле-
ние контурных интегралов. Именно эту особенность формулы Стокса
призваны демонстрировать задачи данного занятия.

Задачи
Задача 11.1
Применяя формулу Стокса, вычислить криволинейный интеграл

I =

∮
L

y dx+ z dy + x dz ,

где L – окружность x2 + y2 + z2 = a2, x+ y + z = 0, пробегаемая против
хода часовой стрелки, если смотреть с положительной стороны оси Ox.
Проверить результат непосредственным вычислением.

Р е ш е н и е. Интегрирование ведется по окружности, образованной
сечением сферы x2 + y2 + z2 = a2 плоскостью x + y + z = 0. Пользуясь
формулой Стокса, сведем данный криволинейный интеграл к поверх-
ностному. Для этого необходимо выбрать поверхность, по которой будем
интегрировать, и определить вектор нормали к нужной стороне поверх-
ности. Поскольку заданный контур плоский, то в качестве поверхности,
натянутой на контур, естественно взять плоский круг, вектор единич-
ной нормали к которому во всех точках круга одинаков. При выбранном
направлении обхода контура, вектор нормали “смотрит почти на нас” –
образует с осью x (как и с остальными осями) острый угол. Другими
словами, все его направляющие косинусы положительны.

Компоненты вектора нормали найдем, вспомнив из аналитической
геометрии, что если задано уравнение плоскости

ax+ by + cz + d = 0 ,

то вектор �m с компонентами {a, b, c} перпендикулярен данной плоско-
сти. Нормировав его, получим единичный вектор нормали к плоскости.
В нашем случае вектор �m имеет компоненты {1, 1, 1}. Следовательно
единичный вектор нормали задан равенством

�n =
1√
3
�i+

1√
3
�j +

1√
3
�k .

Вычислим теперь ротор интегрируемого векторного поля

�A = y�i+ z�j + x�k .
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Он равен

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
y z x

∣∣∣∣∣∣∣∣ = −�i−�j − �k .

Обратим внимание, что данный вектор направлен в сторону, в точно-
сти противоположную направлению вектора нормали. Иными словами,
его скалярное произведение с вектором нормали к выбранной поверх-
ности равно, взятому с отрицательным знаком, модулю этого вектора:
(�n · rot �A) = −√

3 . Таким образом, согласно формуле Стокса,

I = −
√

3

∫∫
S

dS = −
√

3π a2 .

Вычислим теперь криволинейный интеграл напрямую, не прибегая
к формуле Стокса. Для этого сконструируем из подручного материала
вектор, касательный к контуру. Заметим, что ему перпендикулярны ра-
нее найденный вектор �n и, вследствие симметрии контура относительно
начала координат, радиус-вектор �r = �i x + �j y + �k z точек контура 2.
Векторы �n, �r и �τ , очевидно, образуют правую тройку, а значит норми-
рованное векторное произведение первых двух векторов равно искомому
касательному вектору:

�τ =
1

a
[�n× �r ] .

При выводе этой формулы мы учли также, что векторы �n и �r взаимно
перпендикулярны, поскольку �r лежит в плоскости x + y + x = 0, а �n
перпендикулярен ей. Поэтому модуль их векторного произведения равен:

|[�n× �r ]| = |�n | |�r | = a

– длине вектора �r.
Найдем явное выражение вектора �τ :

�τ =
1

a
√

3

∣∣∣∣∣∣
�i �j �k
1 1 1
x y z

∣∣∣∣∣∣ =
1

a
√

3
[�i (z − y) +�j (x− z) + �k (y − x)] .

2Тем, кто не удовлетворен ссылкой на симметрию контура, дадим более разверну-
тое доказательство перпендикулярности векторов �r и �τ . Запишем параметрическое
уравнение контура �r = �r(l), где l – естественный параметр, равный длине контура
между некоторой начальной точкой и текущей точкой контура. Из способа построе-
ния контура, чьи точки лежат на сфере с центром в начале координат, следует, что
квадрат длины радиуса-вектора постоянен: (�r · �r ) ≡ a2. Дифференцируя это тожде-
ство по l, придем к искомому условию перпендикулярности (�r · �τ ) ≡ 0.
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Умножим его скалярно на вектор �A. В итоге получим:

( �A · �τ ) =
1

a
√

3
[y(z − y) + z(x− z) + x(y − x)] =

1

a
√

3
[−a2 + yz + zx+ xy] .

В последнем равенстве учтено, что (x, y, z) – координаты точек контура,
для которых x2 + y2 + z2 = a2 , поскольку контур представляет собой
окружность радиуса a с центром в начале координат. Преобразуем к
удобному виду оставшиеся произведения. Для этого вспомним еще раз,
что контур лежит в плоскости x+ y + z = 0 , а значит

(x+ y + z)2 = a2 + 2(yz + zx+ xy) = 0 ⇐⇒ yz + zx+ xy = −a
2

2
.

Таким образом,

( �A · �τ ) = − 1

a
√

3

3

2
a2 = −a

√
3

2
,

а искомый криволинейный интеграл принимает вид:

I = −a
√

3

2

∮
L

d� .

Оставшийся интеграл равен длине окружности 2πa, следовательно:

I = −a
√

3

2
· 2πa = −a2

√
3π .

Замечание. Обратим внимание, что непосредственное вычисление
контурного интеграла повлекло за собой выкладки, гораздо более гро-
моздкие, чем основанные на применении формулы Стокса. Поэтому здесь,
как и во многих других ситуациях, использование формулы Стокса ока-
зывается вполне целесообразным.

Задача 11.2
Вычислить интеграл

I =

∫
A�B

(x2 − yz) dx+ (y2 − xz) dy + (z2 − xy) dz ,

взятый по отрезку винтовой линии

x = a cosϕ , y = a sinϕ , z =
h

2π
ϕ ,

от точки A(a, 0, 0) до точки B(a, 0, h).
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Указание: Дополнить кривую A� B прямолинейным отрезком и при-
менить формулу Стокса.

Р е ш е н и е. Замкнем винтовую линию вертикальным отрезком, кон-
цами которого служат указанные точки B и A. Натянем на образованный
контур поверхность. Из конфигурации контура видно, что поверхность
будет иметь довольно замысловатую форму. Скоро выяснится, что фор-
ма поверхности не важна, но все-же, чтобы составить о ней некоторое
представление, вообразим, что это поверхность нанесенной на контур
мыльной пленки. Более сведущие в математике могут доказать, что это
поверхность геликоида.

Согласно формуле Стокса, сумма вклада искомого интеграла I и
вклада от упомянутого отрезка (обозначим его I0), равна поверхност-
ному интегралу

I + I0 =

∫∫
S

(�n · rot �A ) dS .

Вычислим входящий сюда ротор векторного поля

�A = (x2 − yz)�i+ (y2 − xz)�j + (z2 − xy)�k .

Он равен:

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
x2 − yz y2 − xz z2 − xy

∣∣∣∣∣∣∣∣ =

= (−x+ x)�i+ (−y + y)�j + (z − z)�k ≡ 0 .

Поэтому искомый интеграл равен I = −I0. Осталось вычислить интеграл
по отрезку. Взяв за переменную интегрирования z и учитывая, что вдоль
отрезка x = a, y = 0, а dx = dy = 0, найдем:

I = −I0 = −
∫ 0

h

z2 dz =

∫ h

0

z2 dz =
h3

3
.

Замечание. Мы не получим полного удовлетворения от решения
задачи, пока не выясним "скрытые пружины", обеспечивающие тожде-
ственное равенство нулю ротора интегрируемого векторного поля. Еще
раз бросив взгляд на его аналитическое выражение, обнаружим, что оно
равно градиенту скалярного поля

U =
1

3
(x3 + y3 + z3) − xyz .
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Другими словами, это потенциальное поле, равное градиенту от некото-
рого скалярного потенциала U . А мы уже знаем, что ротор градиента
любого скалярного поля тождественно равен нулю.

Задача 11.3
Применяя формулу Стокса, вычислить интеграл

I =

∮
L

(y − z) dx+ (z − x) dy + (x− y) dz ,

где L –эллипс

x2 + y2 = a2 , xa+
z

h
= 1 (a > 0 , h > 0) ,

пробегаемый против хода часовой стрелки, если смотреть с положитель-
ной стороны оси Ox.

Поскольку мы намерены использовать формулу Стокса, сразу найдем
ротор интегрируемого векторного поля

�A = (y − z)�i+ (z − x)�j + (x− y)�k .

Он равен

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
y − z z − x x− y

∣∣∣∣∣∣∣∣ = −2�i− 2�j − 2�k .

Вычислим вытекающий из формулы Стокса поверхностный интеграл
2-го типа. Выберем в качестве поверхности лежащий внутри цилиндра
x2 +y2 = a2 кусок плоскости

x

a
+
z

h
= 1. В пользу нашего выбора служит

следующий аргумент: Поскольку единичный вектор нормали к плоско-
сти во всех ее точках одинаков, скалярное произведение ( �A·�n ) единичной
нормали и всюду постоянного ротора интегрируемого векторного поля
может быть вынесено из под знака поверхностного интеграла:

I =

∫∫
S

(
�A · �n

)
dS =

(
�A · �n

)∫∫
S

dS .

Следовательно, решение задачи сводится к нахождению величины ска-
лярного произведения ( �A · �n ) и площади эллипса, по которому ведется
интегрирование.
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Сосчитаем вначале скалярное произведение. Из уравнения плоскости
hx+ az − ah = 0 следует, что единичная нормаль к ней равна

�n =
h�i+ a�k√
h2 + a2

.

Скалярно умножая �n на ранее выписанный rot �A, будем иметь:

( �A · �n ) = − 2(h+ a)√
h2 + a2

.

Осталось определить площадь эллипса. Найдем ее, спроектировав инте-
грируемую поверхность на круг радиуса a в плоскости (x, y):∫∫

S

dS =

∫∫
σ

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy .

Здесь фигурирует явное уравнение плоскости

z = h
(
1 − x

a

)
⇒

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=
1

a

√
h2 + a2 .

Отсюда ∫∫
S

dS =
1

a

√
h2 + a2 π a2

и окончательно

I =

∫∫
S

(
�A · �n

)
dS = − 2(h+ a)√

h2 + a2

1

a

√
h2 + a2 π a2 = −2πa(h+ a) .

Задача 11.4
Применяя формулу Стокса, вычислить интеграл

I =

∮
L

(y2 + z2) dx+ (x2 + z2) dy + (x2 + y2) dz ,

где L – кривая

x2 + y2 + z2 = 2Rx , x2 + y2 = 2rx (0 < r < R , z > 0) ,

пробегаемая так, что ограниченная ею, на внешней стороне сферы x2 +
y2 + z2 = 2Rx , наименьшая область остается слева.
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Рис. 11.2: Иллюстрация к задаче 11.4. Сфера, прорезаемая вертикальным
цилиндром меньшего радиуса. Ось z совпадает с ближней к нам образующей
цилиндра. Цилиндр и сфера пересекаются по двум контурам, по верхнему из
которых производится интегрирование.

Р е ш е н и е. Выясним вначале геометрию задачи. Интегрируемый
контур образуется пересечением двух поверхностей. Это сфера радиуса
R, с центром в точке x = R на оси x, касающаяся начала координат, а
также цилиндр меньшего радиуса r < R, одной из образующих которого
служит ось z. Сфера пересекается цилиндром по двум контурам, сопри-
касающимся в начале координат. Неравенство z > 0 оставляет контур,
расположенный в верхней полуплоскости. Из условия задачи ясно, что
контур обходится против часовой стрелки, если смотреть на него сверху
– с положительной стороны оси z.

Проведем подготовительную работу, нацеленную на использование
формулы Стокса. А именно, вычислим ротор входящего в интеграл век-
торного поля

�A = (y2 + z2)�i+ (x2 + z2)�j + (x2 + y2)�k .

Он равен

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
y2 + z2 x2 + z2 x2 + y2

∣∣∣∣∣∣∣∣ = 2 (y − z)�i+ 2 (z − x)�j + 2 (x− y)�k.

Выпишем векторное уравнение требуемой, расположенной выше конту-
ра, области сферы:

�r = x�i+ y�j + z �k , z =
√

2Rx− x2 − y2 .
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Заменим криволинейный интеграл на поверхностный по указанной по-
верхности. Затем спроектируем поверхность на круг σ в плоскости (x, y),
и выразим поверхностный интеграл через двойной. Заметив при этом,
что векторы �rx, �ry и внешняя нормаль �n к выделенному участку сферы
образуют правую тройку, получим:

I =

∫∫
σ

(rot �A, �rx, �ry) dxdy .

Вычислим входящее в двойной интеграл смешанное произведение:

(rot �A, �rx, �ry) = 2

∣∣∣∣∣∣∣∣∣
y − z z − x x− y

1 0
R− x

z

0 1 −y
z

∣∣∣∣∣∣∣∣∣ =

= 2

(
x− y +

y

z
(z − x) +

1

z
(z − y)(R− x)

)
=

= 2R
(
1 − y

z

)
= 2R

(
1 − y√

2Rx− x2 − y2

)
.

Подставив его в интеграл, видим, что последний распадается на два ин-
теграла

I = 2R

∫∫
σ

dxdy − 2R

∫ 2r

0

dx

∫ √
2rx−x2

−√
2rx−x2

y dy√
2Rx− x2 − y2

.

Причем первый интеграл равен площади круга σ : (x − r)2 + y2 < r2,
а второй, как следует из соображений симметрии, равен нулю. Таким
образом, окончательно: I = 2π R r2.

Задача 11.5
Применяя формулу Стокса, вычислить интеграл

I =

∮
L

(y2 − z2) dx+ (z2 − x2) dy + (x2 − y2) dz ,

где L – сечение поверхности куба

0 ≤ x ≤ a , 0 ≤ y ≤ a , 0 ≤ z ≤ a ,
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Рис. 11.3: Иллюстрация к задаче 11.5. Куб стороной a и секущая его плос-
кость x+ y + z = 3

2a. Оттенена часть плоскости, расположенная в 1-м октанте.
Жирной линией выделен контур, по которому ведется интегрирование.

