
Дифракция на структурах с осевой симметрией 

Вводные замечания. Зоны Френеля 

Пусть от точечного источника S распространяется сферическая волна. Выбранный 

волновой фронт радиуса R разобьѐм на зоны Френеля для точки наблюдения P. 

(Выбор конкретного фронта делается исходя из условий решаемой задачи.). Эти зоны 

имеют вид колец на волновом фронте (первая зона – центральная – будет не кольцом, 

а кругом). 

Амплитуду колебаний в точке P можно найти с помощью так называемой спирали 

Френеля, являющейся векторной диаграммой сложения колебаний, приходящих в 

точку P от бесконечно узких кольцевых зон. Точка B0 на этой диаграмме соответст-

вует точке C на фронте, точка B1 – внешней границе 1-й зоны, B2 – 2-й зоны и т.д. 

Вектор  изображает амплитуду колебаний при полностью открытом 

фронте, а, например,  амплитуду колебаний, приходящих от 2-й зоны. Для 

нескольких первых зон уменьшением радиусов витков спирали можно пренебречь и 

заменить спираль окружностью радиуса  с центром в точке B∞. 

Радиусы зон Френеля 

По определению внешние границы зон будут находиться от точки P на расстояниях 

 

где  – номер зоны,  – длина волны,  – расстояние от точки наблюдения P до 

ближайшей к ней точки фронта C., и будут представлять собой окружности. Радиусы 

этих окружностей  (часто их называют просто «радиусы зон Френеля») найдѐм, 

рассмотрев пару треугольников, образованных радиусом фронта R, расстоянием  

(две гипотенузы), радиусом  (общий катет), отрезком SP (он состоит из пары других 

катетов). На рисунке эти треугольники показаны для 2-й зоны. Из теоремы Пифагора 

следует, что 
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Откуда, учитывая выражение (1), и полагая  (пренебрегая слагаемыми, 

содержащими  и более высокие степени), получим 

 

Плоские волны можно рассматривать как сферические волны, идущие от бесконечно 

удалѐнного источника. Для них , и 

 

Задача 1 (Иродов №5.105) 

Плоская монохроматическая световая волна с интенсивностью I0 падает нормально на 

непрозрачный экран с круглым отверстием. Какова интенсивность света I за экраном в 

точке, для которой отверстие: 

а) равно первой зоне Френеля; внутренней половине первой зоны; 

б) сделали равным первой зоне Френеля и затем закрыли его половину (по диаметру). 

Решение 

Отверстия и векторная диаграмма выглядят так 

Случай (а). Открытой 1-й зоне соответствует на спирали Френеля половина первого 

витка – дуга от B0 до B1. (Выше договорились спираль заменять окружностью.) 

Амплитуда колебания, приходящего в точку наблюдения от 1-й зоны изображается 

вектором , который, очевидно, в два раза больше чем . 

Границе между внутренней внешней половинами 1-й зоны соответствует точка B1/2, 

лежащая «на полпути» между B0 и B1. Амплитуда колебания от внутренней половины 

зоны – вектор . По модулю . 

Можно считать, что интенсивности колебаний равны квадратам своих амплитуд, 

поэтому 

 

Случай (б). Разобьѐм 1-ю зону на бесконечно узкие вложенные друг в друга кольца. 

Амплитуда колебания, создаваемого в точке наблюдения открытой половиной кольца, 
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будет равна половине амплитуды от целого кольца. Суммируя амплитуды (векторно) 

от всех полуколец получим половину амплитуды от 1-й зоны, т.е. . 

Интенсивность . 

Задача 2 (Сивухин №273) 

Непрозрачный экран, имеющий форму полудиска, помещѐн 

между точечным источником S и точкой наблюдения P таким 

образом, что точка O располагается на одной прямой с точками S и P. Экран закрывает 

небольшое нечѐтное число полузон Френеля. Какая будет освещѐнность в точке P? 

Решение 

«нечѐтное число полузон» = «полуцелое число зон» 

Постоим диаграмму, заменив спираль Френеля окружностью. 

