
Интерференция. Влияние размеров, спектра и поляризации 

источника на интерференционную картину 

Задача 1 

Наблюдается интерференция в схеме с зеркалом Ллойда. Рассмотреть случаи  

а) точечного квазимонохроматическим источника с длиной волны λ; 

б) точечного источника, спектр которого представляет собой дублет с близкими 

длинами волн λ1, λ2; 

в) источником является светящийся отрезок перпендикулярный зеркалу. Длина волны 

квазимонохроматического света равна λ. 

Случай (а) 

Пусть источник света S1 расположен на рас-

стояниях h от поверхности зеркала и L – от 

экрана. В точку наблюдения A на экране 

световые волны могут попасть двумя путями 

– вдоль прямого луча (на рисунке – красный) 

и вдоль луча, отражающегося в точке B от 

зеркала (на рисунке – синий). Отражѐнный 

свет можно считать исходящим из точки S2 – 

мнимого изображения источника S1. Волны, идущие от источника S1 и от его 

изображения S2, когерентны между собой и могут интерферировать. 

Найдѐм зависимость интенсивности I(x) результирующего колебания от положения 

точки A на экране (x – расстояние от зеркала до точки A). Если интенсивности 

колебаний, пришедших от S1 и S2 равны соответственно I1 и I2, а разность фаз между 

этими колебаниями равна ∆φ, то  

 

Положим для простоты интенсивности обоих колебаний равными:  , тогда 

 

Разность фаз ∆φ определяется длиной волны λ и разностью хода ∆ лучей, идущих от 

источника и его изображения, т.е. разностью расстояний r1 и r2 от точек S1 и S2 до 

точки A. Кроме того, при отражении волн от зеркала может происходить сдвиг фазы 

колебания на π – потеря полуволны. (Может и не происходить – см. например, 

Ландсберг Г.С. Оптика М.: Физматлит, 2003, гл XXIII, стр 433.) 

 

По теореме Пифагора 
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Полагая, что , разложим корни в ряд по малому параметру ( ) 

и получим 

 

 

 

 

Подставляя выражение (4) в формулу (2) получим 

 

Максимумы интенсивности получаются, когда  , 

а минимумы – когда  . 

 

 

На экране получается система чередующихся светлых и тѐмных полос. Ширина 

полосы, т.е. расстояние между соседними минимумами (или максимумами), равна 

 

При  величина  оказывается постоянной, т.е. полосы можно назвать 

эквидистантными, Для больших x ширина полос будет постепенно увеличиваться и 

всего на экране будет  светлых полос. 

Дополнение 

Формулу (3) для разности хода ∆ можно получить по-другому. 

Лучи, идущие от S1 и S2 можно считать 

параллельными. Проведѐм к этим лучам 

перпендикуляр через точку S1, угол 

между ним и прямой S1S2 обозначим α. 

Перпендикуляр отсекает на луче S2A 

отрезок равный разности хода ∆. 

Очевидно, что 

 



Такой же угол α образует прямая CA с поверхностью зеркала, причѐм 

 

Т.к. , угол α малый, и . Тогда получим, что 

 

Случай (б) 

В спектре источника есть две близких линии с длинами волн λ1 и λ2. 

Для простоты примем, что каждой линии достаѐтся половина 

суммарной яркости источника: . Волны с разными 

длинами некогерентны, создаваемые ими интерференционные 

картины складываются по интенсивности. На экране каждая картина сама по себе 

будет описываться выражением (2), и суммарная интенсивность будет иметь вид 

 

где ∆φ1 и ∆φ2 – разности фаз соответствующие длинам волн λ1 и λ2: 

 

как и в случае (а) полагаем, что . 

Воспользуемся формулой для суммы косинусов, тогда выражение (9) примет вид 

 

Вычислим аргументы косинусов, учитывая, что λ1 и λ2 близки по величине. 

 

Здесь введены обозначения для разности длин волн  и средней длины 

волны , и учтено, что . Аналогично, 

 

Поставим полученные выражения для аргументов в формулу (11): 

 

Видно, что в аргументе первого косинуса есть малый множитель , этот косинус 

можно считать медленной огибающей, а второй – быстрым заполнением, кстати, он не 

отличается от того, что стоит в формуле (5). 
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Графики  I(x). Случаи (а) и (б) 

На графиках по вертикальной оси отложены 

нормированные значения интенсивности: 

для (а) – , для (б) –  

На верхнем графике – построенная по 

формуле (5) зависимость для (а), она же – 

заполнение для формулы (12). 