плоскостью
x+ y + z =

3

2
a ,

пробегаемое против хода часовой стрелки, если смотреть с положитель-
ной стороны оси Ox.

Р е ш е н и е. Согласно формуле Стокса, наш интеграл равен

I =

∫∫
S

(�n · rot �A ) dS ,

где интегрирование ведется по лежащему внутри куба куску указанной
в условии задачи плоскости. Вектор нормали к любой ее точке найдем,
вспомнив, что мы уже определяли, при решении первой задачи этого
занятия, вектор нормали к плоскости x+y+z = 0, параллельной данной.
Поэтому сразу выпишем:

�n =
1√
3
(�i+�j + �k ) .

Вычислим далее ротор входящего в интеграл векторного поля

�A = (y2 − z2)�i+ (z2 − x2)�j + (x2 − y2)�k .
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Он равен

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
y2 − z2 z2 − x2 x2 − y2

∣∣∣∣∣∣∣∣ = −2 [(y+ z)�i+ (z+ x)�j+ (x+ y)�k ] ,

а его скалярное произведение с ранее выписанным вектором нормали
таково:

(�n · rot �A ) = − 2√
3

(y + z + z + x+ x+ y) = − 4√
3

(x+ y + z) .

Заметим еще, что согласно уравнению плоскости, по куску которой ве-
дется интегрирование, сумма в круглых скобках постоянна:

x+ y + z =
3

2
a .

Поэтому скалярное произведение под знаком поверхностного интеграла
равно:

(�n · rot �A ) = − 4√
3

3

2
a = −2

√
3 a .

Подставив эту величину в поверхностный интеграл, будем иметь:

I = −2
√

3 aS , (∗)

где S – площадь интегрируемого куска плоскости. Очевидно, она рав-
на S = D/ cosα =

√
3D, где D – площадь проекции интегрируемой

поверхности на плоскость (y, z) (или любую другую координатную плос-
кость). Проекция эта представляет собой шестиугольник – часть квад-
рата 0 ≤ y ≤ a , 0 ≤ z ≤ a , без отсеченных от него прямыми

y + z =
a

2
, y + z =

3a

2
,

треугольничков. Суммарная площадь последних равна a2/4, так что

D = a2 − a2

4
=

3a2

r4
.

Следовательно, наш интеграл равен:

I = −2
√

3 aS = −6aD = −6a · 3a2

4
= −9

2
a3 .
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Замечание. Для вычисления площади S интегрируемой поверхно-
сти не обязательно проектировать ее на плоскость x = 0. Достаточно со-
образить, что поверхность имеет вид правильного шестиугольника, дли-
ны сторон которого равны a/

√
2, а его площадь равна сумме площадей

шести правильных треугольников:

S = 6
a√
2

√
3

4
.

Подставив это выражение в (∗), придем к уже знакомому ответу.

Задачи для самостоятельной работы
Задача 11.6
Пусть L –замкнутый контур, расположенный в плоскости

x cosα+ y cos β + z cos γ − p = 0 ,

и ограничивающий площадку S. Найти∮
L

∣∣∣∣∣∣
dx dy dz

cosα cos β cos γ
x y z

∣∣∣∣∣∣ ,
где контур L пробегается в положительном направлении.

Задача 11.7
Применяя формулу Стокса, вычислить интеграл

I =

∮
L

(y + z) dx+ (z + x) dy + (x+ y) dz ,

где L – эллипс

x = a sin2 t , y = 2a sin t cos t , z = a cos2 t (0 ≤ t ≤ π) ,

пробегаемый в направлении возрастания параметра t.

Задача 11.8
Вычислить ∮

L

(x+ z) dx+ y dy + x2y dz,

где L – эллипс x2 + y2 = 4, x+ z = 2, пробегаемый против хода часовой
стрелки, если смотреть с положительной стороны оси x.
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Задача 11.9
Пусть L – замкнутый простой контур, лежащий в плоскости x + y +
z = a, положительно ориентированный на верхней стороне плоскости и
ограничивающий площадку площади S. Найти

)

∮
L

(y + z)3 dx+ (z + x)3 dy + (x+ y)3 dz,

)

∮
L

(xy + z) dx+ (yz + x) dy + (zx+ y) dz.

Задача 11.10
Вычислить интеграл ∮

L

z2 dx,

где L - линия, ограничивающая поверхность{
x2 + y2 + z2 = 16,

x ≥ 0, y ≥ 0, z ≥ 0.

Задача 11.11
Вычислить интеграл ∮

L

y dx− x dy + z dz,

где L – контур {
x2 + y2 + z2 = 4,

x2 + y2 = z2, z ≥ 0,

положительно ориентированный по нижней стороне сферы.

Ответы

11.6. 2S. 11.7. 0. 11.8. 4π. 11.9. а) 0; б)
3 − a√

3
S. 11.10.

32

3
. 11.11.

4π.



156 Глава 1. Практикум по векторному анализу

Занятие 12. Задачи теории поля

Необходимые сведения из теории
Как известно, векторный анализ широко применяется в самых разно-

образных разделах физики, от механики и электродинамики, до стати-
стической физики и квантовой теории поля. При этом математические
конструкции векторного анализа приобретают специфический, адекват-
ный тем или иным физическим представлениям, смысл. На данном за-
нятии мы, используя накопленные на предыдущих занятиях знания по
векторному анализу и опыт вычисления криволинейных и поверхност-
ных интегралов, решим несколько типичных для физики задач, оперируя
уместными физическими понятиями и терминами. Напомним наиболее
универсальные из них. Это понятие потока

Π =

∫∫
S

( �A · �n ) dS (12.1)

векторного поля �A через заданную поверхность S в указанную вектором
нормали �n сторону.

Другое фундаментальное понятие – работы

U =

∫
L

(�F · d�r ) (12.2)

силового поля �F вдоль пробегаемой в заданном направлении кривой L.
В иных физических задачах, к примеру если �F = �H –магнитное поле, а
контур L замкнут, предпочитают говорить о циркуляции

Γ =

∮
L

( �H · �τ )d� (12.3)

векторного поля �H вдоль контура L. Здесь �τ – единичный, касательный
к гладкому контуру L вектор, указывающий направление циркуляции.

Помимо собственно физической подоплеки, перечисленные понятия
еще и геометрически наглядны, что порой служит хорошим подспорьем
при решении сопутствующих математических задач.

В отличие от предшествующих занятий, где специально отбирались
задачи, нацеленные на освоение того или иного раздела векторного ана-
лиза, здесь мы попытаемся имитировать атмосферу реальных исследова-
ний, когда сталкиваются с самыми разнообразными проблемами, и для
решения их приходится поднимать весь накопленный ранее багаж.
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Задачи
Задача 12.1
Найти поток радиус-вектора �r:

а) через боковую поверхность конуса x2 + y2 ≤ z2 (0 ≤ z ≤ h) ;
б) через основание этого конуса.

Р е ш е н и е. a) На боковой поверхности конуса вектор его нормали �n
и радиус вектор �r перпендикулярны, поскольку данный конус является
одной из векторных трубок поля �r. Поэтому его поток

Π =

∫∫
S

(�r · �n ) dS

через коническую поверхность равен нулю.

б) Нормалью �n к основанию конуса служит вектор �k – орт оси z.
Поэтому скалярное произведение нормали и радиус-вектора �r = x�i +
y�j + z �k во всех точках основания одинаково и равно: (�k · �r ) = h.

Из сказанного следует, что

Π =

∫∫
S

(�r · �n ) dS = hS ,

где S = π h2 – площадь круга, лежащего в основании конуса.

Задача 12.2
Найти поток вектора �A = yz�i+ xz�j + xy �k:

a) через боковую поверхность цилиндра x2 + y2 ≤ a2 (0 ≤ z ≤ h);
б) через полную поверхность этого цилиндра.

Р е ш е н и е. a) В отличие от предыдущей задачи, где простые
геометрические соображения позволили вычислить поверхностный ин-
теграл, здесь геометрия интегрируемого векторного поля не очень ясна.
Поэтому приходится прибегнуть к регулярному методу вычисления по-
верхностных интегралов. Он состоит в переходе к двойному интегралу∫∫

S

( �A · �n )dS =

∫∫
Ω

( �A,�ru, �rv)dudv .

Напомним, здесь �r = �r(u, v) –параметрическое уравнение поверхности
интегрирования S, а Ω –область на плоскости параметров (u, v), куда
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отображается S. Напомним еще, что для справедливости данной форму-
лы надо, чтобы вектор нормали к выбранной стороне поверхности �n и
векторы �ru, �rv образовывали правую тройку.

Желая максимально использовать симметрию цилиндрической по-
верхности, возьмем в качестве параметров цилиндрические координаты.
С их помощью радиус-вектор поверхности запишется в виде:

�r = a cosϕ�i+ a sinϕ�j + z �k (0 ≤ ϕ ≤ 2π , 0 ≤ z ≤ h) .

Стоящие в скобках неравенства можно трактовать как уравнения пря-
моугольника в плоскости (ϕ, z), на который проектируется боковая по-
верхность цилиндра. В итоге выражение для потока сводится к двойному
интегралу:

Π =

∫∫
S

( �A · �n ) dS =

∫ 2π

0

dϕ

∫ h

0

( �A,�rϕ, �rz)dz .

Вычислим входящее сюда смешанное произведение векторов �A, �rϕ и �rz:

( �A,�rϕ, �rz) =

∣∣∣∣∣∣
za sinϕ za cosϕ a2 cosϕ sinϕ
−a sinϕ a cosϕ 0

0 0 1

∣∣∣∣∣∣ = za2 sin 2ϕ .

Подставив это выражение в интеграл, получим:

Π = a2

∫ 2π

0

dϕ sin 2ϕ

∫ h

0

z dz = 0 .

б) Хотя рассмотренная выше поверхность не была замкнутой, преды-
дущий результат наводит на мысль – а не равна ли нулю дивергенция
интегрируемого векторного поля? Проверим нашу догадку, вычислив ди-
вергенцию заданного векторного поля. Несложные расчеты показывают,
что

div �A =
∂

∂x
yz +

∂

∂y
xz +

∂

∂z
xy ≡ 0

– наше поле соленоидально и, по теореме Гаусса-Остроградского, поток
через полную поверхность цилиндра с “дном и крышкой” равен нулю.

Задача 12.3
Найти поток радиус-вектора �r через поверхность

z = 1 −
√
x2 + y2 (0 ≤ z ≤ 1) .
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Рис. 12.1: Опрокинутый конус, фигурирующий в задаче 12.3. Требуется со-
считать поток сквозь него радиус-вектора �r. На рисунке изображены радиус-
вектор и касательные к конусу векторы �rρ и �rϕ в некоторой его точке. При
фиксированном ρ и изменении ϕ указанные векторы остаются “жестко связан-
ными” – сохраняя величину и взаимную ориентацию.

Р е ш е н и е. Поверхность напоминает колпак – перевернутый конус,
которым накрыли начало координат. Спроектируем колпак на плоскость
(x, y) и перейдем в ней к полярной системе координат. При этом вектор-
ное параметрическое уравнение поверхности запишется в виде:

�r = ρ cosϕ�i+ ρ sinϕ�j + (1 − ρ)�k .

Соответственно искомый поток выразится через двойной интеграл:

Π =

∫∫
S

(�r · �n ) dS =

∫ 2π

0

dϕ

∫ 1

0

(�r, �rρ, �rϕ) dρ .

Найдем входящее сюда смешанное произведение:

(�r, �rρ, �rϕ) =

∣∣∣∣∣∣
ρ cosϕ ρ sinϕ 1 − ρ
cosϕ sinϕ −1

−ρ sinϕ ρ cosϕ 0

∣∣∣∣∣∣ .
Из геометрии задачи ясно, что нет необходимости вычислять этот до-
вольно громоздкий определитель. В самом деле, нетрудно сообразить,
что величина и взаимное расположение векторов �r, �rρ и �rϕ не зависит от
угла ϕ. А значит объем V = (�r, �rρ, �rϕ) параллелепипеда, построенного на
этих векторах, также не зависит от ϕ. Поэтому можно положить ϕ = 0
и сосчитать более простой определитель:

(�r, �rρ, �rϕ) =

∣∣∣∣∣∣
ρ 0 1 − ρ
1 0 −1
0 ρ 0

∣∣∣∣∣∣ = ρ(1 − ρ) + ρ2 = ρ .
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Подставив результат в двойной интеграл, получим:

Π = 2π

∫ 1

0

ρ dρ = π .

Замечание 1.Мы бы скорее пришли к ответу, если бы лучше вникли
в геометрию задачи и поняли, что поток через круг в плоскости (x, y), за-
мыкающий нашу поверхность, равен нулю. По той причине, что радиус-
вектор любой точки этой плоскости перпендикулярен ее вектору норма-
ли �k. Следовательно, привлекая формулу Гаусса-Остроградского, имеем:∫∫

S

( �A · �n )dS =

∫∫∫
V

(�∇ · �r )dV = 3

∫∫∫
V

dV = 3V ,

где V = π/3 – объем конуса, ограниченного указанным в условии задачи
колпаком и плоскостью z = 0.

Замечание 2. Ясное понимание геометрической сути проблемы поз-
воляет легко найти поток и без помощи формулы Гаусса-Остроградско-
го. Обратив внимание на то, что скалярное произведение (�r · �n ) равно
кратчайшему расстоянию от начала координат до образующих конуса,
одинаковому для всех его образующих, получим:

Γ =

∫∫
S

( �A · �n )dS = ( �A · �n )

∫∫
S

dS .

С другой стороны, поскольку все образующие конуса наклонены к плос-
кости z = 0 под одинаковым углом γ = 45◦, имеем

Γ = ( �A · �n )

∫∫
σ

dxdy

cos γ
.

Здесь σ – круг в плоскости z = 0, на который проектируется наш опроки-
нутый конус. Вынося косинус за знак интеграла и заметив, что в данной
геометрии задачи (�r · �n ) = cos γ, получим, что поток равен Γ = π –
площади упомянутого круга.