Границе между внутренней и внешней половинами зоны соответствует одна из двух 

точек на горизонтальном диаметре диаграммы: В1/2, если граница делит нечѐтную зону 

(край диска находится в нечѐтной зоне), и B3/2 – если чѐтную. Рассмотрим, для 

примера, первый случай. Внутренняя область диска создавала бы в точке Р колебание 

, если бы была полностью открыта, а она открыта на половину по диаметру, 

значит (см. Задачу 1) создаѐт колебание . Открытый фронт за границей диска 

создаѐт колебание. . Результирующее колебание 

 

Освещѐнность (интенсивность)  

Для второго случая получается симметричная картина, с таким же результатом для 

интенсивности. На этом можно было бы закончить, однако рассмотрим ещѐ один 

способ вычисления амплитуд. В первом случае мы считали, что 

«открытая область» = «внешняя часть фронта» + «открытая половина диска» 

А можно иначе: 

«открытая область» = «внешняя часть фронта» – «закрытая половина диска» 

Тогда (на рисунке сделано построение для второго случая) 
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Задача 3 (Иродов №5.106) 

Монохроматическая плоская световая волна с интенсивностью I0 падает нормально на 

непрозрачный диск, закрывающий для точки наблюдения P первую зону Френеля. 

Какой стала интенсивность света I в точке P, после того как у диска удалили: 

а) половину (по диаметру); 

б) половину внешней половины первой зоны Френеля (по диаметру). 

Решение 

Обрезанные диски и диаграммы – на рисунке. 

Обозначения – аналогично предыдущим задачам: 

 – колебание, приходящее в точку P, если фронт открыт полностью; 

 – колебание, приходящее от внешней части фронта (за границей 1-й зоны); 

 – колебание от 1-й зоны; 

 – колебание от внешней половины 1-й зоны (границам внешней половины 

соответствуют точки B1/2 и B1 на диаграмме); 

Результирующее колебание, случай (а): 

 

Случай (б) 

 

Задача 4 (Сивухин №272) 

Диск из стекла с показателем преломления n (для длины волны ) закрывает полторы 

зоны Френеля для точки наблюдения Р. При какой толщине h диска освещенность в Р  

будет наибольшая? 

Решение 

На рисунке показана диаграмма, когда прозрачный диск не 

вносит никакой дополнительной разности фаз за счѐт своего 

показателя преломления – например, когда толщина диска 

равна нулю. При толщине диска h оптическая длина пути в 

диске будет больше чем в воздухе на величину 
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появится дополнительное отставание по фазе 

 

на диаграмме вектор  (колебание от закрытой прозрачным диском части фронта) 

будет поворачиваться на угол  против часовой стрелки от своего исходного 

положения. Освещѐнность в точке P будет максимальной, когда два колебания (от 

закрытой и от открытой частей фронта) будут синфазны. На диаграмме их вектора 

будут сонаправлены (вектор  в этой ситуации показан красным). Так будет, если 

 

 

 

Задача 5 (Сивухин №266) 

Зонная пластинка дает изображение источника, удаленного от нее на 3 м, на расстоя-

нии 2 м от своей поверхности. Где получится изображение источника, если его 

отодвинуть в бесконечность? 

Решение 

Для того чтобы пластинка создавала изображение, колебания, приходящие от еѐ 

открытых кольцевых областей должны складываться максимально эффективно, т.е. 

быть сифазными. Пусть для какой-то точки пластинка закрывает все чѐтные зоны, а 

нечѐтные оставляет открытыми (можно и наоборот, это сейчас неважно). На 

диаграмме (см. Вводные замечания) открытым зонам будут соответствовать нечетные 

(т.е. правые) половины витков. Результирующие колебания от открытых областей 

будут изображаться направленными вверх векторами. Для границ будет выполняться 

соотношение вида (2) 

 

но здесь  – номер границы между областями на пластинке. Пока у нас было , 

где m – номер зоны для выбранной точки наблюдения. Значения  – это неизменные 

значения для данной пластинки. А вот  – радиусы зон Френеля на плоскости, 

совпадающей с поверхностью пластинки – нет, они зависят от положения источника и 

точки наблюдения и от длины волны. 

Интересен случай, когда в кольцо на пластинке убирается нечѐтное число зон (во всех 

кольцах это число будет одинаковым). Диаграмма для одного открытого кольца будет 



состоять из нечѐтного числа половин витков, его результирующее колебание снова 

будет примерно равно . Колебания от открытых колец снова будут синфазны, 

пластинка будет создавать изображение. Причѐм для , таких, что 

 

выполняется равенство 

 

т.е. граница -ого кольца совпадает с границей -ной зоны. Число  здесь нумерует 

изображения. 

Пусть для точки наблюдения с параметром  (см начало решения, мы начинали с 

такой точки) известно расстояние . Расстояния  для остальных точек, где 

формируется изображение, можно найти из равенства (5). Подставив  и , получим 

 

Учитывая соотношения (4) и сокращая общий множитель , придѐм к соотношению 

 

из которого можно получить формулу для . 

Вернѐмся к условию задачи. В начале, источник находился на расстоянии  м, а 

его изображение с номером  на расстоянии  м. Теперь источник отодвигают в 

бесконечность. Где будет находиться изображение номер ? 