На двух других графиках – зависимость 

для (б) по формуле (12). Красной сплошной 

линией показа сама зависимость , 

зелѐным пунктиром – огибающая. Графики 

построены одного значения λср и для двух 

разных значений параметра ∆λ/λср. Значения 

λср у них одинаковые и совпадают с 

величиной λ верхнего графика. 

В «пучностях» огибающей разница между 

максимумами и минимумами интенсивности 

достигает наибольших значений. 

В «узлах» эта разница стремится к нулю. 

Можно говорить, что в узлах происходит 

периодическое размытие интерференцион-

ной картины, а во всех пучностях картина 

оказывается максимально контрастной. 

Найдѐм координаты x узлов. 

В узлах первый косинус в формуле (12) равен нулю, следовательно 

 

Пространственный период размытия интерференционной картины равен 

расстоянию между соседними узлами 

 

Количество полос, ∆N убирающихся между соседними узлами, равно отношению 

пространственного периода ∆X к ширине полосы  (см. (8) выше). 

 

Надо понимать, что видимое при реальном наблюдении количество полос, скорее 

всего, будет несколько меньше этого ∆N, т.к. близкие к узлам полосы будут плохо 

различимы из-за конечной чувствительности прибора, с помощью которого ведѐтся 

наблюдение. Например, глаз плохо видит небольшие отличия в интенсивности. 
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Случай (в) 

Источником является светящийся отрезок 

перпендикулярный зеркалу. Длина волны 

квазимонохроматического света равна λ. 

Пусть длина отрезка равна ∆h, его средняя точка 

расположена на расстоянии h0 от зеркала, а концы –  

на расстояниях . 

Разные точки источника излучают волны с одинако-

выми длинами. Однако их начальные фазы с течением 

времени меняются случайно и несогласованно друг с другом. Такие волны между 

собой некогерентны, и не будут интерферировать. Каждая точка источника будет 

создавать на экране свою интерференционную картину. Все эти картины будут 

складываться по интенсивности. 

Малый участок источника длиной dh, расположенный на расстоянии h от зеркала, 

создаѐт на экране интерференционную картину с распределением интенсивности, 

которое описывается формулой (2), повторим еѐ 

 

В этой формуле под I0 теперь следует понимать интенсивность волн приходящих на 

экран именно от этого участка источника. (Напоминаю, приходит две волны: одна 

идѐт напрямую, вторая отражается от зеркала. Каждая – с интенсивностью I0.) 

Разность фаз ∆φ, вычисляемую по выражению (4), теперь надо рассматривать как 

функцию двух переменных x и h 

 

Если все точки источника одинаково яркие, то интенсивность волн от некоего отрезка 

будет пропорциональна его длине, т.к. интенсивности отдельных точек складываются. 

Обозначим как  интенсивность, создаваемую на экране в отсутствие зеркала целым 

источником (длиной ∆h). Тогда для интенсивности I0 его малого участка (длиной dh) 

можно записать, что 

 

Тогда формула (5) принимает вид 

 

Результирующая интенсивность находится интегрированием выражения (13) по всей 

длине источника (x выступает в качестве параметра, интегрирование по h от a до b). 
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Коэффициент перед синусом – это множитель перед h из формулы (4′)в −1-й степени. 

Подстановка пределов даѐт для первого слагаемого в скобке: 

 

Вводя для компактности формул дополнительные обозначения , 

 для второго слагаемого (без коэффициента) получим 

 

Вычислим аргументы синуса и косинуса 

 

 

Соберѐм вместе в формуле (14) полученные выражения для еѐ частей 

 

 

В функции (15) стоит уже знакомый косинус – быстрое заполнение. Его медленная 

огибающая – функция вида 

 

Тогда функцию (15) можно записать так 

 

Эта функция описывает распределение интенсивности в интерференционной картине, 

создаваемой на экране протяжѐнным источником – светящимся отрезком. 

По графику I(x) видно, что в 

интерференционной картине будет не только 

периодическое изменение контраста 

подобно тому, как это было в случае (б), но 

и общее его уменьшение при увеличении 

координаты x, т.е. при удалении от зеркала. 

Наиболее резкой картина будет в области, 

ограниченной первым нулѐм огибающей. 

Ширина X этой области равна также расстоянию между последующими нулями, еѐ 

можно называть характерным масштабом размытия интерференционной картины. 
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Количество полос ∆N в области наибольшей резкости картины равно отношению 

характерного масштаба размытия X к ширине полосы  (см. (8) выше). 

 

Об особенностях экспериментального определения числа полос ∆N было сказано 

выше. 

 

Вопросы к Задаче 1 

1. Как будет изменяться график в случае (а) при изменении длины волны, расстояния 

от источника до экрана, расстояния от источника до зеркала? 