Задача 12.4
Найти поток вектора

�A = m
�r

r3
(m −)

через замкнутую поверхность S, окружающую начало координат.



Занятие 12. Задачи теории поля 161

Р е ш е н и е. Первое, что приходит в голову – попытаться свести соот-
ветствующий поверхностный интеграл к объемному, применив формулу
Гаусса-Остроградского:

I =

∫∫
S

(
�A · �n

)
dS =

∫∫∫
V

(
�∇ · �A(�r )

)
dV .

Однако здесь сразу возникает проблема, с которой мы уже сталкивались,
решая задачу 10.6 занятия 10. Дело в том, что данное векторное по-
ле недифференцируемо в точке начала координат, находящейся внутри
области интегрирования V . Опыт решения указанной задачи подсказы-
вает, как обойти эту трудность: Надо окружить точку O(0, 0, 0) малень-
кой сферой Σ радиуса ε, исключив из области V внутренность сферы,
содержащую особую точку. В остальной области наше векторное поле
непрерывно дифференцируемо, а его дивергенция равна нулю:(

�∇ · �A(�r)
)

= m

(
�∇ · �r

r3

)
= m

(
�∇ 1

r3
· �r
)

+
m

r3
(�∇ · �r) = 0 .

Таким образом, искомый поток равен Π = −Πε, где Πε – поток поля �A
внутрь маленькой сферы. Он легко вычисляется вследствие центральной
симметрии как поля так и сферы, и равен Πε = −4πm. Отсюда Π = 4πm.

Задача 12.5
Найти работу поля

�F =
1

y
�i+

1

z
�j +

1

x
�k

вдоль прямолинейного отрезка между точками M(1, 1, 1) и N(2, 4, 8).

Р е ш е н и е. Работа равна криволинейному интегралу 2-го типа от за-
данного векторного поля, взятого вдоль данного отрезка, в направлении
от M к N :

U =

∫
M→N

(�F · d�r ) =

∫
M→N

dx

y
+
dy

z
+
dz

x
.

Запишем уравнение отрезка, по которому производится интегрирование,
пользуясь общим уравнением прямой, проходящей через любые задан-
ные точки (x0, y0, z0) и (x1, y1, z1):

x− x0

x1 − x0

=
y − y0

y1 − y0

=
z − z0

z1 − z0

.
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Подставив сюда координаты начала – M и конца – N нашего отрезка,
получим:

x− 1

1
=
y − 1

3
=
z − 1

7
⇐⇒

{
y = 3x− 2
z = 7x− 6

. (∗)

Взяв переменной интегрирования x (1 ≤ x ≤ 2) и заметив, что dy =
3 dx , dz = 7 dx, найдем:

A =

∫ 2

1

(
1

3x− 2
+

3

7x− 6
+

7

x

)
dx =(

1

3
ln |3x− 2| + 3

7
ln |7x− 6| + 7 ln |x|

)∣∣∣∣2
1

=

=
1

3
ln 4 +

3

7
ln 8 + 7 ln 2 =

(
2

3
+

9

7
+ 7

)
ln 2 =

188

21
ln 2 .

Замечание. Более “демократический” подход к решению уравнений
(∗), выражающий равноправие всех координат и динамику движения от
точки M к N , получим, приравняв все дроби в (∗) к единому параметру
t. В итоге будем иметь:

x = 1 + t
y = 1 + 3t
z = 1 + 7t

(0 ≤ t ≤ 1) .

Дальнейшие выкладки аналогичны приведенным выше и, естественно,
дают тот же результат.

Задача 12.6
Найти циркуляцию вектора �A = −y�i+ x�j + c�k (c −)

а) вдоль окружности x2 + y2 = 1 , z = 0 ;
б) вдоль окружности (x− 2)2 + y2 = 1 , z = 0 .

Р е ш е н и е. Напомним, циркуляция векторного поля равна криво-
линейному интегралу 2-го типа вдоль данного контура:

Γ =

∮
L

( �A · d�r ) .

Вычислим криволинейный интеграл, определяющий величину циркуля-
ции, задав уравнение окружности в параметрической форме. К примеру,
в случае a) естественно выбрать следующую параметризацию:

L : x = cos t , y = sin t , z = 0

(0 ≤ t ≤ π) .
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При этом криволинейный интеграл сводится к определенному интегралу

Γ =

∫ 2π

0

[−y(t)dx(t) + x(t)dy(t)] =

∫ 2π

0

[
sin2 t+ cos2 t

]
dt = 2π .

Аналогично вычисляется циркуляция и по окружности b).
Проверим результат с помощью формулы Стокса. Она выражает цир-

куляцию через поверхностный интеграл 2-го типа по любой гладкой по-
верхности, натянутой на данный контур:

Γ =

∫∫
S

(rot �A · �n )dS .

В физической интерпретации формула Стокса означает, что циркуляция
векторного поля равна потоку его ротора сквозь выбранную поверхность
S. Найдем циркуляцию, привлекая формулу Стокса. Для этого вычис-
лим ротор заданного векторного поля:

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
−y x c

∣∣∣∣∣∣∣∣ = 2�k .

Имея ввиду, что ротор поля �A направлен в сторону орта оси z, возь-
мем в качестве поверхности круг единичного радиуса, лежащий внутри
окружности a). Его вектор нормали равен �k. Следовательно, циркуляция
оказывается равной:

Γ = 2

∫∫
S

dS = 2π .

Заметим еще, что за направление обхода контура мы неявно выбрали
обход против часовой стрелки, если смотреть сверху –со стороны оси z.
В противном случае значение циркуляции меняет знак.

Поскольку ротор поля �A одинаков во всех точках пространства, а кон-
тур, вдоль которого ищется циркуляция в случае b), представляет собой
ту же окружность в плоскости z = 0, лишь сдвинутую вдоль оси x, то и
здесь циркуляция равна ±2π, где знак зависит от выбора направления
обхода контура.

Задача 12.7
Показать, что поле

�A = yz (2x+ y + z)�i+ xz (x+ 2y + z)�j + xy (x+ y + 2z)�k

– потенциальное и найти потенциал этого поля.
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(x,y,z)

x

y

z

Рис. 12.2: Иллюстрация ко второй части задачи 12.7. Наиболее удобный при
вычислении потенциала кусочно-линейный путь, соединяющий начало коор-
динат и произвольную точку пространства с координатами (x, y, z).

Р е ш е н и е. Как известно, необходимым и достаточным услови-
ем потенциальности векторного поля в некоторой области Ω является
равенство нулю ротора поля в этой области. Поэтому вычислим ротор
обсуждаемого поля:

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣ =

=

(
∂R

∂y
− ∂Q

∂z

)
�i+

(
∂P

∂y
− ∂R

∂x

)
�j +

(
∂Q

∂x
− ∂P

∂y

)
�k .

Здесь введены привычные обозначения компонент векторного поля �A:

P = yz(2x+ y + z) , Q = xz(x+ 2y + z) , R = xy(x+ y + 2z) .

Вектор ротора будет нулевым, если равны нулю все его компоненты. Под-
ставив компоненты поля �A в выражения для компонент ротора, убежда-
емся, что ротор всюду равен нулю, а значит поле �A всюду потенциально.

Найдем потенциал (обозначим его U(x, y, z)) поля �A, пользуясь тем,
что криволинейный интеграл 2-го типа от потенциального поля

(x,y,z)∫
(x0,y0,z0)

( �A · d�r ) = U(x, y, z) − U(x0, y0, z0)



Занятие 12. Задачи теории поля 165

– не зависит от пути интегрирования и равен разности потенциалов ко-
нечной и начальной точек. Напомним еще, что потенциал определен с
точностью до произвольной постоянной.

Для удобства расчетов соединим начало координат O(0, 0, 0) с “точкой
наблюдения” (x, y, z) отрезками прямых, параллельных осям координат:
Сперва пойдем по оси x от O(0, 0, 0) до точки O(x, 0, 0), затем повернем-
ся на π/2 и двинемся вдоль оси y до точки O(x, y, 0), а от нее, вдоль
оси z, прямо к цели – точке O(x, y, z). В итоге криволинейный интеграл
распадется на три интеграла:

U(x, y, z) =

x∫
0

P (x, 0, 0) dx+

y∫
0

Q(x, y, 0) dy +

z∫
0

R(z, y, z) dz .

В нашем случае такой способ действий приводит к следующему резуль-
тату:

U(x, y, z) =

x∫
0

0 dx+

y∫
0

0 dy +

z∫
0

xy(x+ y + 2z)dz = xyz(x+ y + z) + C .

В окончательной формуле мы добавили произвольную постоянную, что-
бы учесть все многообразие потенциалов данного векторного поля.

Те, кто предпочитает аналитические методы геометрическим, могут
вычислить потенциал другим способом, выписав систему уравнений

∂U

∂x
= yz(2x+ y + z)

∂U

∂y
= xz(x+ 2y + z)

∂U

∂z
= xy(x+ y + 2z)

(∗)

Интегрируя первое уравнение, получаем:

U(x, y, z) = yzx2 + y2zx+ yz2x+ C(y, z) . (∗∗)
Подставив правую часть этого равенства во второе уравнение в (∗), при-
дем к уравнению для C(y, z):

∂C(y, z)

∂y
= 0 ⇒ C(y, z) = C(z) .

Наконец из (∗) и (∗∗), с учетом последнего равенства, имеем: C(z) = C =
const. В итоге выражение (∗∗) сводится к уже знакомому результату.
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Задача 12.8
Найти потенциал гравитационного поля

�F = −m
r3
�r ,

создаваемого массой m, помещенной в начале координат.

Р е ш е н и е. Убедимся вначале в потенциальности поля, вычислив
его ротор:

rot �F = −m[�∇× 1

r3
�r ] = m[�r × �∇ 1

r3
] −m

1

r3
[�∇× �r ] = −3m

r5
[�r × �r] + 0 = 0 .

Найдем теперь сам потенциал. При этом нам не надо выбирать, как в
предыдущей задаче, специальный путь интегрирования, поскольку для
центрального поля, к которым относится поле �F , интеграл по любой
кривой вычисляется одинаково просто:

U(x, y, z) = −m
(x,y,z)∫

(x0,y0,z0)

(�r · d�r )

r3
= −m

(x,y,z)∫
(x0,y0,z0)

x dx+ y dy + z dz

(x2 + y2 + z2)3/2
=

−m
2

(x,y,z)∫
(x0,y0,z0)

d(x2 + y2 + z2)

(x2 + y2 + z2)3/2
=

m

(x2 + y2 + z2)1/2

∣∣∣∣(x,y,z)
(x0,y0,z0)

.

Отсюда окончательный результат:

U(�r) =
m

r
+ C ,

причем физики обычно кладут C = 0, считая потенциал на бесконечно-
сти равным нулю.

Замечание. Выкладки становятся более элегантными и геометри-
чески прозрачными, если пользоваться инвариантными, не зависящими
от системы координат, обозначениями. Продемонстрируем сказанное на
примере произвольного центрального поля

�A = f(r)�r ,

где f(r) – любая сферически-симметричная функция, зависящая только
от одного аргумента – расстояния до начала координат. Обозначим за �r0
начальную точку с координатами (x0, y0, z0) и проведем произвольную
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r

r

r
0

r
0

Рис. 12.3: Двумерная иллюстрация замечания к задаче 12.8. Изображена про-
извольная кривая, соединяющая точки �r0 и �r, а также отрезок луча, на ко-
торый проектируется данная кривая при вычислении потенциала центрально-
симметричного векторного поля.

гладкую кривую, соединяющую начальную точку с некоторой точкой
пространства �r. Криволинейный интеграл по любой выбранной кривой

U(�r ) =

∫
	r0�	r

f(r)(�r · d�r) =

∫ r

r0

f(r)r dr

– сводится к обычному определенному интегралу вдоль отрезка луча,
начало и конец которого удалены от центра на те же расстояния, что и
начальная и конечная точки кривой интегрирования.

Решение данной задачи будет еще проще, если вспомнить, что гради-
ент сферически-симметричного скалярного поля U(r) имеет структуру
заданного в условии задачи гравитационного поля:

gradU(r) =
U ′(r)
r

�r .

Сравнив правую часть этого равенства с гравитационным полем, полу-
чим: U ′(r) = −m

r2
. Отсюда U(r) =

m

r
+ C.

Задачи для самостоятельной работы
Задача 12.9
Найти поток вектора �A = x2�i+ y2�j + z2 �k через положительный октант
сферы

x2 + y2 + z2 = 1 , x ≥ 0 , y ≥ 0 , z ≥ 0 .
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Задача 12.10
Найти поток вектора �A = y�i + z�j + x�k через поверхность пирамиды,
ограниченной плоскостями

x = 0 , y = 0 , z = 0 , x+ y + z = a (a > 0) .

Проверить результат, используя формулу Гаусса-Остроградского.

Задача 12.11
Найти поток вектора

�F = x3�i+ y3�j + z3 �k

через сферу x2 + y2 + z2 = x.

Задача 12.12
Найти работу поля

�F = ey−z�i+ ez−x�j + ex−y �k

вдоль прямолинейного отрезка между точками O(0, 0, 0) и M(1, 3, 5).

Задача 12.13
Дано векторное поле

�A =
y√
z
�i− x√

z
�j +

√
xy �k .

Вычислив rot �A в точке M(1, 1, 1), приближенно найти циркуляцию Γ
поля вдоль бесконечно малой окружности{

(x− 1)2 + (y − 1)2 + (z − 1)2 = ε2 ,
(x− 1) cosα+ (y − 1) cos β + (z − 1) cos cos γ = 0 ,

где cos2 α+ cos2 β + cos2 γ = 1.

Ответы

12.9.
3π

4
. 12.10. 0. 12.11.

π

4
. 12.12.

1

4
(3e4 + 9 − 12 e−2). 12.13.

(− cosα+ 2 cos γ)πε2.



