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1. Введение

Курс механики сплошных сред1 является одним из разделов цикла тео-
ретической физики. В знаменитом курсе теоретической физики Л.Д.Ландау и
Е.М.Лифшица ему посвящено два достаточно объемных тома [1].

Наш курс рассчитан на радиофизиков: он существенно меньше, чем курсы на
специализированных факультетах, и несколько больше внимания уделено волно-
вым процессам.

Студентам радиофизического факультата курс электродинамики и курс МСС
читаются в одном семестре. В этих дисциплинах возникают одинаковые уравне-
ния: это одна из причин параллельного прочтения этих курсов, математический
аппарат которых в основном базируется на формулах векторного анализа. Стоит
отметить, что при этом уравнения МСС существенно сложнее уравнений электро-
динамики, где базовыми являются линейные уравнения Максвелла.

В списке литературы, предоставленном в конце книги, приведена основная
литература по курсу [1-5], дополнительная литература по курсу [6-14], а также
монографии, учебники и статьи для углубленного знакомства с отдельными раз-
делами курса.

1.1. Исторический экскурс
История развития механики сплошных сред полностью подтверждает наличие

тесной связи между становлением науки и запросами практики.
Механика сплошных сред – одна из древнейших наук. Ее зарождение на-

чалось ещё в античной древности.
Фамилии (но не годы жизни) известных ученых, сделавших вклад в развитие

МСС, знают все. Это:

• Аристотель (384-322 г.г. до н.э)
• Архимед (287-212 г.г. до н.э) – закон Архимеда

Средние века:

• Галилей (1564-1642)
• Паскаль (1623-1662)
• Леонардо де Винчи (1452-1519) Это и летательные аппараты, закон Паскаля

для давления, наблюдение гидродинамической турбулентности.
• Гюйгенс (1629-1695)
• Ньютон (1642-1727). В своих знаменитых «Началах» он приводит теоретиче-

ский вывод квадратичного закона сопротивления. Именно из законов Нью-
тона было проведено обобщение на сплошные среды и родилась новая наука
«гидромеханика».

1Далее будем часто сокращать название дисциплины до «МСС»
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Это два академика Российской академии наук:

• Леонард Эйлер (1707-1789) – уравнение Эйлера
• Даниил Бернулли (1700-1782) – уравнение Бернулли

Начало 19 века:

• Даламбер (1717-1783) – парадокс Даламбера
• Лагранж (1736-1813)
• Коши (1789-1857)

Вязкая жидкость:

• Анри Навье (1785-1863)
• Стокс (1819-1903) – уравнение Навье-Стокса

Эксперименты с жидкостью:

• Ж. Пуазейль (1799-1869)

Основы теории турбулентности:

• Осборн Рейнольдс (1842-1912)
• Н.Е.Жуковский (1847-1921) – обтекание крыла, присоединённый вихрь,

подъемная сила
• С.А.Чаплыгин (1869-1942)
• Морис Мари Альфред Куэтт (1858-1943) – течение Куэтта

Теории турбулентности и теория устойчивости:

• Людвиг Прандтль (1875-1953)
• Теодор Карман (1881-1963)
• Колмогоров А.Н. (1903-1987),

Обухов А.М. (1918-1989) – Закон Колмогорова-Обухова

Практически все эти фамилии будут встречаться в нашем курсе – их именами
названы законы МСС.

В наше время бурное развитие получила вычислительная МСС. Так, не один
новый самолет не получит разрешение на эксплуатацию, если не будет построена
его математическая модель, включающая процессы самолета обтекания потоком.

Что же включает современная МСС? Книга академика Л.Седова «Краткое
перечисление современных проблем» включает 21 пункт и занимает 4 страницы
[10]. Здесь мы приведем лишь те, которые тесно связаны с предприятиями и НИИ
Нижнего Новгорода, и где работают выпускники радиофака.

1) Изучение движения жидкости и газа – движение самолетов, вертолетов,
подводных лодок. Возникновение турбулентных следов за объектами. Излу-
чение звука винтами и турбулентными струями.
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2) Движение жидкости и газа в трубах. Взаимодействие волн в оболочках.

3) Волновые движения в жидкостях и газах

• Волны в твердых телах. Акустическая диагностика, взаимодействие с
электромагнитными волнами – линии задержки на ПАВ.