Должно выполняться равенство: 

 

в те же кольца должно убираться столько же зон, что и раньше, но при ином 

положении источника и изображения. 

 

 

Кстати, поскольку источник находится в бесконечности, можно говорить, что 

пластинка «собирает параллельные лучи в точку» (в несколько точек). Такие точки 

называют фокусами зонной пластинки. 

Примечание. Разбирая Задачу 2 мы понимали слово «полузоны» как внешние и 

внутренние полузоны. Но, как можно понять из авторского решения, имелись в виду 

открытые и закрытые половины, полученные делением по диаметру и зон и диска в 

целом. Такая ситуация рассмотрена в Задаче 3(а). 



Вопросы 

Задача 3. В решении открытая область фронта получена путѐм «сложения» еѐ частей 

и построены соответствующие диаграммы. Сделайте то же путѐм «вычитания» – как в 

Задаче 3, второй случай. 

Задача 4. В решении Постойте график зависимости  – интенсивности 

результирующего колебания от толщины стеклянного диска. 

Задача 5. 

1. Постройте диаграммы для такого положения точки наблюдения, когда в одно 

кольцо на фазовой пластинке укладывается а) половина зоны Френеля, б) полторы 

зоны, в) 3/4 зоны. 

2. Пусть положение первого фокуса  пластинки известно. Найдите положения 

всех остальных. 

3. Формулы вроде бы дают бесконечное число фокусов фазовой пластинки. Почему на 

практике их число конечно? 

Домашнее задание 

Иродов: 5.107-5.109. 

Сивухин: 267, 274, 289, 422. 

В решениях должны быть диаграммы со спиралями Френеля и векторными 

амплитудами колебаний (хотя бы схематично постоенные). 



Дифракция на прямоугольном отверстии 

Вводные замечания. Спираль Корню 

При расчѐте дифракции Френеля на прямоугольной щели можно использовать спираль 

Корню, аналогично тому, как мы использовали спираль Френеля, рассматривая 

дифракцию на круглом отверстии. Координате y в плоскости щели соответствует 

безразмерная длина  дуги спирали Корню: 

 

где  – расстояние от точки наблюдения P до плоскости щели,  – длина волны света, 

падающего на щель. Начало оси y выбирается так, чтобы координата у для данной 

точки P равнялась бы нулю. (Для другой точки надо выбирать другое начало оси.) 

Вектор , соединяющий фокусы спирали, изображает колебания, получаю-

щиеся при бесконечно широкой щели (при полностью открытом фронте). 

Если щель имеет конечную ширину , концы вектора  будут лежать на спирали в 

точках, для которых значения параметра  вычисляются по формуле (1) через 

координаты  и  краѐв щели. (Для других точек наблюдения будут другие  и , 

но ) 

На рисунке спираль проградуирована по  с шагом 0,1, числовые значения для 

некоторых точек указаны красным. 
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Задача 1 (Иродов №5.116) 

Плоская монохроматическая световая волна падает нормально на непрозрачную 

полуплоскость. На расстоянии  см за ней находится экран. Найти с помощью 

спирали Корню 

а) отношение интенсивностей первого максимума и соседнего с ним минимума; 

б) длину волны света, если расстояние между двумя первыми максимумами  

   мм. 

Решение 

Пусть открытая часть полуплоскости ограничена коорди-

натами  и , тогда начало вектора  находится в 

«отрицательном» фокусе , а конец – на спирали. На 

рисунке показаны оси y различных точек P, оси смещены 

вправо от полуплоскости для наглядности. Пока коорди-

ната  пробегает значения от  до нуля (точки P лежат 

за непрозрачной частью), конец вектора  будет лежать на 

отрицательных витках спирали. Эти витки постепенно раскручиваются от фокуса , 

длина вектора монотонно возрастает, минимумы и максимумы отсутствуют. Если 

 (точки P лежат за прозрачной частью), то конец вектора  будет на положи-

тельных витках, его длина будет то увеличиваться, то уменьшаться. На экране будет 

чередование максимумов и минимумов. 

Для достаточно больших значений  положения максимумов и минимумов можно 

найти из следующих соображений. Витки можно приближѐнно считать окружностями 

с постепенно уменьшающимися радиусами и общим центром в фокусе. Экстремумам 

длины вектора, начало которого находится в другом фокусе (или в начале координат), 

а конец лежит на этих витках, соответствуют точки пересечения витков (окружностей) 

с прямой, проходящей через фокусы. Причѐм касательная к окружностям повѐрнута, с 

учѐтом направления возрастания , на  для максимумов и на  для 

минимумов. 