2. Как будет изменяться график в случае (б) при изменении отношения ∆λ/λср? 

3. Как будет выглядеть график в случае (б), если окажется, что ∆N>N? 

4. Для случая (б) построено два графика. Для одного значение параметра ∆λ/λср=0,11 

(на графике отмечено). Найдите значение этого параметра для другого графика. 

5. Для случая (в) определите, как отличаются яркости светлых и тѐмных полос (т.е. 

максимумы и минимумы интенсивности) вблизи боковых максимумов огибающей 

(отмечены синими стрелками ↑ на графике) 

 

Задача 2 (см Сивухин №221) 

Из линзы с фокусным расстоянием f вырезана центральная часть 

шириной a, оставшиеся половины сдвинуты до соприкосновения. По 

одну сторону билинзы помещѐн точечный источник квазимонохромати-

ческого света с длиной волны λ. С другой еѐ стороны помещѐн экран, на 

котором наблюдаются интерференционные полосы. Как будет влиять на 

наблюдаемую картину поляризация прошедшего через билинзу света? 

Рассмотрите четыре случая. 

а) поляроидов нет;  

б) один поляроид закрывает всю билинзу; 

в) два поляроида закрывают каждый свою половину билинзы, их плоскости 

пропускания перпендикулярны; 

г) один поляроид закрывает только одну половину. 

 

Построение изображений источников в билинзе 

Пусть, для определѐнности, точечный источник S находится точно напротив середины 

билинзы на расстоянии d < f. Каждая половина билинзы создаѐт своѐ изображение 

этого источника. Для примера рассмотрим верхнюю. 

Для построения изображения проведѐм из точки S два луча. Один, красный на чертеже 

– упирающийся своим продолжением назад в передний фокус F линзы, преломившись 

S 



в линзе, он пойдѐт параллельно главной оптической оси (ГОО). Второй, зелѐный – 

идущий через оптический центр линзы, он проходит через линзу не преломляясь. То, 

что эта часть линзы отрезана (показанная пунктиром на чертеже), не имеет значения 

для построения – это влияет на яркость изображения, а не на его положение. 

Продолжим прошедшие линзу лучи назад. В точке их пересечения S1 находится 

мнимое изображение источника. 

Обозначим как h высоту источника 

над ГОО и найдѐм высоту h1 для его 

изображения S1. Из подобия треуголь-

ников, образованных, ГОО, лучом, 

проходящим через фокус F, линзой и 

отрезком h, следует, что 

 

Расстояние по вертикали от линии разреза билинзы до S1 равно h1 – h, а расстояние H 

между двумя мнимыми источниками, созданными обеими половинами билинзы, будет 

в два раза больше (представьте себе картину, зеркально отражѐнную относительно 

горизонтальной линии, соединяющей источник S и точку D на линии разреза). 

 

Чтобы определить границы области, в которую попадает свет от обоих мнимых 

источников, и где происходит интерференция, проведѐм ещѐ один луч (синий) через 

точку D на линии разреза. После преломления в верхней половине он пойдѐт так, что 

его продолжение назад будет проходить через мнимый источник S1. Этот луч 

определяет нижнюю границу распространения света, прошедшего через верхнюю 

часть билинзы. Верхняя граница света, прошедшего через вторую часть билинзы, 

показана на чертеже синим штрих-пунктиром. Между этими границами образуется 

клиновидная область интерференции (выделена штриховкой ). 

Интерференция 

Случай (а) 

Интерферируют волны от двух точечных источников. Формулы для расчета 

распределения интенсивности можно взять из предыдущей задачи. 

 

 

где l координата точки наблюдения A на экране. 

 

Дополнительной разности фаз равной π нет, т.к. нет 
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Учѐт поляризации. Общие замечания 

Пусть электромагнитная волна распространяется вдоль оси z декартовой системы 

координат. Вектор   такой волны можно представить так 

 

где  орты осей x и y,  проекции вектора  на эти оси. Если под 

интенсивностью понимать среднее по времени значение квадрата вектора , то 

 

Поскольку 

 

где  амплитуды проекций (или проекции амплитуды, это одно и то же) 

вектора , а  интенсивности колебаний этих проекций, то 

 

т.е. перпендикулярные колебания складываются по интенсивности. Когерентные 

они или нет – не имеет значения, если рассматривать только интенсивность. Однако, 

при сложении перпендикулярных когерентных колебаний, вместо полос разной 

яркости (тѐмных и светлых) будут возникать полосы разной поляризации (см. рис.) 

Для естественного (т.е. неполяризованного) света 

 

при любом выборе осей x и y (перпендикулярных друг другу и оси z, которую не 

трогаем, вдоль неѐ волна бежит). 