• Волны на поверхности моря и внутренние волны, их нелинейное вза-
имодействие. Обнаружение ПЛ по изменению характеристик поверх-
ностного волнения.

• Волны в каналах, реках. Генерация цунами и набег волн цунами на
берег.

• Сейсмические процессы, нелинейная сейсмодиагностика.

• Звуковые волны, гидроакустика, акустика океана

4) Теория турбулентности – гравитационная неустойчивость

5) Биологическая механика, движение крови в сосудах, диагностика на раз-
личных типах волн – сдвиговые волны

В Нижнем Новгороде работает один из крупнейших институтов Российской
академии наук – Институт прикладной физики2, тесно занимающийся широ-
ким спектром задач, в том числе изучаемыми в нашем курсе.

ИПФ РАН входит в структуру Нижегородского научного центра РАН, в кото-
рый так же входят такие институты, как Институт физики микроструктур
РАН, Институт проблем машиностроения РАН.

2Федеральное государственное бюджетное научное учреждение «Федеральный исследователь-
ский центр Институт прикладной физики Российской академии наук» (ИПФ РАН) был создан на
базе нескольких отделов Научно-исследовательского радиофизического института (НИРФИ) Минвуза РСФСР
в апреле 1977 года. Основатель и директор института на протяжении первых 25 лет его работы — академик А. В.
Гапонов-Грехов, с 2003 по 2015 год институт возглавлял академик А. Г. Литвак, с 2015 года до своего избрания
президентом РАН в 2017 году директором института был академик А. М. Сергеев. С 2019 г. директором ИПФ
РАН избран член-корреспондент РАН Г.Г. Денисов.
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1.2. Основные допущения МСС
Вещество можно рассматривать как непрерывную сплошную среду, пренебре-

гая его молекулярным строением. И одновременно считаем непрерывным распре-
деление всех характеристик жидкости (плотность, скорость, температура, . . .).

Это означает, что всякий малый элемент жидкости или газа содержит боль-
шое число молекул(или других частиц ). То есть когда мы говорим о бесконечно
малом элементе жидкости, то везде мы подразумеваем, что «физически» беско-
нечно малый объем мал по сравнению с размерами тел, но велик по сравнению с
межмолекулярными расстояниями.

Это позволяет применить в МСС хорошо разработанный для непрерывных
функций аппарат высшей математики.

Нетривиальный пример применения МСС – крупномасштабная структура
Вселенной. Оказывает, описать развитие крупномасштабной структуры мож-
но уравнениями гидродинамики газа гравитационно взаимодействующих частиц.
Здесь «Физически» бесконечно малый объем – объем, в котором содержится мно-
го галактик.

Существующие на данный момент крупномасштабные образования возникли
из-за малых начальных возмущений плотности за счет гравитационной неустой-
чивости. Обычная материя (атомов различных веществ) (4%), Темная материя
неизвестной физической природы (cold dark matter) (23%). Темная энергия (dark
energy) (73%), которая играет антигравитационную роль в процессе формирова-
ния Вселенной.

Плотность темного вещества в 6–7 раз превосходит плотность барионов, и по-
этому рост неоднородностей определяется в основном темным веществом. Именно
рост неоднородностей в темном веществе и ответственен за формирование круп-
номасштабных структур. Барионная компонента просто следовала за эволюцией
темного вещества.

В космологии понятие крупномасштабной структуры относится к распреде-
лению галактик и массы темного вещества (на масштабах от одного до несколь-
ких сотен мегапарсек). Современная теория объясняет формирование крупномас-
штабной структуры Вселенной как следствие роста исходных слабых флуктуаций
плотности вещества за счет гравитационной неустойчивости. При этом формиро-
вание ярко выраженных элементов структуры происходит на нелинейной стадии.
Именно поэтому процесс формирования крупномасштабной структуры принято
иногда гравитационной турбулентностью.

Наиболее очевидный путь преодоления сложности учета законов нелинейной
эволюции гравитационной неустойчивости на поведение поля плотности вещества
состоит в численном моделировании трехмерного движения𝑁 гравитационно вза-
имодействующих частиц. Альтернативой являются приближенные аналитические
решения некоторых уравнений в частных производных, адекватно описывающих
рост флуктуаций неоднородной плотности вещества в расширяющейся Вселенной.
Первый из этих подходов был предложен Зельдовичем в 1970 году.