Точку на спирали можно задать через радиус-вектор  на координатной плоскости 

 

где  и  орты, соответственно, горизонтальной и вертикальной осей,  и  – 

интегралы Френеля. Тогда касательный к спирали вектор  проще всего задать так: 

 

 

Как можно видеть , а аргумент  имеет смысл угла поворота вектора  от 

положительного направления горизонтальной оси. 

=  

P 0 

P 0 

P 0 

<0 =0 >0 



В максимумах (поворот  на ) 

 

 

В минимумах (поворот  на ) 

 

 – номер максимума или минимума. 

a) Отношение интенсивностей в первых максимуме и минимуме найдѐм, построив 

соответствующие векторы на спирали Корню. Отметим, что вектор  почти лежит 

на прямой, проходящей через фокусы (диагональная на рисунке), а  проходит 

близко от неѐ. Можно было бы находить положение векторов, используя формулы (2) 

и (3), по этим формулам получается . 

Для удобства вычисления длин этих векторов через их концы проведены дуги с 

центрами в фокусе . Найденные по диаграмме длины векторов (в условных 

единицах, в тех же, что на осях) . 

Отношение интенсивностей 

 

 

 

 

 



б) Длину волны найдѐм, используя формулу (2) 

 

Очевидно, что разность двух y координат края полуплоскости, определѐнных для двух 

разных точек наблюдения, равна расстоянию  между этими точками на экране. 

В соответствии с выражением (1) 

 

 

Задача 2 (Иродов №5.118)  

Плоская монохроматическая световая волна падает нормально на длинную прямо-

угольную щель, за которой на расстоянии  = 60 см находится экран. Сначала ширину 

щели установили такой, что в середине дифракционной картины на экране наблюдался 

наиболее глубокий минимум. Раздвинув после этого щель на  = 0,70 мм, получили 

следующий минимум. Найти длину волны света. 

Решение 

Поскольку точка наблюдения лежит напротив середины щели (центр картины), 

координаты краѐв щели отличаются только знаком:  (  – ширина 

щели). Начало и конец вектора, изображающего колебания на диаграмме, находятся в 

симметрично расположенных на спирали Корню точках. Воспользуемся формулой (3) 

из предыдущей задачи. Значение  для конца вектора при начальной ширине щели  

 

а после увеличения щели ( ) 

 

 

Задача 3 (Иродов №5.120)  

Плоская световая волна с  = 0,65 мкм падает нормально на большую стеклянную 

пластинку, на противоположной стороне которой имеется уступ и непрозрачная 

полоска ширины  = 0,30 мм. На расстоянии  = 110 см от пластинки находится экран. 

Высота уступа h подобрана такой, что в точке 2 на экране интенсивность оказывается 

максимально возможной. Найдите отношение интенсивностей в точках 1 и 2 

 



Решение 

Края полоски обозначим как B и D. Для точки наблюдения 1этим 

краям соответствуют значения 

 

Для точки наблюдения 2 

 

Внешним (бесконечно удалѐнным) краям пластинки для обеих точек наблюдения 

соответствуют фокусы спирали Корню. Векторные амплитуды для точки 1 показаны 

сплошными красными стрелками, для точки 2 – сплошными зелѐными 

Волна, проходящая справа от полоски (в стекле) отстаѐт по фазе от волны, проходящей 

слева (в воздухе) на 

 

где  – показатель преломления стекла. Векторные амплитуды от правой части 

пластинки поворачиваются на угол  против часовой стрелки (показано пунктиром). 

 

h
 

B D 

1 2 



Максимальная по модулю сумма векторных амплитуд колебаний от левой и правой 

частей в точке 2 получается, когда векторные амплитуды сонаправлены. Так будет, 

если  (чуть больше). При этом для точки 1 векторные амплитуды оказыва-

ются почти перпендикулярны. Вычислим суммарные амплитуды для обеих точек по 

спирали Корню 

 

 

Отношение интенсивностей 

 

Вопросы 

Задача 1. Найдите отношение интенсивности в первом максимуме за полуплоскостью 

и интенсивности на экране при еѐ отсутствии. 

Задача 2.  

1. Постройте диаграмму со спиралью Корню и векторными амплитудами колебаний в 

центре дифракционной картины для обоих размеров щели 

2. С помощью спирали Корню постройте распределение интенсивности на экране для 

исходной щели. 

Указание. Принять  = 1,9. Точки наблюдения на экране брать с таким шагом, 

чтобы шаг по  был бы равен 0,1, т.е. шагу градуировки на спирали. Если по экрану 

двигаться вниз (см. рисунок под условием Задачи 1), начало вектора будет прибли-

жаться по спирали к началу координат, а конец – удаляться. При этом начало и конец 

вектора будут проходить по спирали одинаковое расстояние. 