Глава 13

Решения задач для
самостоятельной работы

Занятие 1. Криволинейные интегралы перво-
го рода

Задача 1.7. Пользуясь формулой (1.5) и известным соотношением
ch 2t− sh 2t = 1, получаем:

I = a3

t0∫
0

ch t
√

2 ch 2t− 1 sh t dt .

Заменой переменной интегрирования cosh t = z сводим интеграл к виду

I =

ch t∫
1

z
√

2z2 − 1 dz =
1

2
a3

ch 2t0∫
1

√
2u− 1 du

=
a3

6

[
ch 3/22t0 − 1

]
.

Тут мы применили еще одно известное равенство: 2 ch 2t− 1 = ch 2t .

Задача 1.8. Интеграл естественно разбить на два (одинаковых)
интеграла по лучам, и интеграл по дуге окружности:

I = 2

a∫
0

er dr + a ea
π/4∫
0

dϕ .
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Таким образом, имеем:

I = 2 ( ea − 1) +
πa

4
ea .

Задача 1.9. Обратим внимание, что уравнение окружности, по
которой берется криволинейный интеграл, можно записать в виде:(

x− a

2

)2

+ y2 =
a2

4
.

Отсюда легко сообразить, что уравнение L проще всего в смещенной по-
лярной системе координат {r , ϕ}, связанных с исходными координатами
равенствами:

x =
a

2
+ r cosϕ , y = r sinϕ .

При этом уравнение окружности запишется в форме:

r =
a

2
(0 ≤ ϕ ≤ 2π) .

Соответственно, d� = a dϕ. Представив искомый интеграл как удвоенный
вклад от верхней полуокружности, будем иметь:

I =
a2

2

π∫
0

√
2 + 2 cosϕdϕ .

Вспомнив затем тригонометрическую формулу

2 cosϕ+ 2 = 4 cos2 ϕ

2
,

получим окончательно:

I = a2

π∫
0

cos
ϕ

2
dϕ = 2 a2 .

Задача 1.10. Точка с заданными координатами пробегает указан-
ную дугу, если t меняется от 0 до 1. Таким образом, длина дуги равна
интегралу:

L = 3

1∫
0

√
1 + 4t2 + 4t4 dt = 3

1∫
0

(1 + 2t2) dt = 3

(
1 +

2

3

)
= 5 .
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Рис. 1.1: Иллюстрация к задачам 1.11 и 1.14: График астроиды. Напомним геомет-
рическое происхождение астроиды. Она представляет собой частный случай гипоцик-
лоид –кривых, вычерченных фиксированной точкой окружности радиуса ma (m < 1),
катящейся без скольжения по неподвижной окружности радиуса a с ее внутренней
стороны. Астроида возникает, если отношение радиусов катящейся и неподвижной
окружностей равно m = 1/4.

Задача 1.11. Из симметрии астроиды относительно осей коор-
динат видно, что искомые величины равны между собой. Поэтому вы-
числим лишь первую из них, используя известную параметризацию для
первой дуги астроиды

x = a cos3 t, y = a sin3 t,
(
0 < t <

π

2

)
.

Последовательно находим√
x′

2
(t) + y′

2
(t) =

√
9a2 cos4 t sin2 t+ 9a2 sin4 t cos2 t = 3a cos t sin t,

Sx = 3a2

π
2∫

0

cos4 t sin t dt = −3a2 cos5 t

5

∣∣∣∣∣
π
2

0

=
3

5
a2.

Задача 1.12. Вначале вспомним из физики определение момента
инерции тела относительно заданной оси. Так называют объемный инте-
грал по всей области, занятой телом, от произведения плотности тела на
квадрат кратчайшего расстояния от оси до текущей точки тела. В нашем
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случае телом служит материальная окружность и неявно подразумева-
ется, что плотность всех точек окружности одинакова и равна едини-
це. Поэтому нахождение момента инерции здесь сводится к вычислению
криволинейного интеграла от квадрата расстояния точек окружности
до ее диаметра. В силу симметрии окружности результат не зависит от
того, какой из диаметров мы выберем. Для простоты выкладок возь-
мем диаметр, лежащий на оси x, и примем во внимание, что искомый
момент инерции равен удвоенному моменту инерции куска окружности,
лежащей в 1-м квадранте. Тогда

y =
√
a2 − x2 ⇒

√
1 + y′2 =

a√
a2 − x2

и момент инерции выразится следующим интегралом:

I = 2

a∫
−a

y2
√

1 + y′ 2 dx = 2a

a∫
−a

√
a2 − x2 dx = πa3 .

Мы не стали аналитически вычислять последний интеграл, поскольку
он, очевидно, равен половине площади круга.

Задача 1.13. а). Достаточно вычислить полярный момент инер-
ции верхней стороны квадрата и умножить его на 4:

I0 = 4

a∫
−a

(x2 + a2) dx =
32

3
a3 .

б) В силу симметрии треугольника относительно начала координат,
искомый момент инерции равен утроенному моменту инерции левой сто-
роны треугольника:

I0 = 6

√
3

2
a∫

0

(
1

4
a2 + y2

)
dy =

3
√

3

2
a3 .

Задача 1.14. Используя параметризацию в задаче 1.11, вычислим
длину астроиды

� =

∫
L

d� = 4

π/2∫
0

3a sin t cos t dt = 6a .
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Найдем теперь полярный момент астроиды. По определению он равен:

I0 =

∫
L

(x2 + y2) d� = 4

π/2∫
0

a2
(
cos6 t+ sin6 t

)
3a sin t cos t dt =

= 12a3

 π/2∫
0

cos7 t sin t dt+

π/2∫
0

sin7 t cos t dt

 = 12a3

(
1

8
+

1

8

)
= 3 a2 .

Подставив найденные значения в формулу I0 = � r2
0, получаем:

3a3 = 6a r2
0 ⇒ r0 =

a√
2
.

Замечание. Протестируем найденное значение среднего полярного
радиуса астроиды с точки зрения здравого геометрического смысла. По
своей природе, средний радиус должен быть меньше радиуса описанной
окружности a, но больше радиуса вписанной в астроиду окружности a/2.
Так оно и есть:

a

2
<

a√
2
< a

– средний полярный радиус астроиды равен среднему геометрическому
наименьшего и наибольшего расстояний точек астроиды от центра.

Занятие 2. Криволинейные интегралы второго
рода

Задача 2.9. При решении удобно записать уравнение окружно-
сти в параметрической форме: x = a cos t , y = a sin t . При этом, когда
параметр t меняется от 0 до 2π, точка с указанными координатами пробе-
гает окружность в заданном направлении. Таким образом, преобразуем
интеграл к виду:

I = −
2π∫
0

[(cos t+ sin t) sin t+ (cos t− sin t) cos t] dt .

Раскрыв скобки, получим:

I = −
2π∫
0

(sin2 t+ cos2 t) dt = −
2π∫
0

dt = −2π .
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Задача 2.10. Уравнение прямой, по отрезку которой ведется ин-
тегрирование, имеет вид: y = π − x. Соответственно имеем:

I =

1∫
0

[sin(π − x) − sin x] dx =

1∫
0

0 · dx = 0 .

Задача 2.11. Вычислим потенциал, взяв за исходную точку (1, 0),
и двигаясь вначале по оси x, а затем вдоль оси y. Это дает:

U(x, y) =

x∫
1

0 · dx− 1

x

y∫
0

dy = −y
x
.

Таким образом,

I = U(1, 2) − U(2, 1) = −2 +
1

2
= −3

2
.

Задача 2.12. Найдем потенциал, двигаясь к произвольной точке
(x, y, z) из начала координат, по оси x, а затем вдоль осей y и z:

U =

x∫
0

x dx+

y∫
0

y2 dy −
z∫

0

z3 dz =
x2

2
+
y3

3
− z4

4
.

Таким образом

I = (2 + 9 − 64) −
(

1

2
+

1

3
− 1

4

)
= −53 − 7

12
.

Задача 2.13. Пойдем от начала координат по оси x, а затем вдоль
y и z. В результате получим:

U =
x3

3
+
y3

3
+
z3

3
− 2xyz + C ,

или окончательно

U =
1

3
(x3 + y3 + z3) − 2xyz + C .
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Занятие 3. Формула Грина
Задача 3.7. Вычислим, входящие в двойной интеграл формулы

Грина, производные:

∂Q

∂x
= y2 +

y√
x2 + y2

,
∂P

∂y
=

y√
x2 + y2

.

Отсюда видно, что исходный контурный интеграл сводится к двойному

I =

∫∫
S

y2 dx dy .

Задача 3.8. В данном случае

P (x, y) = (x+ y)2 , Q(x, y) = −x2 − y2 .

Поэтому вытекающий из формулы Грина двойной интеграл принимает
вид:

I =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy = −2

∫∫
S

(y + 2x) dx dy .

Здесь S – указанная в условии задачи треугольная область. Выпишем
уравнения ограничивающих ее прямых:

AB ⇒ 2y − x− 1 = 0 , AC ⇒ 4x− y − 3 = 0 , BC ⇒ y + 3x− 11 = 0 .

Перед вычислением искомого двойного интеграла заметим, что сторо-
ны треугольника не параллельны осям координат(x, y). Из-за этого, при
переходе от двойного интеграла к повторным, придется разбить область
интегрирования на части – прямой, параллельной одной из осей коор-
динат, что сильно усложнит выкладки. Попробуем избежать подобного
усложнения, введя новую, косоугольную, систему координат, координат-
ные линии которой совпадают с двумя сторонами треугольника. Пусть
это будут стороны AB и AC. Другими словами, за новые переменные
интегрирования возьмем

u = 4x− y − 3 , u ∈ [0, 7] ; v = 2y − x− 1 , v ∈ [0, 7] .

Нетрудно найти формулы обратного перехода от (u, v) к (x, y):

x =
1

7
(2u+ v) + 1 , y =

1

7
(u+ 4v) + 1 .
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При этом уравнение третьей стороны треугольника преобразуется к виду

y + 3x− 11 = 0 ⇒ u+ v = 7 ,

а подинтегральная функция окажется равной:

y + 2x⇒ 1

7
(5u+ 6v) + 3 .

Кроме того нам надо учесть якобиан перехода от (x, y) к (u, v):

dx dy = |J |du dv , J =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =
1

7
.

С учетом всего сказанного, двойной интеграл трансформируется в

I = −2

7

∫∫
∆

[
3 +

1

7
(5u+ 6v)

]
du dv .

Здесь ∆ – область интегрирования в плоскости с декартовыми коорди-
натами (u, v). Для дальнейшего полезно ясно представлять геометрию
области интегрирования и самого̀ интеграла. Областью интегрирования
является прямоугольный равнобедренный треугольник, с вершиной в на-
чале координат (u, v) и катетами, лежащими на осях. Площадь его (обо-
значим ее также буквой ∆), очевидно, равна: ∆ = 49/2.

Разобьем полученный интеграл на три части:

I = −2

7

(
3Ip +

5

7
Iu +

6

7
Iv

)
и геометрически интерпретируем каждый из входящих сюда интегралов:

Ip =

∫∫
∆

du dv , Iu =

∫∫
∆

u du dv , Iv =

∫∫
∆

v du dv .

Так первый из них равен объему прямой треугольной призмы, с осно-
ванием ∆ и высотой h = 1. Объем ее равен Ip = ∆. Оставшиеся два
интеграла равны объемам пирамид с общим основанием ∆ и одинаковой
высотой H = 7. Со школы мы помним, что объемы пирамид равны:

Iu = Iv =
H

3
∆ .

Таким образом, искомый интеграл оказывается равным:

I = −2

7
∆

[
3h+

11

7

H

3

]
= −2

7
∆

[
3 +

11

3

]
= −140

3
= −46

2

3
.
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Если мы не уверены, правильно ли помним объем пирамиды, нетруд-
но вычислить его с помощью интегралов. Например:

Iv =

7∫
0

du

7−u∫
0

v dv =
1

2

7∫
0

(7 − u)2 du =
1

2

7∫
0

u2 du =
73

6
= ∆

H

3
.

Задача 3.9. Формула Грина сводит этот интеграл к двойному:

I = −2

∫∫
S

dx dy .

Таким образом, интеграл равен минус удвоенной площади эллипса: I =
−2πab.

Если нам заранее не известна формула площади эллипса, мы должны
продолжить наши вычисления, перейдя от двойного интеграла к повтор-
ному. При этом воспользуемся симметрией эллипса, заменив интеграл по
всему эллипсу интегралом по его части, лежащей в 1-м квадранте. В ито-
ге получим:

I = −8

a∫
0

dx

b
√

1−x2/a2∫
0

dy = −8b

a∫
0

√
1 − x2

a2
dx .

Преобразуем оставшийся интеграл с помощью замены переменной: x =
a sin θ . Это дает:

I = −8ab

π/2∫
0

√
1 − sin2 θ d sin θ = −8ab

π/2∫
0

cos2 θ dθ .

Заметив далее, что оставшийся интеграл равен π/4, приходим к уже
известному результату.

Задача 3.10. Вычислим производные, содержащиеся в двойном
интеграле:

∂Q

∂x
= 2e−(x2−y2) [y cos 2xy − x sin 2xy] ,

∂P

∂y
= 2e−(x2−y2) [y cos 2xy − x sin 2xy] .

Разность этих производных тождественно равна нулю, а вместе с ней
равен нулю и искомый интеграл.
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Задача 3.11. Очевидно, для этого достаточно, чтобы интеграл по
любому замкнутому контуру был равен нулю. Последнее будет справед-
ливо, если подынтегральное выражение вытекающего из формулы Грина
двойного интеграла будет тождественно равно нулю, то есть если

∂Q

∂x
=
∂P

∂y
.

Подставив сюда
∂Q

∂x
= F + x

∂F

∂x
,

∂P

∂y
= F + y

∂F

∂y
,

придем к дифференциальному уравнению:

x
∂F

∂x
= y

∂F

∂y
,

которому должна удовлетворять подинтегральная функция, чтобы ис-
ходный интеграл был равен нулю.