Второй аналитический подход к проблеме описания формирования крупномас-
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штабной структуры Вселенной [15] базируется на векторном уравнении Бюргерса.
В данном подходе многопотоковое движение гравитационно взаимодействующих
частиц в особенностях, приводящее к их локализации, моделируется вязким сла-
гаемым в уравнении Бюргерса. В предельном случае исчезающе малой вязкости
это эквивалентно слипанию частиц и поэтому данный подход часто называют
приближением слипания - adhesion model (см., например, [16, 18, 19, 20].

Предельная версия модели слипания естественным образом описывает харак-
терную мозаичную структуру распределения вещества во Вселенной. Основные
элементы «мозаики» в трехмерном пространстве (вершины, ребра, грани и внут-
ренности ячеек) могут быть ассоциированы с наблюдаемыми структурами трех-
мерного распределения галактик (компактные скопления галактик, филаменты –
цепочки галактик, поверхности со сравнительно высокой плотностью галактик, и
темные области между ними, бедные галактиками).

Сама эволюция крупномасштабной структуры Вселенной может трактоваться
как непрерывный процесс транспортировки вещества преимущественно из объек-
тов большой размерности к объектам мозаичной структуры, обладающим мень-
шей размерностью. К примеру, вещество из внутренних ячеек мозаичной струк-
туры (трехмерных объектов) перетекает в ее грани (квазидвумерные объекты),
а из них в ребра и вершины мозаичной структуры. В то же время, сами ячей-
ки участвуют в непрерывном движении, деформации и поглощении одних ячеек
другими.

Рис. 1. Крупномасштабная структура Вселенной

В заключение отметим, что результаты динамического моделирования в
рамках приближения слипания можно посмотреть на YouTube (The Sticky
Geometry of the Cosmic Web, version 2.01)

https://www.youtube.com/watch?v=wI12X2zczqI
Результаты прямого численного моделирования (N-body simulation) можно

также посмотреть на YouTube.
Двухмерный случай:
https://www.youtube.com/watch?v=nHvcqV92oqY
https://www.youtube.com/watch?v=74IsySs3RGU
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Рис. 2. Система каустик на дне бассейна

Трехмерный случай
https://www.youtube.com/watch?v=eDGtFRj4xXc
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2. Гидродинамика идеальной жидкости

В данном разделе мы рассмотрим законы движения и равновесия идеальной
жидкости, то есть жидкости, в которой не учитывается внутреннее трение, и сле-
довательно, нет перехода механической энергии в тепловую. Будем также прене-
брегать теплообменом между различными объемами жидкости.

Это означает, что все процессы протекают при постоянной энтропии, а со-
стояние жидкости характеризуется одной скалярной величиной – давлением 𝑝.
Это, конечно, идеализация, которая приводит к ряду парадоксальных результа-
тов (например, парадокс Даламбера-Эйлера – сила сопротивления при равномер-
ном движении тела в жидкости равна нулю). Тем не менее, без этой идеализации
невозможно дальнейшее изучение реальных ситуаций.

2.1. Основные уравнения гидродинамики идеальной жид-
кости

Прежде чем перейти к выводу уравнений, рассмотрим два альтернативных
способа описания движения жидкости. Оба они были предложены Леонардом Эй-
лером, но один из них носит имя Лагранжа.

Лагранжево описание. В основу этого способа положено описание движения
отдельных «жидких частиц». При этом все величины, в том числе и координаты
частиц жидкости определяются как функции времени 𝑡 и некоторых переменных
𝜉𝑘(𝑘 = 1, 2, 3), идентифицирующих определенную частицу («метки» частиц):

𝑥𝑖 = 𝑥𝑖(𝜉𝑘, 𝑡), 𝑃 = 𝑃 (𝜉𝑘, 𝑡), 𝜌 = 𝜌(𝜉𝑘, 𝑡), . . .

В качестве переменных 𝜉𝑘 обычно используют начальные координаты частиц жид-
кости

𝜉𝑖 = 𝑥𝑖(𝜉𝑘, 𝑡0)

Таким образом, при лагранжевом описании мы следим за определёнными ча-
стицами жидкости и смотрим, как изменяются во времени их координаты, скоро-
сти, ускорения, а также давление, температура, плотность в их окрестности.