Задача 3. Найдите все значения  и соответствующие им значения h, при которых 

выполняется условие задачи. 

Домашнее задание 

Иродов: 5.115,  5.117,  5.119. 

В решениях должны быть диаграммы со спиралями Корню и векторными 

амплитудами колебаний (хотя бы схематично построенные). 



Дифракция Фраунгофера 

Задача 1 (Иродов №5.126) 

Свет с длиной волны  мкм падает на щель 

ширины  мкм под углом  к еѐ нормали. 

Найти угловое положение первых минимумов, располо-

женных по обе стороны фраунгоферова максимума. 

Решение 

В соответствии с принципом Гюйгенса-Френеля будем рассматривать дифракцию как 

результат интерференции волн от вторичных источников. В качестве поверхности, на 

которой расположены вторичные источники, возьмѐм плоскость щели. Найдѐм 

разность фаз  между колебаниями, приходящими в точку B на экране от краѐв щели 

D и E. Падающая на щель волна приходит в точку D, пройдя на  больший путь, по 

сравнению с точкой E. Колебания вторичного источника в точке D отстают по фазе от 

колебаний источника в точке E на 

 

Но вторичная волна, идущая от точки D, проходит на  меньший путь, чем волна, 

идущая от точки E. Волна, идущая от D, получает дополнительное опережение по фазе 

по сравнению с волной, идущей от E 

 

В итоге 

 

Главный максимум будет наблюдаться в точке A, для которой , а значит и 

. Для окружающих его минимумов  (почему так?), следовательно 

 

 

 

Тот же результат можно было получить, рассмотрев колебания, приходящие в точку B 

от точек F и E волнового фронта FE падающей на щель волны.  

Задача 2 (Иродов №5.129) 

Изобразить примерную дифракционную картину, возникающую при дифракции 

Фраунгофера от решѐтки из трѐх одинаковых щелей, если отношение периода решѐтки 

к ширине щели равно 

а) двум; б) трѐм. 

 

 A  

B 

D 

E 
 

 
F 



Решение 

Разобьѐм щель на узкие полосы, ориентиро-

ванные перпендикулярно оси x. Амплитуда 

волны dA, приходящей в точку B на экране 

от одной такой полосы, пропорциональна 

ширине dx этой полосы. Эта волна проходит 

путь на  меньший, чем волна, идущая от 

точки 0 (от середины щели). 

 

т.к. угол  малый. Считая фазу волны, пришедшей в точку B от точки 0, равной нулю, 

запишем комплексную амплитуду колебания, создаваемого в точке B узкой полосой 

 

где  волновое число,  коэффициент пропорциональности между 

амплитудой и шириной полосы. Вся щель будет создавать колебание с амплитудой 

 

Удобно, что амплитуда сразу получилась действительной. Обозначим , тогда 

 

Решѐтка из  щелей с периодом d будет в точке B создавать  эквидистантных по 

фазе колебаний с разностью фаз  

 

Амплитуду  результирующего колебания, создаваемого N щелями, получим, 

умножив амплитуду колебания от одной щели на решѐточный множитель 

 

(см. занятие по теме «Вибраторы. Диаграмма направленности», Задача 3). 

Интенсивность получим, возведя амплитуду в квадрат. 

 

Для полученной функции важной величиной является отношение . 

Графики постройте самостоятельно. 

 

 

x 0 

x 

 

 

 

0 

 B dx 



Задача 3 (Сивухин №299) 

Щель постоянной ширины прикрыта двумя плоскопараллельными стеклянными 

пластинками толщины d с показателями преломления  и , примыкающими друг к 

другу. Одна пластинка закрывает первую половину щели, другая – вторую половину 

щели. На щель нормально падает плоская монохроматическая волна. При каком 

условии центр дифракционной картины Фраунгофера будет темным? 

Решение 

Разобьѐм щель на маленькие кусочки. Для каждого кусочка из одной половины 

найдется в другой половине парный ему, расположенный симметрично относительно 

линии соприкосновения пластин. Оптическая разность хода между волнами, 

прошедшими через эти кусочки и приходящими в центр картины 

 

Для других пар разность хода будет такой же, т.к. пластинки плоскопараллельны 

(имеют постоянную толщину). 

Центр картины будет темным, т.е. будет наблюдаться минимум, если 

 

 длина волны света, падающего на щель. 