Занятие 4. Поверхностные интегралы первого
рода

Задача 4.7. В данном случае векторное уравнение поверхности,
площадь одного винтового шага которой мы намерены вычислить, тако-
во:

�r(ρ, ϕ) = ρ cosϕ�i+ ρ sinϕ�j + bϕ�k .

Перейдем, как и в задаче 4.3, от поверхностного интеграла к двойному,
по прямоугольной области в плоскости ρ, ϕ:

S =

∫∫
S

dS =

2π∫
0

dϕ

a∫
0

dρ
∣∣[�rρ × �rϕ]

∣∣
Мы специально “подтащили” дифференциалы к “родным” интегралам,
чтобы не было сомнений, по каким переменным ведется интегрирование
в каждом из них. Из опыта решения задачи 4.3 (или исходя из геомет-
рических свойств поверхности) мы знаем, что входящий сюда модуль
векторного произведения не зависит от угла ϕ. А значит достаточно вы-
числить векторное произведение лишь при ϕ = 0:

[�rρ × �rϕ]
∣∣∣
ϕ=0

=

∣∣∣∣∣∣
�i �j �k
1 0 0
0 ρ b

∣∣∣∣∣∣ = −b�j + ρ�k ⇒ ∣∣[�rρ, �rϕ]∣∣ =
√
b2 + ρ2 .
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В итоге вычисление искомой площади сведется к определенному инте-
гралу

S = 2π

a∫
0

√
b2 + ρ2 dρ .

Вновь прибегая к опыту решения задачи 1.41, сообразим, что интеграл
сводится к табличному заменой ρ = b shµ. После чего остается выпол-
нить достаточно простые выкладки, которые дают:

S = π

[
a
√
a2 + b2 + b2 ln

a+
√
a2 + b2

b

]
.

Исследуем асимптотику найденного выражения при a � b и a � b.
Для этого применим вначале “физический подход”. А именно, вынесем
за квадратную скобку величину, имеющую размерность площади. В ре-
зультате функция внутри квадратных скобок будет зависеть лишь от
одного – безразмерного – параметра ε = a/b:

S = πab

[√
1 + ε2 +

1

ε
ln(ε+

√
1 + ε2)

]
.

Вычислив предел выражения внутри квадратных скобок при ε→ 0, най-
дем асимптотику площади куска геликоида при a� b:

S ∼ 2πab (ε→ 0) .

Геометрический смысл этой формулы достаточно прозрачен: При a� b
узкая лента геликоида практически отвесно устремляется ввысь, а ее
площадь почти совпадает с площадью плоской прямоугольной ленты
шириной a и высотой 2πb.

В другом предельном случае главная асимптотика исследуемого вы-
ражения

S ∼ π ab ε = π a2 (ε→ ∞)

– обусловлена тем, что при a� b основная часть геликоида почти парал-
лельна плоскости (x, y), вследствие чего его площадь близка к площади
круга радиусом a. Мы убедимся в этом, лишь только вообразим китай-
ский веер, вполне смахивающий на идеальный круг.

Задача 4.8. Мысленно разобьем исследуемую поверхность на 8
кусков одинаковой формы, расположенных в разных квадрантах декар-
товой системы координат, и найдем искомую площадь как увосьмерен-
ную площадь куска, лежащего в первом квадранте. Мы провели разби-
ение для того, чтобы воспользоваться формулой (4.6) предыдущей гла-
вы, справедливой при явном задании поверхности. В нашем случае явное
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уравнение выделенного куска поверхности имеет вид: z =
√
a2 − x2 − y2,

а формула (4.6) дает:

S = 8

∫∫
G

a dxdy√
a2 − x2 − y2

,

где G – четверть круга в плоскости (x, y) с центром в начале координат
и радиусом b. Симметрия области интегрирования и подынтегрального
выражения наводит на мысль, что при сведении двойного интеграла к
повторным удобно перейти к полярной системе координат. В итоге по-
лучим

S = 8a

π/2∫
0

dϕ

b∫
0

ρ√
a2 − ρ2

= 4πa(a−
√
a2 − b2) .

Замечание. При обсуждении полученных решений часто чрезвы-
чайно продуктивными оказываются попытки взглянуть на них с разных
точек зрения. Применительно к данному случаю полезно заметить, что
попутно нами решена задача стереометрии – о телесном угле, заключен-
ном в круглом конусе с углом θ между осью конуса и его образующими.
Поделив ответ на a2 и заметив, что

sin θ =
b

a
.

будем иметь:
Ω = 4π(1 − cos θ) ,

где 4π –полный телесный угол, а (1− cos θ) –доля телесного угла, заклю-
ченного внутри конуса.

Задача 4.9. Как и в предыдущей задаче, удобно разбить иссле-
дуемую поверхность на восемь кусков и найти площадь части поверх-
ности, расположенной в 1-м квадранте. Спроектируем выбранный кусок
на четверть круга радиуса a в плоскости (y, z). Иначе говоря, зададим
уравнение поверхности в явном виде, полагая (y, z) – независимыми пе-
ременными, а x – функцией от них: x =

√
a2 − y2. При этом искомая

площадь вычисляется при помощи очевидной модификации формулы
(4.6):

S = 8

∫∫
σ

√
1 +

(
∂x

∂y

)2

+

(
∂x

∂z

)2

dy dz .

Здесь σ – упомянутая четверть круга с центром в начале координат и
радиусом a. Сводя двойной интеграл к повторному, после несложных
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выкладок имеем:

S = 8a

a∫
0

dz

√
a2−z2∫
0

dy√
a2 − y2

= 8a

a∫
0

arcsin

√
a2 − z2

a
dz .

Последний интеграл удобно вычислить заменой переменной z = a cos t:

S = 8a2

1∫
0

t sin t dt = 8a2(sin t− t cos t)

∣∣∣∣∣∣
1

0

= 8a2 .

Мы устранили минус перед последним интегралом, “перевернув” преде-
лы интегрирования.

Задача 4.10. Запишем векторное уравнение поверхности, взяв за
параметры углы сферической системы координат:

�r(ϕ, θ) =�i a sin θ cosϕ+�j a sin θ sinϕ+ �k a cos θ ,

dS = |[�rϕ, �rθ]| dϕ dθ = a2 sin θ dϕ dθ .

Отсюда

I = a3

2π∫
0

dϕ

π
2∫

0

[sin θ(cosϕ+ sinϕ) + cos θ] sin θ dθ =

= a32π

π
2∫

0

sin θ cos θ dθ = π a3 .

Здесь мы сразу выкинули слагаемые, содержащие функции cosϕ и sinϕ,
поскольку интегралы от них по периоду равны нулю.

Задача 4.11. Поверхность тетраэдра состоит из 4-х плоских гра-
ниц. Соответственно, интеграл распадается на 4 части: I = I1 + I2 + 2I3.
Здесь I1 – интеграл по верхней грани тетраэдра, I2 – по его нижней гра-
ни, и I3 = I4 – по боковым граням, лежащим в плоскостях x = 0 и y = 0.
Последние интегралы, в силу симметрии подынтегрального выражения,
равны. Очевидно

I1 + I2 =
(√

3 + 1
)∫∫

D

dx dy

(1 + x+ y)2
,
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гдеD – треугольник в плоскости z = 0. Входящий сюда двойной интеграл
сводится к повторному интегралу:

I1 + I2 =
(√

3 + 1
) 1∫

0

dx

1−x∫
0

dy

(1 + x+ y)2
=

= −
(√

3 + 1
) 1∫

0

dx

1 + x+ y

∣∣∣∣∣∣
y=1−x

y=0

=
(√

3 + 1
) 1∫

0

(
1

1 + x
− 1

2

)
dx =

=
(
ln |1 + x| − x

2

)∣∣∣1
0

=
(√

3 + 1
)(

ln 2 − 1

2

)
.

Вычислим оставшуюся пару интегралов:

2I3 =

1∫
0

dz

1−z∫
0

dx

(1 + x)2
= −2

1∫
0

dz
1

1 + x

∣∣∣∣∣∣
1−z

0

=

2

1∫
0

(
1

z − 2
+ 1

)
dz = 2 (1 − ln 2) .

Следовательно, окончательный результат:

I =
(√

3 + 1
)(

ln 2 − 1

2

)
+ 2 (1 − ln 2) =

3 −√
3

2
+
(√

3 − 1
)

ln 2 .

Задача 4.12. Спроектировав указанный кусок параболоида на
круг радиуса 1 в плоскости (x, y) и учитывая, что

dS =
√

1 + 4(x2 + y2) dx dy ,

получим:

I =

∫∫
x2+y2≤1

∣∣xy(x2 + y2)
∣∣√1 + 4(x2 + y2) dx dy .

Перейдя к полярной системе координат, будем иметь:

I =
1

2

2π∫
0

| sin 2ϕ| dϕ
1∫

0

r5
√

1 + 4r2 dr =
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= 2

π
2∫

0

sin 2ϕdϕ

1∫
0

r5
√

1 + 4r2 dr = 2

1∫
0

r5
√

1 + 4r2 dr .

В последнем интеграле перейдем к новой переменной интегрирования
u2 = 1 + 4r2 , 8rdr = udu:

I =
1

64

√
5∫

1

u2(u2 − 1)2 du =
125 −√

5 − 1

420
.

Задача 4.13. Данная поверхность представляет собой часть кону-
са, вырезанную вертикальным цилиндром (x− a)2 + y2 = a2. По основа-

y

z

x

Рис. 4.1: Иллюстрация к задаче 4.13: Конус и цилиндр, вырезающий из конуса по-
верхность, по которой ведется интегрирование. Часть вырезанной поверхности “вы-
глядывает” из цилиндра.

нию этого цилиндра – кругу в плоскости (x, y), и сведем интегрирование
в двойном интеграле. При этом

dS =

√
1 +

x2

x2 + y2
+

y2

x2 + y2
dx dy =

√
2 dx dy .

Следовательно, искомый интеграл преобразуется к:

I =

∫∫
(x−a)2+y2≤a2

(
xy + (x+ y)

√
x2 + y2

)√
2 dx dy .
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Перейдя к полярной системе координат, будем иметь:

I =
√

2

π
2∫

−π
2

(cosϕ sinϕ+ (cosϕ+ sinϕ)) dϕ

2a cosϕ∫
0

r3 dr .

Вычислив внутренний интеграл и заметив, что интегралы в симметрич-
ных пределах от слагаемых, содержащих синусы, равны нулю, получим
окончательно:

I = 8
√

2a4

π
2∫

0

cos5 ϕdϕ = 8
√

2a4

1∫
0

(1 − u2)2 du =

= 8
√

2a4

(
1 − 2

3
+

1

5

)
=

64

15

√
2a4 .

Занятие 5. Приложения поверхностного инте-
грала 1-го рода

Задача 5.5. Искомая масса выражается в данном случае поверх-
ностным интегралом:

m =
1

a

∫∫
S

z dS . (∗)

Запишем векторное параметрическое уравнение полусферы в виде:

�r(θ, ϕ) =�i a sin θ cosϕ+�j a sin θ sinϕ+ �k a cos θ

(0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π

2
) .

При этом
dS = |[�rθ × �rϕ]| dθ dϕ = a2 sin θ dθ dϕ .

Соответственно

m =
1

a

∫ 2π

0

dϕ

∫ π
2

0

a3 cos θ sin θ dθ = 2πa2 sin2 θ

2

∣∣∣∣π
2

0

= πa2 .

Замечание.Данный результат можно получить с помощью более на-
глядных геометрических рассуждений. Покажем это, сведя поверхност-
ный интеграл (∗) к двойному, по кругу σ : x2 +y2 ≤ a2 в горизонтальной
плоскости z = 0:

m =

∫∫
σ

z

a

dx dy

cos γ
.
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Здесь как и всюду ранее γ – угол между плоскостью касательной к сфере
в рассматриваемой точке и горизонтальной плоскостью. Последний, как
мы знаем, совпадает с углом θ между осью z и нормалью к сфере в
выбранной точке. Поскольку

z

a
= cos θ = cos γ ,

то из предыдущего интегрального равенства сразу заключаем, что иско-
мая масса численно равна площади круга, куда проектируется полусфе-
ра: m = πa2.

Задача 5.6. Моментом массы материальной поверхности S отно-
сительно некоторой плоскости называют интеграл по данной поверхно-
сти от произведения ее плотности на расстояние от текущей точки по-
верхности до указанной плоскости. В нашем случае, в силу симметрии
расположения пластинки, достаточно вычислить лишь один из статиче-
ских моментов. Например относительно плоскости z = 0. Он следующим
образом выражается через поверхностный интеграл:

Mxy =

∫∫
S

z dS .

Перейдем к двумерному интегралу, спроектировав поверхность на ука-
занную плоскость и заметив, что dS =

√
3 dx dy. Таким образом, имеем:

Mxy =
√

3

∫ a

0

dx

∫ a−x

0

(a− x− y) dy =
√

3

∫ a

0

dx
(a− x− y)2

2

∣∣∣∣0
a−x

=

√
3

2

∫ a

0

(a− x)2 dx = −
√

3

6
(a− x)3

∣∣a
0

=
a3

2
√

3
.

Задача 5.7. Искомый момент выражается поверхностным инте-
гралом:

Jz = 
0

∫∫
S

(x2 + y2) dS .

Зададим векторное параметрическое уравнение поверхности

�r(ϕ, θ) =�i a cos θ cosϕ+�j a cos θ sinϕ+ �k a sin θ

(0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π

2
) .

При этом
dS = |[�rϕ × �rθ]| dϕ dθ = a2 cos θ dϕ dθ .
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Кроме того

x2 + y2 = a2
(
cos2 θ cos2 ϕ+ cos2 θ sin2 ϕ

)
= a2 cos2 θ ,

и наш поверхностный интеграл преобразуется к виду:

Jz = 
0

∫ 2π

0

dϕ

∫ π
2

0

a4 cos3 θ dθ = 2πa4
0

∫ π
2

0

(
1 − sin2 θ

)
d sin θ =

4

3
πa4
0 .