Случай (б). 

Пусть без поляроида через каждую половину билинзы проходит естественный свет с 

интенсивностью . Закроем билинзу поляроидом. Выберем ось x, совпадающую с 

направлением колебаний вектора , проходящих через поляроид. Т.е. будут проходить 

только x-колебания с интенсивностью . Колебания прошедшие через 

разные половины будут интерферировать, т.к. направления этих колебаний совпадают. 

На экране распределение интенсивности будет имеет вид 

 

где ∆φ определяется выражением (2). 

 

полосы разной яркости 

полосы одинаковой яркости, 

но разной поляризации 

разумеется, переходы между разными яркостями и 

разными поляризациями должны быть плавными 



Случай (в). 

Одна половина билинзы закрыта поляроидом, пропускающим только x-колебания, 

вторая – поляроидом, пропускающим только y-колебания. На экране получится 

 

Интерференционных полос (разной интенсивности) наблюдаться не будет. 

Случай (в). 

Одна половина билинзы свободна, вторая – закрыта поляроидом, пропускающим 

только х-колебания. Т.е. х-колебания проходят через обе половины билинзы и 

интерферируют между собой, а y-колебания – только через одну, с х- колебаниями они 

будут складываться по интенсивности. Тогда на экране получим 

 

Т.к. , то 

 

Графики   
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Вопросы к Задаче 2 

1. Найдите построением положение изображения S1 источника S, когда . 

2. Найдите границы области интерференции в этих случаях. Учтите, что эта область 

также ограничена лучами, идущими через края линзы. 

3. Какой была бы интенсивность на экране, если бы источник освещал его через 

нераспиленную линзу? При том, что для билинзы справедлива формула (1). 

4. Как можно получить полосы одинаковой интенсивности, но разной поляризации? 

5. Как можно такие полосы сделать видимыми для глаза? 

 

Вопросы к Задаче 1 были выше 

 

Домашнее задание. 

1. Рассмотреть в интерференционной схеме с зеркалом Ллойда случай точечного 

источника со сплошным спектром в интервале от λ  до λ+Δ λ.  

2. Сивухин 225, 226; 



Сложение эквидистантных по фазе колебаний 

Необходимо сложить N колебаний одинаковой частоты и амплитуды 

 , 

 , 

 

… 

 , 

 

Примечание 1 

Эквидистантные (т. е. равно отстоящие) по фазе 

колебания – у любой пары колебаний с номерами, 

отличающимися на единицу, фазы отличаются на 

одну и ту же величину φ. 

Величину φ часто называют фазовым сдвигом. 

То есть представить суммарное колебание в виде    и получить 

выражения для его амплитуды B и фазы ψ. 

Метод векторных диаграмм 

Изобразим на диаграмме векторные амплитуды 

суммируемых колебаний. Получим «веер» из векторов, 

причѐм угол между соседними будет равен φ. Однако 

складывать по правилу параллелограмма эти вектора 

неудобно. 

Тогда воспользуемся правилом треугольника – будем откладывать следующий вектор 

от конца предыдущего – получим ломаную линию FKM…L из N векторов. Векторная 

амплитуда  суммарного колебания будет соединять еѐ начало и конец. Эту ломаную, 

напоминающую часть правильного много-

угольника, можно вписать в окружность. 

Точка O – центр окружности, R – еѐ радиус. 

Рассмотрим треугольник OKM, он равно-

бедренный, угол при вершине – β, два угла 

при основании – α. Сумма углов 

 . 

В смежном треугольнике (с основанием ) 

угол при вершине M также равен α. Два 

угла α при общей вершине двух смежных 

треугольников вместе с углом φ образуют 

развѐрнутый угол, следовательно 

 , 

значит 

 . 
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Тогда можно найти радиус окружности 

 

Такая же формула связывает радиус R и длину вектора , являющегося основанием 

треугольника OKL. Очевидно, что угол при его вершине равен Nφ, тогда 

 

Следовательно, искомое выражение для амплитуды суммарного колебания имеет вид 

 

Примечание 2 

Поскольку синус – знакопеременная функция, а R и B положительные 

величины, то в этой формуле и в двух предыдущих синусы надо брать 

по модулю. Подробнее об этом – дальше. 

Теперь найдѐм фазу ψ суммарного колебания. 

, этот угол, вписанный в окружность, опирается на дугу KL. На ту же дугу 

опирается вдвое больший центральный . Таким образом 

 
Примечание 3 

Так как B получилось не совсем амплитудой, то и ψ – не совсем фаза. 