 

Задача 4 

На дифракционную решѐтку с периодом  из  одинаковых щелей ширины  падает 

нормально неполяризованный свет с длиной волны . Щели перекрыты поляроидами с 

двумя взаимно перпендикулярными плоскостями пропускания так, что за парой сосед-

них щелей, пропускающих свет с одной поляризацией, идѐт щель, пропускающая свет 

с другой поляризацией. Затем снова пара щелей с первой поляризацией и одна щель со 

второй и т.д. За решѐткой установлена собирающая линза с фокусным расстоянием f, в 

фокальной плоскости которой находится экран. Найдите распределение интенсивно-

сти на экране. Фокальная плоскость линзы параллельна решѐтке. 

Решение 

Напомним: (Сивухин Д.В., Общий курс физики. Оптика., 1980 г., стр. 397) 

плоская волна называется линейно поляризованной или плоскополяризованной, если 

электрический вектор  всѐ время лежит в одной плоскости, в которой расположена 

также нормаль  к фронту волны. Эта плоскость называется плоскостью колебаний 

или плоскостью поляризации. 

Добавим, что в изотропной среде, например, в вакууме, нормаль  совпадает по 

направлению с волновым вектором . 

Плоскостью пропускания поляризатора называется плоскость поляризации света, 

прошедшего через поляризатор. 



Обозначим поляризацию света, проходящего через парные щели, как τ-поляризацию, а 

света, проходящего через одиночные щели как ξ-поляризацию. Решѐтку из  щелей 

разделим на две подрешѐтки: одна состоит из  пар τ-щелей, другая – из  одиночных 

ξ-щелей. Периоды обеих подрешѐток одинаковы и равны . 

Волны, распространяющиеся вдоль параллельных лучей, идущих под углом  к 

главной оптической оси линзы, пройдя линзу, соберутся в побочном фокусе F´, 

находящемся на расстоянии x от главного фокуса F. При малых  

 

Отдельно взятая щель будет создавать в точке наблюдения F´ колебание с амплитудой 

(см. формула (1), Задача 2, обозначения те же) 

 

Пара τ-щелей создаѐт в F´ два колебания с разностью фаз (см. (2) там же) 

 

Амплитуда суммарного колебания 

 

где  – решѐточный множитель для двух щелей (см. (3) там же) 

 

Подрешѐтка из  пар τ-щелей создаѐт  колебаний с амплитудой , эти колебания 

эквидистантны по фазе. Т.к. период подрешѐтки равен , то разность фаз 

 

Решѐточный множитель (см. (3)), 

 

амплитуда суммарного колебания 

 

Подрешѐтка из  ξ-щелей создаѐт  колебаний с амплитудой , так же 

эквидистантных, с теми же  и  

d 

b 

 f 

F 

F´ 

x y 
d b 

Щели и ориентация плоскостей пропускания. 

Плоскости не обязаны выстраиваться вдоль границ щелей. 

τ τ τ τ ξ ξ 

3d 

3d 



 

Интенсивность пропорциональна квадрату амплитуды. Волны с перпендикулярными 

плоскостями поляризации складываются по интенсивности 

 

Графики постройте самостоятельно. 

 

Вопросы 

Задача 1 

1. Почему минимумам картины соответствует ? 

2. Постройте график распределения интенсивности на экране, если . 

Задача 2 

1. Постройте графики  для случаев (а) и (б). 

2. Почему величина, вычисленная по формуле (1) не является амплитудой в строгом 

смысле этого слова? 

Задача 3 

1. Получите распределение интенсивности на экране, аналогично тому, как это было 

сделано в Задаче 2. Центр картины тѐмный. Найдите положение ближайших к центру 

светлых полос. 

2. Как изменится ответ, если щель разделить на 4 одинаковые полосы, две средних 

закрыть пластинкой с показателем преломления , а две крайних – пластинками с 

показателем преломления ? 

Задача 4 

1. Объясните, используя принцип Гюйгенса-Френеля, как линза «собирает 

параллельные лучи в фокусе». 

2. Постройте график  (или , они отличаются только масштабом по 

горизонтальной оси). Рекомендуется сначала построить отдельно графики , 

 и , затем , и потом финальный  

 

Домашнее задание 

Иродов: 5.127,  5.130,  5.132 



Дифракционные решетки 

Задача 1 (Сивухин 317) 

Прозрачная периодическая структура, профиль которой 

изображен на рисунке, освещается сверху плоской 

монохроматической волной, падающей нормально на 

верхнюю границу. Ширины уступов и впадин структуры одинаковы. При заданном 

показателе преломления n подобрать глубину h таким образом, чтобы главные 

фраунгоферовы дифракционные максимумы первого порядка имели наибольшую 

интенсивность. Какова при этом интенсивность нулевого главного максимума? 