Замечание. Обратим внимание, что в данной задаче мы взяли не
ту сферическую систему координат, которой пользовались до сих пор. В
данном случае мы отсчитывали угол θ от экватора, в то время как ранее
всегда отсчитывали его от вертикальной оси z. Сделано это намерен-
но, чтобы обратить ваше внимание на возможность иного определения
сферических координат. На практике почти одинаково часто используют
как “нашу”, так и примененную в данной задаче сферическую систему
координат.

Занятие 6. Поверхностные интегралы 2-го ро-
да

Задача 6.4. При вычислении данного интеграла его полезно раз-
бить на 3 слагаемых и обсуждать каждое по отдельности. Начнем с тре-
тьего слагаемого:

I3 =

∫∫
S

h(z) dxdy =

∫∫
S

h(z) cos γ dS .

Вклад в этот интеграл дают лишь верхняя и нижняя стороны паралле-
лепипеда, для которых cos γ не равен нулю. Имея в виду, что на этих
сторонах подынтегральная функция постоянна, выносится из под знака
интеграла, а оставшиеся интегралы равны площади сторон, имеем:

I3 = [h(c) − h(0)] ab .

Знак минус здесь учитывает тот факт, что вектор нормали к нижней сто-
роне параллелепипеда направлен в сторону, противоположную направ-
лению оси z.

Расчеты остальных составляющих исходного интеграла совершенно
аналогичны, и в совокупности приводят к окончательному результату:

I = abc

(
f(a) − f(0)

a
+
g(b) − g(0)

b
+
h(c) − h(0)

c

)
.
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Задача 6.5. Разобьем интегрируемую поверхность на пять участ-
ков, по числу ограничивающих его гладких кусков: I = Ip+Ic+Ix+Iy+Iz.
Здесь Ip –вклад куска параболоида, Ic –куска цилиндра, Ix –плоскости
x = 0, Iy –плоскости y = 0 и Iz –плоскости z = 0. Начнем с вычисления
интегралов по плоским участкам. В первом из них остается лишь одно
слагаемое

Ix =

∫∫
σx

xz dydz ,

поскольку в плоскости x = 0 справедливы тождества: dxdy = dzdx ≡ 0.
Кроме того и выражение под оставшимся интегралом равно нулю во всех
точках указанной плоскости. А значит Ix = 0. По сходным причинам
имеем: Iy = Iz = 0.

Приступим к вычислению интеграла Ip по куску поверхности пара-
болоида. Спроектировав его на плоскость (x, y), находим:

Ip =

∫∫
σz

( �A,�rx, �ry) dxdy .

Здесь за σz обозначена четверть круга в плоскости z = 0, по которому
ведется интегрирование в двойном интеграле. Вычислим фигурирующее
в нем смешанное произведение. Для этого выпишем вначале векторное
поле и уравнение поверхности:

�A =�i x(x2 + y2) +�j x2y + �k y2(x2 + y2) ,

�r =�ix+�jy + �k(x2 + y2) .

Отсюда

( �A,�rx, �ry) =

∣∣∣∣∣∣
x(x2 + y2) x2y y2(x2 + y2)

1 0 2x
0 1 2y

∣∣∣∣∣∣ = −2x4 + y4 − 3x2y2 .

Таким образом, исследуемый интеграл принимает вид:

Ip = −
∫∫
σz

(x4 + 3x2y2)dxdy .

Здесь мы сразу приняли во внимание симметрию области σz, согласно
которой слагаемые x4 и y4 вносят одинаковый вклад. Выбрав за перемен-
ные интегрирования полярные координаты, сведем двойной интеграл к
произведению определенных интегралов:

Ip = −
∫ π/2

0

(cos4 ϕ+ 3 sin2 ϕ cos2 ϕ) dϕ

∫ 1

0

ρ5dρ .
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Сосчитав интеграл по ρ и используя стандартные тригонометрические
преобразования

cos2 ϕ =
1

2
(1 + cos 2ϕ) , sinϕ cosϕ =

1

2
sin 2ϕ ,

будем иметь:

Ip = − 1

24

∫ π/2

0

[
(1 + cos 2ϕ)2 + 3 sin2 2ϕ

]
dϕ .

Далее сами собой напрашиваются аналогичные тригонометрические пре-
образования подынтегрального выражения:

(1 + cos 2ϕ)2 + 3 sin2 2ϕ = 1 + 2 cos 2ϕ+ cos2 2ϕ+ 3 sin2 2ϕ =

2 + 2 cos 2ϕ+ 2 sin2 2ϕ = 3 + 2 cos 2ϕ− cos 4ϕ .

Очевидно, что интегралы от входящих сюда косинусов в указанных пре-
делах от 0 до π/2 равны нулю, а значит

Ip = − 1

24

∫ π/2

0

3dϕ = − π

16
.

Осталось вычислить интеграл по куску цилиндрической поверхности,
где в качестве параметров удобно взять цилиндрические координаты ϕ и
z. При этом интегрируемое поле и радиус-вектор поверхности запишутся
в виде:

�A =�i z cosϕ+�j cos2 ϕ sinϕ+ �k z sin2 ϕ ,

�r =�i cosϕ+�j sinϕ+�j z ,

а поверхностный интеграл сведется к двойному

Ic =

∫ 1

0

dz

∫ π/2

0

dϕ ( �A,�rϕ, �rz) .

Здесь

( �A,�rϕ, �rz) =

∣∣∣∣∣∣
z cosϕ cos2 ϕ sinϕ z sin2 ϕ
− sinϕ cosϕ 0

0 0 1

∣∣∣∣∣∣ = z cos2 ϕ+
1

4
sin2 2ϕ .

Следовательно

Ic =

∫ 1

0

dz

∫ π/2

0

dϕ

(
z cos2 ϕ+

1

4
sin2 2ϕ

)
=

3π

16
.

Таким образом окончательно

I = Ip + Ic = − π

16
+

3π

16
=
π

8
.
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Занятие 7. Вычисление объемов с помощью
поверхностного интеграла
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Рис. 7.1: График тора в задаче 7.4 для случая a = 1 и b = 3.

Задача 7.4. Отметим, что мы получим указанный тор, если бу-
дем вращать расположенную в плоскости (x, z) окружность радиуса a, c
центром в точке (x = b, z = 0), вокруг оси z. При этом перемещению по
окружности соответствует изменение угла ψ, а вращению самой окруж-
ности, изменение ϕ. Нетрудно сообразить также, что все точки тора вза-
имно однозначно отображаются в квадрат со сторонами (ϕ ∈ (0, 2π),
ψ ∈ (0, 2π)). Таким образом, объем тора выражается следующим двой-
ным интегралом:

V =
1

3

2π∫
0

dϕ

2π∫
0

(�r, �rϕ, �rψ) dψ .

Здесь принято во внимание, что векторы �n, �rϕ и �rψ образуют правую
тройку.

Вычислим входящее в двойной интеграл смешанное произведение.
Учитывая, что векторное параметрическое уравнение тора имеет вид:

�r = (b+ a cosψ) cosϕ�i+ (b+ a cosψ) sinϕ�j + a sinψ�k ,
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получим:

(�r, �rϕ, �rψ) =

∣∣∣∣∣∣
(b+ a cosψ) cosϕ (b+ a cosψ) sinϕ a sinψ
−(b+ a cosψ) sinϕ (b+ a cosψ) cosϕ 0
−a sinψ cosϕ −a sinψ sinϕ a cosψ

∣∣∣∣∣∣ .
По аналогии с задачей 7.3, воспользуемся симметрией тора для упроще-
ния вычисления смешанного произведения. А именно, примем во внима-
ние, что оно не должно зависеть от угла ϕ. Положив ϕ равным нулю,
получим:

(�r, �rϕ, �rψ) =

∣∣∣∣∣∣
b+ a cosψ 0 a sinψ

0 b+ a cosψ 0
−a sinψ 0 a cosψ

∣∣∣∣∣∣ =

= (b+ a cosψ)2a cosψ + (b+ a cosψ)a2 sin2 ψ =

= a2b(cos2 ψ + 1) + a(a2 + b2) cosψ .

Вспомнив далее, что интеграл по полному периоду от cosψ равен нулю,
найдем окончательно:

V =
1

3
a2b

2π∫
0

dϕ

2π∫
0

(1 + cos2 ψ) dψ = 2a2bπ2 .

Замечание. Обратим внимание, что ответ имеет удивительно про-
зрачный геометрический смысл. Он распадается на произведение пло-
щади вращающейся окружности πa2, и длины окружности 2πb, вдоль
которой происходит вращение.

Задача 7.5. Искомый объем равен

V =
1

3

∫∫
S

(�r · �n) dS =
1

3

∫∫
S1

(�r · �n) dS +

∫∫
S2

(�r · �n) dS

 ,

где S – поверхность, состоящая из эллипса S1:

x2

a2
+
y2

b2
≤ h, z = h,

и параболоида S2:

z =
x2

a2
+
y2

b2
,
x2

a2
+
y2

b2
≤ h.
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На поверхности S1 имеем

�r = x�i+ y�j + h�k, �n = �k, (�r · �n) = h,

I1 =

∫∫
S1

(�r · �n) dS =

∫∫
S1

h dS = h · Sэллипса = πabh2.

Для вычисления второго интеграла введем векторную параметриза-
цию параболоида

�r = aρ cosϕ�k + bρ sinϕ�j + ρ2 �k (0 ≤ ρ ≤
√
h, 0 ≤ ϕ ≤ 2π).

Тогда

(�r · �n) = (�r, �rϕ, �rρ) =

∣∣∣∣∣∣
aρ cosϕ bρ sinϕ ρ2

−aρ sinϕ bρ cosϕ 0
a cosϕ b sinϕ 2ρ

∣∣∣∣∣∣ = abρ3,

I2 =

∫∫
S2

(�r · �n) dS = ab

2π∫
0

dϕ

√
h∫

0

ρ3 dρ = πab
h2

2
.

Окончательно

V =
1

3
(I1 + I2) =

1

3

(
πab

h2

2
+ πabh2

)
= πab

h2

2
.

Проверим полученный результат с помощью обычного определенного
интеграла. В сечении параболоида плоскостью, перпендикулярной оси z,
получаем эллипс

x2

(a
√
z)2

+
y2

(b
√
z)2

= 1.

Его площадь равна S(z) = πabz. Суммируя эти площади при изменении
z от 0 до h, получаем

V =

h∫
0

S(z) dz = πab

h∫
0

z dz = πab
h2

2
.
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Занятие 8. Основные понятия теории поля
Задача 8.10. Градиент равен:

gradU = (2x+ y + 3)�i+ (4y + x− 2)�j + 6(z − 1)�k .

В частности, в начале координат вектор градиента равен

gradU = 3�i− 2�j − 6�k .

Его длина
|gradU(O)| =

√
9 + 4 + 36 = 7 .

Направление вектора характеризуют направляющие косинусы

cosα =
3

7
cos β = −2

7
cos γ = −6

7
.

Точно также находятся длины и направляющие косинусы в остальных
точках.

Координаты точки M , где градиент обращается в нуль, найдем, при-
равняв нулю проекции градиента на оси координат, и решив полученную
так систему линейных уравнений:

2x+ y = −3 ,
4y + x = 2 ,
z = 1 .

⇒ M(−2; 1; 1) .

Замечание. Следуя непременному правилу обсуждать геометриче-
ский смысл решаемых задач, заметим, что поверхности уровня заданного
поля представляют собой вложенные друг в друга эллипсоиды, с центром
в указанной точке M , где градиент поля равен нулю. Очевидно, в этой
точке исследуемое скалярное поле минимально. Подставив координаты
точки M в выражение для поля U , найдем его наименьшее значение:
Umin = U(M) = −7.

Задача 8.11. Вычислим вначале градиент указанной функции.
Согласно (8.6):

gradU = −1

r
grad r = − �r

r2
.

Отсюда
|gradU | =

1

r
⇒ r = 1 .

Таким образом, модуль градиента равен единице на поверхности сферы

(x− a)2 + (y − b)2 + (z − c)2 = 1 .
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Задача 8.12. Вычислим градиент с помощью формулы для гради-
ента произведения двух скалярных функций, положив f = x и g = 1/r2,
где r2 = x2 + y2 + x2 – квадрат радиус-вектора �r. Это дает:

gradU =
1

r2
grad x+ xgrad

1

r2
=

1

r2

[(
1 − 2x2

r2

)
�i− 2xy

r2
�j − 2xz

r2
�k

]
.

Подставив сюда координаты входящих в условие задачи векторов A и B,
будем иметь:

gradU(A) =
1

9

{
7

9
, −4

9
, −4

9

}
, gradU(A) =

1

10

{
−4

5
,

3

5
, 0

}
.

Здесь специально вынесены за скобку длины искомых векторов, так что
косинус угла ϕ между ними равен сумме произведений компонент, за-
ключенных в фигурные скобки:

cosϕ = −7

9

4

5
− 4

9

3

5
= −8

9
,

а ϕ =� 153 градуса.

Задача 8.13. Градиент данного скалярного поля равен:

grad
1

r
= − �r

r3
.

Соответственно, производная по направлению задается выражением:

∂U

∂l
= −(�� · �r )

r3
=

cos (��, �r )

r2
.

Таким образом градиент равен нулю, когда �r ⊥ �l. Другими словами,
градиент обращается в нуль во всех точках перпендикулярной вектору
�� плоскости, заданной уравнением (�� · �r ).

Задача 8.14. Используя формулу, связывающую производную по
направлению с градиентом, получаем

∂U

∂�
= (gradU · �� ) =

(
gradU · gradV

|gradV |
)

=
(gradU · gradV )

|gradV | .

Очевидно, что
∂U

∂�
= 0, если gradU⊥ gradV .

Задача 8.15. Установим знак дивергенции поля �A = 3x2�i−xy2�j+
z2 �k в точках P1(1, 2, 3), P(1, 5,−1), P3(1, 4, 4, 1).
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Имеем
div �A = 6x− 2xy + 2z,

и
1) div �A(P1) = 7 > 0 – в точке P1 сосредоточен источник,
2) div �A(P2) = −6 < 0 – в точке P2 находится сток,
3) div �A(P3) = 0 – в точке P3 нет ни источника, ни стока.