Метод комплексных амплитуд 

Комплексные амплитуды суммируемых колебаний 

 

образуют геометрическую прогрессию с первым членом , знаменателем  

и суммой 

 

В последнем преобразовании использована формула  , 

появляющиеся в числителе и знаменателе множители  −2j сокращены. Таким образом 

получено выражение для комплексной амплитуды суммарного колебания, причѐм 

сразу в виде комплексного числа в показательной форме. 

Действительная амплитуда равна модулю комплексной (см. Примечание 2 выше) 

 

Фаза суммарного колебания равна аргументу комплексной амплитуды (см. Прим. 3) 

 

Такие же выражения были получены методом векторных диаграмм. 



Зависимость амплитуды суммарного колебания от фазового сдвига φ. 

График  

Важное замечание. 

Как уже было указано (см. Прим. 2 и 3), функция  является знакопеременной, и еѐ 

нельзя в строгом смысле называть амплитудой, а величину ψ – фазой суммарного 

колебания. Амплитуда равна модулю , а для получения фазы надо к ψ прибавлять 

(или вычитать) π в тех случаях, когда . 

Однако это не мешает подставлять выражения для B и ψ. без такой корректировки в 

формулу для . Рассмотрим простой пример: . Использование 

формул для B и ψ даѐт 

 

вычислив «правильные» амплитуду и фазу, получим 

 

а прямое сложение колебаний даѐт 

 

Как можно видеть, все три выражения тождественно равны. 

 

Ниже приведѐн график  для . 

На графике выделяют главные и побочные максимумы и нули функции . 

Главные максимумы получаются, когда знаменатель в выражении для  

обращается в ноль. Числитель при этом тоже оказывается нулевым, а значение 

функции находится с помощью правила Лопиталя. 

 

 . 

0

1

2

3

4

5

6

7

-π-2π π 2π

главные

максимумы

побочные

максимумы



Нули функции получаются, когда числитель равен нулю, а знаменатель – нет. 

 

Ширина главных максимумов, то есть интервал между ограничивающими его нулями, 

равна , ширина побочных в два раза меньше. 

 

Домашнее задание. 

Построить график зависимости  для . 

 

Рекомендуется: построить векторные диаграммы для , взять все значения φ в 

интервале [0,2π] кратные π/6. Проследить за изменением длины и направления 

суммарного вектора. 



Кинематика волн 

Иродов  4.170,  4.172,  4.176(а) 

Домашнее задание:  4.171,  4.176 (б,в),  4.178 

4.170  Плоская гармоническая волна с частотой ω распространяется со скоростью v в 

направлении, составляющем углы α, β, γ с осями x, y, z. Найти разность фаз колебаний 

в точках среды с координатами   

Решение 

Плоскую волну можно описать уравнением 

 

Разность фаз ∆φ колебаний в двух точках с радиус-векторами  будет равна 

  

   

Проекции  волнового вектора  можно выразить через его модуль и 

направляющие косинусы  

  

Модуль волнового вектора (волновое число k) связан с частотой ω и фазовой 

скоростью v дисперсионным уравнением. 

 

Окончательно получаем, что 

 

4.172  Плоская волна с частотой ω распространяется так, что некоторая фаза 

колебаний перемещается вдоль осей x, y, z со скоростями соответственно . 

Найдите волновой вектор k, если орты осей координат   заданы. 

Решение 

Запишем уравнение плоской волны через проекции волнового вектора и координаты: 

 

Вдоль оси x распространяются колебания вида 

 

со скоростью 

 



Поясним это на примере. Посмотрим, как зависит от времени t координата х точки с 

фазой колебания φ = 2π. 

 

 

То есть можно говорить, что выбранная точка волны (в этом примере – еѐ гребень) 

«движется» со скоростью  Так как эта скорость не зависит от выбранного 

значения фазы φ, то точки с любой фазой, все гребни и впадины волны «бегут» с той 

же скоростью. 

Для двух других проекций волнового вектора тем же путѐм получим 

 

Тогда сам волновой вектор может быть записан так 

 

4.176  Уравнение плоской звуковой волны имеет вид  , 

где ξ– в мкм, t– в секундах, x– в метрах. 

Найти 

а) отношение амплитуды смещения частиц в среде в длине волны; 

б) амплитуду колебаний скорости частиц среды и ее отношение к скорости 

распространения волны; 

в) амплитуду колебаний относительной деформации среды и ее связь с 

амплитудой колебаний скорости частиц среды 

Решение, пункт (а) 

Амплитуда смещения частиц  

Длина волны λ связана с волновым числом k соотношением  . Само волновое 

число k есть коэффициент перед координатой x в фазе волны , то есть 

 