Решение 

Период структуры обозначим как . Будем рассматривать структуру как некую сумму 

двух решѐток – решѐтки впадин и решѐтки уступов. Эти решѐтки имеют один и тот же 

период  и одинаковую ширину «щелей» . Для одной решѐтки распределение 

амплитуды на экране наблюдения при малых углах дифракции  имеет вид 

 

 

 

(см. занятие по теме «Дифракция Фраунгофера», Задачи 2, 4, формулы (1), (3), (5), 

обозначения те же). 

Решѐтки впадин и уступов сдвинуты относительно друг друга на , из-за этого 

между волнами, идущими от разных решѐток, появляется разность фаз (при малых ) 

 

Если считать, что уступы сдвинуты относительно впадин в сторону положительного 

направления отсчѐта углов  (вправо на рисунке), то волны от уступов опережают по 

фазе на  волны, идущие от впадин.  

Кроме того, оптическая длина пути в уступах больше, чем во впадинах, волны, 

прошедшие через уступы, отстают по фазе от прошедших через впадины на 

 

где n – показатель преломления структуры. В итоге, разность фаз между волнами от 

двух решѐток 

 

Амплитуда суммарного колебания от двух решѐток 

 

h 

d 

 



 

Раскрывать  по формуле (1) пока не будем. 

Положение главных максимумов дифракционной картины, т.е. положение главных 

максимумов решѐточного множителя  найдѐм из условия 

 

 

Нас интересуют максимумы первого порядка: . Наибольшую интенсивность 

для них получим, если в решѐточном множителе  

 

 для интенсивности значения не имеет) 

 

 

Выражая h из формулы (1), получим 

 

Найдѐм интенсивность нулевого главного максимума: ( ). Подставив условие (3) 

и значение  в выражение для  получим 

 

Следовательно (см. (2)), интенсивность нулевого максимума равна нулю. Как это не 

казалось бы странно, здесь есть определѐнная выгода. Когда фазовая дифракционная 

решѐтка используется как спектральный прибор, нулевой максимум не интересен – его 

положение одинаково для всех длин волн, разложения света в спектр в нулевом 

максимуме не наблюдается. Но суммарная энергия света, прошедшего через решѐтку, 

не зависит от фазовых сдвигов между еѐ отдельными участками. Если нулевой 

максимум подавлен, энергия, которая могла бы ему достаться, распределяется между 

другими максимумами. Таким образом, эти максимумы становятся ярче за счѐт 

нулевого, и вести наблюдения становится легче. 

Задача 2 (Сивухин 316) 

На одномерную дифракционную решетку со щелями 

падает плоская монохроматическая волна. Щели b 

решетки совсем прозрачные, а участки а имеют коэффициент пропускания . Толщина 

решетки бесконечно мала по сравнению с длиной волны. Как меняются интенсивности 

дифракционных максимумов и соответствующие им углы дифракции, когда ? 

a b a b a b a 



Решение 

Будем полагать, что  – это амплитудный коэффициент пропускания (автор не указал, 

амплитудный он или энергетический). 

Пусть амплитуда падающей на решѐтку волны равна , тогда амплитуда волны, 

прошедшей через участки a, 

 

(сразу за участками, где дифракцией ещѐ можно пренебречь). Перепишем еѐ так 

 

Волна, прошедшая через участки b, имеет амплитуду , разумеется. Можно говорить, 

что через все участки (т.е. через всю апертуру решѐтки) проходят волны с амплитудой 

, но ещѐ на участках a «вычитаются» волны с амплитудой . Объединив 

волны с амплитудой , получим волну той же амплитуды, прошедшую через 

большую щель с шириной равной апертуре решѐтки D, 

 

где N – число щелей в решѐтке 

Объединив волны с амплитудой , получим, что волна с такой амплитудой 

проходит через решѐтку с прозрачными участками a и непрозрачными участками b. 

Итоговую дифракционную картину можно рассматривать как результат вычитания по 

амплитуде картины от решѐтки из картины от широкой щели. 

Найдѐм распределение амплитуды в первой картине – от решѐтки (см. Задачу 1). На 

решѐтку с периодом  из N щелей ширины a падает волна с амплитудой 

. Тогда распределение имеет вид 

 

 

 

Распределение амплитуды во второй картине – от щели шириной D, через которую 

проходит волна с амплитудой : 

 

Определим для этих картин характерные масштабы по углу . В первой картине 

положение главных максимумов подчиняется условию (3) (см. Задачу 1) 

 

расстояние между соседними максимумами 

 

Нули огибающей : 

 



ширина еѐ центрального максимума, т.е. расстояние между +1-м и –1-м нулѐм 

 

Ширина центрального максимума второй картины 

 

Как можно видеть , т.е вторая картина примерно в N раз уже чем первая.  