Задача 8.16. Вычисляем ротор поля �A:

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
yz (y + x)z xz

∣∣∣∣∣∣∣∣ =

=�i

∣∣∣∣∣∣
∂

∂y

∂

∂z
(y + x)z xz

∣∣∣∣∣∣−�j
∣∣∣∣∣ ∂

∂x

∂

∂z
yz xz

∣∣∣∣∣+ �k

∣∣∣∣∣∣
∂

∂x

∂

∂y
yz (y + x)z

∣∣∣∣∣∣ =

= −x�i+ (y − z)�j.

а) В точке P1(−3, 5, 1) имеем:

rot �A(P1) = 3�i+ 4�j, |rot �A(P1)| =
√

32 + 42 = 5,

cosα =
3

5
, cos β =

4

5
, cos γ = 0.

б) В точке P2(0, 5, 5):

rot �A(P2) = �0, |rot �A(P1)| = 0.

Направление ротора поля �A в точке P2 неопределено.

Задача 8.17. 1) Находим градиент скалярного поля U , используя
правило нахождения градиента сложной функции:

gradU =
1

2
√
x2 − 4y − 2z

·grad (x2+4y−2z) =
1√

x2 − 4y − 2z
(x�i+2�j−�k).

В точке M0 имеем:

gradU(M0) =
1

4
(2�i+ 2�j − �k),

�� =
�a

|�a | =
1

3
(2�i−�j + 2�k),
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∂U(M0)

∂�
= (gradU(M0) · �� ) =

1

12
(4 − 2 − 2) = 0.

Случаи 2), 3), 4) – аналогично.

Задача 8.18. Решается подобно предыдущей задаче, если поло-
жить �a =

−→
M0M1.

Задача 8.19. Для векторного поля �A = f(r)x�i + f(r)y�j + f(r)z �k
запишем систему уравнений нахождения векторной линии:

dx

f(r)x
=

dy

f(r)y
=

dz

f(r)z
.

Решая ее, получаем 
dy

y
=
dx

x
,

dz

z
=
dx

x
,

{
y = c1x,

z = c2x.

Занятие 9. Действия с вектором “набла”
При решении задач этого занятия рекомендуется использовать как

таблицу, уже известные нам соотношения:

∇ r =
�r

r
(∇, �r ) = 3 [∇, �r ] = 0

∇ (�c, �r ) = �c (∇, [�c, �r ]) = 0 [∇, [�c, �r ]] = 2�c

Задача 9.9. Пункт а) есть прямое следствие линейности оператора
набла. Запишем выражение в пункте б) на языке вектора набла:

div (U�c ) = (�∇ · U �c ) = (�∇U · �c ) = (�c · gradU) .

В частности, дивергенция произведения скалярного поля на постоянный
вектор обращается в нуль в тех точках, где градиент скалярного поля
перпендикулярен постоянному вектору.

Задача 9.10.Мы уже обсудили эту задачу ранее, обобщив решение
задачи 8.18. А именно, мы установили, что

div (gradU) = (�∇ · �∇)U = �∇2U = ∆U ,

где ∆ – оператор Лапласа, имеющий в декартовой системе координат
вид:

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.
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Задача 9.11.

div
�r

r
=

(
�∇ · 1

r
�r

)
=

(
�∇1

r
· �r
)

+
1

r

(
�∇ · �r

)
= − 1

r2

(
�r

r
· �r
)

+
3

r
=

2

r
.

Задача 9.12. Оперируя вектором набла, получим

div[f(r)�c ] = (�∇ · f(r)�c ) = (�∇f(r) · �c ) =
1

r
f ′(r)(�r · �c ) .

Результирующее поле обращается в нуль на концентрически вложенных
сферах, где функция f(r) подозрительна на экстремум, а также в точках
перпендикулярной вектору �c плоскости (�r · �r ) = 0.

Задача 9.13.

div[f(r)�r ] =
(
�∇ · f(r)�r

)
=
(
�∇f(r) · �r

)
+ f(r)

(
�∇ · �r

)
=

=
f ′(r)
r

(�r · �r ) + 3f(r) = rf ′(r) + 3f(r) .

Выясним, когда это выражение тождественно равно нулю. Так будет,
если f(r) удовлетворяет дифференциальному уравнению rf ′ + 3f = 0.
Его решение:

f =
c

r3
.

Задача 9.14.

div (U gradV ) = (�∇ · U �∇V ) = (�∇U · �∇V ) + U �∇2V =

= (gradU · gradV ) + U ∆V .

В частности, если градиенты скалярных полей U и V всюду взаимно-
перпендикулярны, то первое слагаемое в правой части пропадает и поле
U ведет себя как постоянный множитель.

Задача 9.15. Случай а) вытекает из линейности оператора набла.
Аккуратно распишем случай б):

rot (U �A) = [�∇× U �A ] = [�∇U × �A ] + U [�∇× �A ] =
[
gradU × �A

]
+ U rot �A .

Данная формула раскрывает действие дифференциального операто-
ра 1-го порядка. Тем не менее, обратив внимание на одно из ее частных
следствий, мы почти даром приобретем соотношение из разряда диф-
ференциальных операторов 2-го порядка. А именно, считая �A потенци-
альным полем: �A = gradV и учитывая, что ротор потенциального поля
равен нулю, получим формулу

rot (U gradV ) = [gradU × gradV ] .
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Из нее в частности следует, что векторное поле UgradV будет потенци-
альным, лишь если направления градиентов полей U и V всюду совпа-
дают.

Задача 9.16.

rot�c f(r) =
[
�∇× �c f(r)

]
=
[
�∇f(r) × �c

]
=
[
f ′(r)�∇r × �c

]
=
f ′(r)
r

[�r × �c ] .

Данное векторное поле всюду перпендикулярно как постоянному вектору
�c, так и радиус-вектору �r, и обращается в нуль вдоль прямой, проходящей
через начало координат параллельно вектору �c.

Задача 9.17. Запишем радиус-вектор точки M0(2, 1,−2). Имеем:
�r0 = �r(M0) = 2�i+�j−2�k, r0 = 3, (�c, �r0) = 0. Сначала вычисляем градиент
для произвольного вектора �r, а затем подставляем в найденное выраже-
ния значение радиуса вектора и его длины, вычисленные в точке M0.
Итак:

1) grad (div (grad�r)) = ∇(∇,∇r)) = ∇
(
∇, 1

r
�r

)
=

= ∇
((

∇1

r
, �r

)
+

1

r
(∇, �r )

)
= ∇

((
− 1

r2

�r

r
, �r

)
+

3

r

)
= ∇2

r
= − 2

r3
�r,

grad (div (grad�r))
∣∣∣∣
M0

= −2

9
(2�i+�j − 2�k).

2) grad (div�r
√
r) = ∇(∇, �r√r) = ∇ ((∇√

r, �r ) +
√
r(∇, �r )

)
=

= ∇
((

1

2
√
r

�r

r
, �r

)
+ 3

√
r

)
=

7

2
∇√

r =
7

4

�r

r
√
r
,

grad (div�r
√
r)

∣∣∣∣
M0

=
7

12
√

3
(2�i+�j − 2�j).

3) grad
(
�c,
�r

r2

)
= ∇ 1

r2
(�c, �r ) = (�c, �r )∇ 1

r2
+

1

r2
∇(�c, �r ) =

= − 2

r4
�r (�c, �r ) +

1

r2
�c,

grad
(
�c,
�r

r2

)∣∣∣∣
M0

=
1

9
(4�i+ 2�j + 5�k).

4) grad
[�c, �r]2

r2
= ∇ 1

r4
[�c, �r ]2 = [�c, �r ]2∇ 1

r4
+

1

r4
∇[�c, �r ]2.
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Используя результат задачи 9.2, получаем

grad
[�c, �r]2

r2
= −4

�r

r6
[�c, �r ]2 +

1

r4
(2�r (�c,�c ) − 2�c (�c, �r)).

Проведем необходимые вычисления:

[�c, �r0] =

∣∣∣∣∣∣
�i �j �k
4 2 5
2 1 −2

∣∣∣∣∣∣ = −9�i+ 18�j, [�c, �r0]
2 = 81 · 5,

grad
[�c, �r]2

r2

∣∣∣∣
M0

= − 4

36
· 81 · 5�r0 +

2

34
· 45�r0 = −10

9
(2�i+�j − 2�k).

Задача 9.18.

1) div
(
grad

1

r3

)
=

(
∇,∇ 1

r3

)
=

(
∇,− 3

r4
∇r
)

= −3

(
∇, 1

r5
�r

)
=

= −3

((
∇ 1

r5
, �r

)
+

1

r5
(∇, �r )

)
= −3

(
− 5

r7
�r, �r

)
+

3

r5
=

18

r5
,

2) div
[
�c, grad

1

r

]
=

(
∇,
[
�c,∇1

r

])
=

(
∇
[
�c,− 1

r3
�r

])
=

= −
(
∇
[
�c,

↓
1

r3
�r

])
−
(
∇
[
�c,

1

r3

↓
�r

])
=

3

r5
(�r, [�c, �r ]) − 1

r3
(∇, [�c, �r ]) = 0,

3) rot [�c, grad r] = [∇, [�c,∇r]] =

[
∇,
[
�c,

1

r
�r

]]
=

=

[
∇1

r
, [�c, �r]

]
+

1

r
[∇, [�c, �r]] = − 1

r3
[�r, [�c, �r]] +

1

r
[∇, [�c, �r]] =

2�c

r
,

4) rot (�c, �r )[�c, �r ] = [∇, (�c, �r )[�c, �r ]] = [∇,
↓

(�c, �r ) [�c, �r ]] + [∇, (�c, �r )
↓

[�c, �r ]] =

= [∇(�c, �r ), [�c, �r ]] + (�c, �r )[∇, [�c, �r ]] = 2�c (�c, �r )

Задача 9.19.Перенесем начало координат в точкуM0 и обозначим
через �r1 = �r − �r0. Тогда

1) grad
1

|�r − �r0| = ∇ 1

r1
= − 1

r2
1

∇r1 = −�r1
r3
1

=
�r − �r0
|�r − �r0|3 ,

2) div
�r − �r0
|�r − �r0|2 =

(
∇, �r1

r2
1

)
=

1

r2
1

=
1

|�r − �r0|2 .



Занятие 10. Формула Гаусса-Остроградского 199

Занятие 10. Формула Гаусса-Остроградского
Задача 10.7. Этот поверхностный интеграл равен объемному от

дивергенции векторного поля

�A = x3�i+ y3�j + z3 �k .

Дивергенцию легко вычислить:

div �A = 3(x2 + y2 + z2) = 3 r2 ,

а значит
I = 3

∫∫∫
V

r2 dV .

Замечание. Конечно, трансформация поверхностного интеграла в
объемный – не самоцель. Подобные преобразования совершают надеясь
на то, что объемный интеграл окажется чем-то удобнее исходного по-
верхностного интеграла. Например, он может иметь геометрически бо-
лее наглядную структуру или приводит к более простым вычислениям
для конкретных поверхностей S. В нашем случае, в частности, симмет-
рия подынтегрального выражения в объемном интеграле позволяет избе-
жать громоздкие выкладки при подсчете интеграла по сфере радиуса R
с центром в начале координат. В самом деле, в случае сферы вычисления
проводятся в одну строчку:

I = 12π

∫ R

0

r4 dr =
12

5
π R5 .

Задача 10.8. Дивергенция вектора �A = yz�i + zx�j + xy �k равна
нулю, а значит равен нулю и обсуждаемый поверхностный интеграл.

Задача 10.9. Вспоминая связь производной по направлению, от-
метим, что

∂U

∂n
= (gradU,�n).

Но тогда по формуле Остроградского-Гаусса получаем∫∫
S

∂U

∂n
dS =

∫∫∫
V

div (gradU) dV =

∫∫∫
V

∆U dV .

Известно, что гармоническая функция удовлетворяет уравнению Лапла-
са ∆U = 0, и, следовательно,∫∫

S

∂U

∂n
dS = 0.
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Замечание. Только что полученный результат имеет интересное при-
менение в математической физике. Краевая задача∆U(x, y, z) = 0, (x, y, z) ∈ Ω

∂U

∂n

∣∣∣∣
S

= f(x, y, z), S = ∂Ω

имеет смысл, если только выполняется∫∫
S

f(x, y, z) dS = 0.

Задача 10.10. Для функции U = a1x
2 +a2y

2 +a3z
2 + b1xy+ b2xz+

b3yz + c1x + c2y + c3z + d имеем ∆U = 2(a1 + a2 + a3). Действуя как в
предыдущей задаче, получаем∫∫

S

∂U

∂n
dS =

∫∫∫
V

2(a1 + a2 + a3) dV = 2(a1 + a2 + a3)V.

Задача 10.11. Перепишем подынтегральное выражение на языке
скалярных произведений, считая для определенности вектор �� единич-
ным: ∫∫

S

(�n · �� ) dS .

Поскольку векторное поле ��, от которого берется поверхностный инте-
грал, постоянно, дивергенция его тождественно равна нулю, и следова-
тельно, по формуле Гаусса-Остроградского, равен нулю указанный по-
верхностный интеграл.

Задача 10.12.

�A = (1 + x)2�i+ xy�j − 3xz �k,

div =
∂(1 + x)2

∂x
+
∂(xy)

∂y
+
∂(−3xz)

∂z
= 2,∫∫

S

(1 + x)2 dydz + xy dzdx− 3xz dxdy =

∫∫∫
V

2 dV = 2abc.

Задача 10.13.

�A = x2 + y2 + z2, div �A = 2(x+ y + z),
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I =

∫∫
S

x2 dydz + x2 dzdx+ z2 dxdy = 2

∫∫∫
V

(x+ y + z) dxdydz.

Переходя далее к цилиндрическим координатам:
x = r cosϕ,

y = r sinϕ,

z = z,

получаем

I = 2

2π∫
0

dϕ

a∫
0

r dr

h∫
0

[r(cosϕ+sinϕ)+z] dz = 2

2π∫
0

dϕ

a∫
0

r dr

h∫
0

z dz = πa2h2.