При этом скорости 𝑣⃗ и ускорения 𝑎⃗ частиц вычисляются по формулам

𝑣𝑖 =
𝜕𝑥𝑖
𝜕𝑡
, 𝑎𝑖 =

𝜕2𝑥𝑖
𝜕𝑡2

Здесь 𝑣⃗ (𝜉𝑘, 𝑡) - скорость частицы в момент времени 𝑡 имела координаты 𝜉1, 𝜉2, 𝜉3.
Отметим, что такому описанию соответствует способ исследования реки с по-

мощью геофизических буев с нулевой плавучестью (см. рис. 3).
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Волга

Сура

Рис. 3. Схематичная картина Лагранжева и Эйлерова описания

Эйлерово описание. В этом случае неподвижное пространство заполнено дви-
жущейся жидкостью. Движение жидкости будет определено, если все величины,
характеризующие жидкость (скорость движения, давление, плотность, темпера-
тура и т.д.) будут определены. Это означает, что мы можем проследить, как из-
меняются эти величины от точки к точке:

𝑣⃗ = 𝑣⃗(𝑥⃗, 𝑡), 𝑇 = 𝑇 (𝑥⃗, 𝑡)

В Эйлеровом описании мы не знаем, что делается с отдельной частицей.
При этом частные производные от скорости не являются ускорением. Так, если

течение стационарно и частная производная по времени равна нулю, частицы в
данной точке могут иметь ускорение. Пример – водопад.

Найдем ускорение частицы. За время ∆𝑡 частица, находящаяся в момент вре-
мени 𝑡 в точке с координатами 𝑥𝑘, переместится в точку 𝑥𝑘 = 𝑥𝑘 +∆𝑥𝑘. Тогда для
𝑖-ой компоненты ускорения имеем

lim
Δ𝑡→0

∆𝑥𝑘
∆𝑡

=
𝜕𝑥𝑘
𝜕𝑡

= 𝑣𝑘

𝑎𝑖 = lim
Δ𝑡→0

𝑣𝑖 (𝑥𝑘 + ∆𝑥𝑘, 𝑡+ ∆𝑡) − 𝑣𝑖 (𝑥𝑘, 𝑡)

∆𝑡
=

= lim
Δ𝑡→0

[︁
𝑣𝑖 (𝑥𝑘, 𝑡) + 𝜕𝑣𝑖

𝜕𝑥𝑘
∆𝑥𝑘 + 𝜕𝑣𝑖

𝜕𝑡 ∆𝑡− 𝑣𝑖 (𝑥𝑘, 𝑡)
]︁

∆𝑡
=
𝜕𝑣𝑖
𝜕𝑥𝑘

𝑣𝑘 +
𝜕𝑣𝑖
𝜕𝑡

Таким образом

𝑎𝑖 =
𝜕𝑣𝑖
𝜕𝑡

+ 𝑣𝑘
𝜕𝑣𝑖
𝜕𝑥𝑘

=

(︂
𝜕

𝜕𝑡
+ 𝑣𝑘

𝜕

𝜕𝑥𝑘

)︂
𝑣𝑖

10
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Или в векторной форме

𝑎⃗ =
𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ =

(︂
𝜕

𝜕𝑡
+ (𝑣⃗∇)

)︂
𝑣⃗

Аналогично находятся и производные от любой другой величины. Эта произ-
водная носит название субстанциональной производной:

d

d𝑡
=

𝜕

𝜕𝑡
+ (𝑣⃗∇)

Первое слагаемое здесь – локальная производная.