Интенсивность при вычитании двух картин, созданных когерентными между собой 

волнами, в общем случае можно выразить через амплитуды этих картин так 

 

где  – разность фаз между колебаниями в картинах. 

Но только в центре амплитуды будут иметь сравнимую величину. Уже первые 

 боковые главные максимумы картины от «вычитаемой» решѐтки 

оказываются далеко за пределами центрального максимума картины от широкой 

щели, т.е. для боковых . 

В итоговой картине будет всегда присутствовать центральный максимум. Боковые 

максимумы определяются только«вычитаемой» решѐткой. Их положение от величины 

 не зависит, их интенсивность стремится к нулю, когда . 

Тот же результат можно было получить, решая эту задачу аналогично предыдущей. 

Если приведѐнные рассуждения о распределении амплитуд в отдельных картинах, о 

характерных масштабах и о наложении этих картин оказались не достаточно понятны, 

рекомендуется построить графики  в зависимости от  (можно с помощью 

компьютера), соблюдая масштаб по оси . 

Задача 3 (Сивухин 309) 

Могут ли перекрываться спектры первого и второго порядков дифракционной 

решетки при освещении ее видимым светом (7000-4000 Å)? 

Решение 

Угловое положение максимума порядка m при дифракции на решѐтке с периодом d 

волны с длиной  определяется условием 

 

где  – угол дифракции. 

Если спектр ограничен длинами волн  то для первого 

порядка дифракции 

 

а для втрого 



 

Поскольку , ближняя к центру картины ( ) граница спектра второго 

порядка оказывается дальше дальней границы первого порядка. Перекрытия нет. 

Задача 4 (Сивухин 331) 

Изменяется ли разрешающая сила решетки при изменении наклона первичного пучка, 

падающего на нее? 

Решение 

При нормальном падении света c длиной волны  на решѐтку из N 

щелей еѐ разрешающая способность  

 

где  – порядок дифракции, в котором ведѐтся наблюдение. 

Пусть теперь волна падает на решѐтку c с периодом d под углом . 

(см. также занятие по теме «Дифракция Фраунгофера», Задача 1). 

Рассмотрим два колебания – (а) и (б) – проходящие через соседние щели и распростра-

няющиеся дальше вдоль параллельных лучей, идущих под углом . Перед решѐткой 

колебание (б) проходит путь на  меньший, чем колебание (а). После решѐтки (б) 

проходит путь на  больший. Итоговая разность хода 

 

Разность фаз между колебаниями, прошедшими решѐтку 

 

Разрешающая способность решѐтки зависит от ширины главных дифракционных 

максимумов, которая в свою очередь определяется решѐточным множителем 

 

По критерию Релея спектральные линии с длинами волн  и  разрешены, если 

главный максимум для одной длины волны совпадает по положению с первым 

побочным минимумом для другой длины волны в том же порядке дифракции. 

Положение главных максимумов найдѐм, приравняв к нулю знаменатель решѐточного 

множителя, получим, что 

 

 

Положение нулей решѐточного множителя – это положение нулей числителя, не 

совпадающих с нулями знаменателя. 

 

(а) 

(б) 

 

 

 

 



 

Главный максимум порядка m будет ограничен по ширине двумя нулями, для которых 

 

 

Пусть максимум для  совпадает с нулѐм для  и  ( ) 

тогда 

 

 

 

 

Разрешающая способность решѐтки 

 

(т.к. , неважно, которая из двух длин волн имеется в виду) 

Оказалось, что разрешающая способность не зависит от угла падения волны на 

решѐтку. Однако, максимальный порядок дифракции m, который можно получить при 

наклонном падении будет иным, чем при нормальном падении. 

 

Задача 5 (Иродов 5.143) 

Показать, что при нормальном падении света на дифракционную решѐтку максималь-

ная величина еѐ разрешающей способности не может превышать значения , где  – 

ширина решѐтки,  – длина волны света.  

Решение 

Если решѐтка с периодом d содержит N щелей, то еѐ ширина . 

Из предыдущей задачи 

 

 

Поскольку  

 

 



Вопросы 

Задача 1 

1. Каким должно быть распределение интенсивности на экране, если h = 0? 

2. Получите выражение для распределения интенсивности из формулы (2). 

3. Чем может оказаться полезен нулевой максимум? 

Задача 2. Во сколько раз отличаются интенсивности в центре картины, создаваемые 

отдельно широкой щелью и «вычитаемой» решѐткой? 

Задача 3. Перекрываются ли спектры второго и третьего порядков? 

Задача 4. Найдите максимальный порядок дифракции m, который можно получить 

при наклонном падении под углом . 

 

Домашнее задание 

Иродов: 5.146,  5.145 

Сивухин: 310,  313 