Задача 10.14. Так как дивергенция интегрируемого поля

�A = x3y2 sin z�i+ x2y3 sin z�j + 6x2y2 cos z �k,

равна нулю, div �A = 0, то рассуждения аналогичные задаче 1.110 позво-
ляют заменить искомый поверхностный интеграл на интеграл по верхней
стороне круга x2 + y2 ≤ 4, лежащего в плоскости xOy. Но тогда∫∫

S

x3y2 sin z dydz + x2y3 sin z dzdx+ 6x2y2 cos z dxdy =

=

∫∫
x2+y2≤4

6x2y2 dxdy = 6

2π∫
0

cos2 ϕ sin2 ϕdϕ

2∫
0

r5 dr = 16π.

Занятие 11. Формула Стокса
Задача 11.6. Вспоминая формулу вычисления смешанного произ-

ведения, запишем подинтегральное выражение в векторном виде∣∣∣∣∣∣
dx dy dz

cosα cos β cos γ
x y z

∣∣∣∣∣∣ = (d�r, �n, �r) = ([�n,�r], d�r).

Искомый интеграл равен∮
L

([�n,�r], d�r) =

∫∫
S

(rot [�n,�r], �n) dS = 2

∫∫
S

(�n, �n) dS = 2S.
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Задача 11.7. Ротор интегрируемого векторного поля

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
y + z z + x x+ y

∣∣∣∣∣∣∣∣ =

= (1 − 1)�i+ (1 − 1)�j + (1 − 1)�k ≡ �0

– равен нулевому вектору, а значит, по формуле Стокса, данный интеграл
равен нулю.

Задача 11.8. Найдем ротор интегрируемой векторной функции
�A = (x+ z)�i+ y�j + x2y �k:

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
x+ z y x2y

∣∣∣∣∣∣∣∣ = x2�i+�j.

В качестве поверхности S в формуле Стокса выберем часть плоскости
x + z = 2, вырезаемую цилиндром x2 + y2 = 4. Вектор нормали к этой

плоскости равен �n =
1√
2
�i+

1√
2
�k. Следовательно, (rot �A,�n) =

x2

√
2
и

∮
L

(x+ z) dx+ y dy + x2y dz =
1√
2

∫∫
S

x2 dS.

Для вычисления поверхностного интеграла используем явное задание
поверхности z = 2 − x. Тогда

dS =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy =
√

2 dxdy

и окончательно получаем

1√
2

∫∫
S

x2 dS =

∫∫
x2+y2≤4

x2 dxdy =

2π∫
0

cosϕ dϕ

2∫
0

r3 dr = 4π.

Задача 11.9. В качестве поверхности S в формуле Стокса нужно
взять площадку в плоскости x+ y + z = a, ограниченную кривой L.
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а) В первом случае интегрируемая векторная функция равна

�A = (y + z)3�i+ (z + x)3�j + (x+ y)3 �k.

Поэтому

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
(y + z)3 (z + x)3 (x+ y)3

∣∣∣∣∣∣∣∣ =

= 3([(x+ y)2 − (z + x)2]�i+ [(y + z)2 − (x+ y)2]�j + [(z + x)2 − (y + z)2]�k),

�n =
1√
3
�i+

1√
3
�j +

1√
3
�k, (rot �A,�n) = 0.

Следовательно, искомый интеграл равен нулю.

б) В этом случае

�A = (xy + z)�i+ (yz + x)�j + (xz + y)�k,

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
xy + z yz + x xz + y

∣∣∣∣∣∣∣∣ = (1 − y)�i+ (1 − z)�k + (1 − x)�k,

�n =
1√
3
�i+

1√
3
�j +

1√
3
�k, (rot �A,�n) =

1√
3
(3 − (x+ y + z)),∮

L

�Ad�r =
1√
3

∫∫
S

(3 − (x+ y + z)) dS =
3 − a√

3

∫∫
S

dS =
3 − a√

3
S.

Задача 11.10. Преобразуем с помощью формулы Стокса криво-
линейный интеграл в поверхностный:

�A = z2�i, rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
z2 0 0

∣∣∣∣∣∣∣∣ = 2z�j,

∮
L

z2 dx =

∫∫
S

(2z�j, �n ) dS,
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где в качестве поверхности S возьмем верхнюю сторону сферы, лежащую
в первом октанте. Введем на поверхности S сферические координаты:

x = 4 cos θ cosϕ,

y = 4 cos θ sinϕ,

z = 4 sin θ,

(
0 ≤ ϕ ≤ π

2
, 0 ≤ θ ≤ π

2

)
.

Тогда векторное задание поверхности примет вид

�r(ϕ, θ) = 4 cos θ cosϕ�i+ 4 cos θ sinϕ�j + 4 sin θ �k,

а поверхностный интеграл преобразуется в двойной:

∫∫
S

(2z�j, �n ) dS =

π
2∫

0

dϕ

π
2∫

0

(2 sin θ�j, �rϕ, �rθ) dθ.

Вычисляем смешанное произведение, входящее в последний интеграл:

(2 sin θ�j, �rϕ, �rθ) =

∣∣∣∣∣∣
0 2 sin θ 0

−4 cos θ sinϕ 4 cos θ cosϕ 0
−4 sin θ cosϕ −4 sin θ sinϕ 4 cos θ

∣∣∣∣∣∣ =

= 32 sinϕ cos2 θ sin θ.

Окончательно получаем
π
2∫

0

dϕ

π
2∫

0

(2 sin θ�j, �rϕ, �rθ) dθ = 32

π
2∫

0

sinϕdϕ

π
2∫

0

cos2 θ sin θ dθ =
32

3
.

Задача 11.11. В этой задаче

�A = y�i− x�j + z �k,

rot �A =

∣∣∣∣∣∣∣∣
�i �j �k

∂

∂x

∂

∂y

∂

∂z
y −x z

∣∣∣∣∣∣∣∣ = −2�k,

I =

∮
L

y dx− x dy + z dz =

∫∫
S

(−2�k, �n) dS,

где в качестве поверхности S можно взять нижнюю поверхность круга,
перпендикулярного оси z: x2 + y2 ≤ 2, z =

√
2. Но тогда �n = −�k и

I = 2 · Sкруга = 4π.
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Занятие 12. Задачи теории поля
Задача 12.9 Применим формулу Гаусса-Остроградского, для чего

дополним октант сферы до замкнутой поверхности лежащими в коорди-
натных плоскостях четвертями кругов, с центрами в начале координат.
Так как поток заданного поля через координатные плоскости равен ну-
лю, то поток сквозь выбранную замкнутую поверхность равен интере-
сующему нас потоку через положительный октант сферы. Из формулы
Гаусса-Остроградского имеем

Π =

∫∫∫
V

div �AdV = 2

∫∫∫
V

(x+ y + z) dV ,

где V – область внутри положительного октанта указанной в условии
задачи сферы. Из симметрии области интегрирования и подынтеграль-
ного выражения ясно, что вклад от каждого слагаемого подынтеграль-
ного выражения одинаков. Поэтому можно рассчитать искомый поток
по формуле:

Π = 6

∫∫∫
V

x dV .

Перейдем в интеграле к сферическим координатам
x = r cos θ cosϕ ,
y = r cos θ sinϕ ,
z = r sin θ .


0 ≤ ϕ ≤ π/2 ,
0 ≤ θ ≤ π/2 ,
0 ≤ r ≤ 1 .

Вспомнив еще, что якобиан перехода от декартовых к сферическим ко-
ординатам равен J = r2 cos θ , получим:

Π = 6

∫ π/2

0

cos2 θ dθ

∫ π/2

0

cosϕdϕ

∫ 1

0

r3 dr = 6 · π
4
· 1 · 1

4
=

3π

8
.

Задача 12.10. Естественно разбить соответствующий поверхност-
ный интеграл 2-го типа на четыре, по числу плоскостей, ограничиваю-
щих пирамиду. Иными словами, представим поток в виде суммы:

Π =

∫∫
S1

( �A,−�k ) dxdy+

∫∫
S2

( �A,−�j ) dxdz+

∫∫
S3

( �A,−�i ) dydz+
∫∫
S4

( �A,�n ) dS .

Здесь первые три слагаемых равны потокам через треугольники, лежа-
щие в координатных плоскостях, а S4 –расположенный в положитель-
ном октанте кусок плоскости x+ y+ z = a. Сообразив, что потоки через
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треугольники в разных координатных плоскостях одинаковы, заменим
их утроенным потоком сквозь плоскость (x, y). Кроме того, сведем по-
следний интеграл к двойному –по проекции поверхности S4 на ту же
координатную плоскость:

Π = −3

∫∫
S1

x dxdy +

∫∫
S1

( �A, �rx, �ry) dxdy .

Сосчитаем каждый из входящих сюда интегралов по отдельности. Пер-
вый из них равен:

3

∫∫
S1

x dxdy =

∫ a

0

x dx

∫ a−x

0

dy =

∫ a

0

(ax−x2) dx = 3

(
ax2

2
− x3

3

)∣∣∣∣a
0

=
a3

2
.

Чтобы найти оставшийся интеграл, выпишем явные выражения вектор-
ного поля и радиус-вектора как функции x и y:

�A =�i y +�j (a− x− y) + �k x , �r =�i x+�j y + �k (a− x− y) .

Отсюда видно, что смешанное произведение векторов �A, �rx и �ry равно

(�a, �rx, �ry) =

∣∣∣∣∣∣
y a− x− y x
1 0 −1
0 1 −1

∣∣∣∣∣∣ = x+ (a− x− y) + y = a .

Следовательно ∫∫
S1

( �A, �rx, �ry) dxdy = a
a2

2
=
a3

2
.

Таким образом, полный поток указанного векторного поля через поверх-
ность пирамиды равен нулю:

Π = −a
3

2
+
a3

2
= 0 .

Замечание. Единственная приобретенная в процессе решения по-
лезная информация состоит, пожалуй, в том, что мы научились выпол-
нять, не допуская ошибок, довольно длинные цепочки вычислений. Что
касается собственно ответа, то он мгновенно следует из формулы Гаусса-
Остроградского и из того факта, что дивергенция интегрируемого поля
тождественно равна нулю.
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Задача 12.11 С помощью формулы Гаусса-Остроградского иско-
мый поток выражается через объемный интеграл:

Π = 3

∫∫∫
V

(x2 + y2 + z2) dV .

Интегрирование ведется по внутренности сферы радиуса R = 1/2 с цен-
тром в точке (1/2, 0, 0). Чтобы избежать громоздких выкладок, перейдем
к новой – смещенной – декартовой системе координат с началом в центре
шара, по которому ведется интегрирование:

u = x− 1

2
, y = y , z = z .

В этой системе координат объемный интеграл примет вид:

Π = 3

∫∫∫
V

r2 dV + 3

∫∫∫
V

u dV +
3

4

∫∫∫
V

dV .

Здесь обозначено: r2 = u2 +y2 + z2. Очевидно, последний интеграл равен
объему шара

3

4

∫∫∫
V

dV =
3

4
· 4

3
π R3 =

π

8
,

а средний равен нулю. Следовательно

Π = 3

∫∫∫
V

r2 dV +
π

8
.

Оставшийся интеграл вычислим, перейдя к сферической системе коор-
динат. При этом интеграл распадается на произведение трех интегралов.
Два из них — по угловым переменным — в совокупности дают полный
телесный угол Ω = 4π, и интегралу по радиальной переменной. С учетом
сказанного получаем:

Π = 12π

∫ 1/2

0

r4 dr +
π

8
= π

(
12

5 · 32
+

1

8

)
=
π

8

(
3

5
+ 1

)
=
π

5
.

Задача 12.12. Работа U силового поля �F (�r ) вдоль указанного
пути L равна криволинейному интегралу 2-го типа∫

L

(�F , d�r) =

∫
L

ey−zdx+ ez−xdy + ex−ydz .
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Чтобы вычислить его, выпишем уравнение отрезка:

x

1
=
y

3
=
z

5
⇐⇒

{
y = 3x
z = 5x

(0 ≤ x ≤ 1) .

Взяв в качестве переменной интегрирования x и пользуясь приведенны-
ми уравнениями пути интегрирования, будем иметь:

U =

∫ 1

0

(
e−2x + 3e−4x + 5e−2x

)
dx = −6

2
e−2x +

3

4
e4x

∣∣∣∣1
0

=

−3e−2 +
3

4
e4 + 3 − 3

4
=

1

4

(
3e4 + 9 − 12e−2

)
.

Задача 12.13. При оценке циркуляции по маленьким контурам,
в пределах которых векторное поле меняется слабо, удобно применять
теорему Стокса

Γ =

∫∫
S

(rot �A,�n ) dS ,

сводящую циркуляцию к поверхностному интегралу 2-го типа по малень-
кой площадке S, а затем, по теореме о среднем, приближенно заменить
поверхностный интеграл площадью площадки, умноженной на значение
(rot �A,�n ) в любой ее точке M .

Реализуем описанную программу действий. Для этого вычислим ро-
тор заданного векторного поля:

rot �A =

∣∣∣∣∣∣∣∣∣∣

�i �j �k

∂

∂x

∂

∂y

∂

∂z
y√
z

− x√
z

√
xy

∣∣∣∣∣∣∣∣∣∣
=

=�i

(
x

2
√
yx

− x

2z
√
z

)
+�j

(
− x

2z
√
z
− y

2
√
yx

)
+ �k

(
− 2√

z

)
.

Отсюда в частности следует, что в центре M(1, 1, 1) кружочка, ограни-
ченного заданной в условии задачи окружностью,

rot �A = −�j − 2�k .

Осталось умножить этот вектор скалярно на вектор нормали к кружочку

�n =�i cosα+�j cos β + �k cos γ ,

и на его площадь π ε2, чтобы найти искомое приближенное значение цир-
куляции:

Γ ∼= −(cos β + 2 cos γ)π ε2 .