2.2. Связь Лагранжева и Эйлерова описаний

Пусть нам известно Эйлерово поле скорости 𝑣⃗ = 𝑣⃗(𝑥⃗, 𝑡). Чтобы найти, как
двигаются Лагранжевы частицы 𝑥⃗

(︁
𝑡, 𝜉
)︁
, нам нужно решить уравнение

d𝑥⃗

d𝑡
= 𝑣⃗(𝑥⃗, 𝑡), 𝑥⃗

(︁
𝑡 = 0, 𝜉

)︁
= 𝜉

Как найти Эйлерово поле скорости? Если нам известно поведение лагранжевых
частиц 𝑥⃗(𝑡, 𝜉 ), то вначале нам нужно решить уравнение

𝑥⃗ = 𝑥⃗
(︁
𝑡, 𝜉
)︁

Решение этого уравнения 𝜉 = 𝜉(𝑥⃗, 𝑡) позволяет найти Лагранжеву частицу, кото-
рая в момент времени 𝑡 попала в точку 𝑥. Отсюда в Эйлеровом представлении

𝑣⃗(𝑥⃗, 𝑡) = 𝑣⃗
(︁
𝑡, 𝜉(𝑥⃗, 𝑡)

)︁

2.3. Уравнение непрерывности и закон сохранения массы
Пусть имеется некоторый объем пространства 𝑉 , заполненный движущейся

жидкостью. Количество жидкости (масса) в этом объеме:

𝑚 =

∫︁

𝑉

𝜌 d𝑉 ,

где 𝜌 - плотность жидкости. Жидкость может притекать и вытекать из объема.
Введем элемент поверхности d𝜎 и вектор d𝜎⃗ = d𝜎𝑛⃗, направленный по внешней
нормали к поверхности.
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~n~v

V

Рис. 4. Объем, скорость и нормаль к поверхности

Поток через элемент поверхности определяется скалярным произведением:
∮︁

𝑆

𝜌𝑣⃗ d𝜎⃗

Уравнение баланса имеет вид:

𝜕

𝜕𝑡

∫︁

𝑉

𝜌 d𝑉 = −
∮︁

𝑆

𝜌𝑣⃗d𝜎⃗

Это интегральный закон сохранения массы. Если на поверхности скорость равна
нулю, то масса сохраняется.

Используя формулу Остроградского-Гаусса
∮︁

𝑆

𝜌𝑣⃗ d𝜎⃗ =

∫︁

𝑉

div(𝜌𝑣⃗ ) d𝑉

получим
∫︁

𝑉

[︂
𝜕𝜌

𝜕𝑡
+ div(𝜌𝑣⃗ )

]︂
d𝑉 = 0

Так как объем произвольный, то мы получаем дифференциальный закон со-
хранения

𝜕𝜌

𝜕𝑡
+ div(𝜌𝑣⃗ ) = 0

Вектор 𝑗⃗ = 𝜌𝑣⃗ - плотность потока массы. Используя формулу векторного ана-
лиза

∇
[︁
𝑎𝑏
]︁

= 𝑏⃗∇𝑎+ 𝑎∇𝑏⃗,

12
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перепишем закон сохранения массы в виде:

𝜕𝜌

𝜕𝑡
+ (𝑣⃗∇)𝜌+ 𝜌 div(𝑣⃗ ) = 0

d𝜌

d𝑡
= −𝜌 div(𝑣⃗ )

Несжимаемая жидкость - плотность частицы вдоль траектории не
меняется.

d𝜌

d𝑡
= 0

Это означает, что поле скорости соленоидально: div 𝑣⃗ = 0.

2.4. Уравнение Эйлера
Это уравнение описывает движение идеальной жидкости и является аналогом

2 закона Ньютона) классической механики. Запишем второй закон Ньютона для
жидкого элемента:

𝜌 d𝑉
d𝑣⃗

d𝑡
= 𝐹𝑆 + 𝐹 , 𝐹 = 𝜌𝑓

Здесь 𝐹 – объемная сила, действующая на элемент d𝑉 , 𝑓 – сила, отнесенная к
единице массы (плотность силы), для силы тяжести 𝑓 = 𝑔⃗, где 𝑔 – ускорение
свободного падения.

Здесь 𝐹𝑠 – сила, действующая на элемент объема со стороны окружающей сре-
ды. В идеальной среде силы трения нет, и единственная сила определяется только
силами давления. На элемент поверхности d𝜎 действует сила 𝑝 d𝜎⃗ и результиру-
ющая сила равна:

𝐹𝑆 = −
∮︁

𝑆

𝑝 d𝜎⃗ = −
∫︁

𝑉

∇𝑝 d𝑉 ≈ −∇𝑝 d𝑉

В результате получаем уравнение Эйлера:

d𝑣⃗

d𝑡
= −∇𝑝

𝜌
+ 𝑓

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑓

Здесь мы учли, что в уравнение Ньютона входит полная производная. У нас
5 неизвестных – 3 компоненты скорости, давление и плотность. А есть только 4
уравнения: 3 уравнения Эйлера для трех компонент и уравнение непрерывности.

Нужно еще одно уравнение – уравнение состояния, связывающее давление,

13
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плотность и энтропию 𝑆:
𝑝 = 𝑝(𝜌, 𝑆)

и уравнение для энтропии. Для изоэнтропической жидкости

d𝑆

d𝑡
=
𝜕𝑆

𝜕𝑡
+ 𝑣⃗∇𝑆 = 0

Если в начальный момент времени энтропия была одинакова во всем про-
странстве, то она не будет меняться с течением времени и уравнение состояние
принимает вид: 𝑝 = 𝑝(𝜌).

В идеальном газе уравнение адиабаты имеет вид уравнения Пуассона:

𝑝 = 𝑝0

(︂
𝜌

𝜌0

)︂𝛾

, где 𝛾 =
𝑐𝑝
𝑐𝑣
.

Для идеального газа 𝛾 = 𝑖+2
𝑖 , где 𝑖 - количество степеней свободы.

Для жидкостей дело обстоит сложнее: в разных диапазонах давления имеют
место быть разные уравнения состояния. Эмпирическая формула для давления
𝑝, измеряемого в атмосферах:

𝑝+𝐵

1 +𝐵
=

(︂
𝜌

𝜌0

)︂𝛾

где 𝐵 = 3000 атм, 𝛾 = 7, давление до 105 атмосфер.
Итак, система уравнений для идеальной жидкости принимает вид:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑔⃗

𝜕𝜌

𝜕𝑡
+ div(𝜌𝑣⃗) = 0

𝑝 = 𝑝(𝜌)

Это уравнение Эйлера, уравнение непрерывности и уравнение состояния соответ-
ственно.

2.5. Закон сохранения энергии идеальной жидкости
Энергия единицы объема складывается из кинетической энергии и внутренней

энергии:

𝐸 =
1

2
𝜌𝑣2 + 𝜌𝜀

14
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Закон сохранения энергии в интегральной форме:

𝜕

𝜕𝑡

∫︁

𝑉

𝜌

(︂
1

2
𝑣2 + 𝜀

)︂
d𝑉 = −

∮︁

𝑆

𝜌

(︂
1

2
𝑣2 + 𝜀

)︂
𝑣⃗ d𝜎⃗ −

∮︁

𝑆

𝑝𝑣⃗ d𝜎⃗

Изменение энергии в объеме происходит за счет притока (оттока) энергии в
объеме через границы, а также за счет работы внешних сил давления.

Из курса термодинамики и общей физики можно вспомнить, что энтальпия
равна

𝑊 = 𝜌𝜀+ 𝑝

Используя понятие энтальпии, получается упростить выражение ЗСЭ в инте-
гральной форме:

𝜕

𝜕𝑡

∫︁

𝑉

𝜌

(︂
1

2
𝑣2 + 𝜀

)︂
d𝑉 = −

∮︁

𝑆

(︂
1

2
𝜌𝑣2 +𝑊

)︂
𝑣⃗ d𝜎⃗

По формуле Стокса переходим в правой части от интегрирования по поверхности
к интегрированию по объему:

∫︁

𝑉

[︂
𝜕

𝜕𝑡

(︂
𝜌

1

2
𝑣2 + 𝜌𝜀

)︂
+ div

(︂
1

2
𝜌𝑣2 +𝑊

)︂
𝑣⃗

]︂
d𝑉 = 0

Поскольку объем произвольный, можно перейти к дифференциальной форме
закона сохранения энергии:

𝜕𝐸

𝜕𝑡
+ div 𝑁⃗ = 0, где 𝐸 =

𝜌𝑣2

2
+ 𝜌𝜀, 𝑁⃗ =

[︂
𝜌𝑣2

2
+ 𝜌𝜀+ 𝑝

]︂
𝑣⃗

Здесь 𝐸 – плотность энергии, 𝑁⃗ – вектор плотности потока энергии, аналог век-
тора Пойнтинга в электродинамике3.

2.6. Закон сохранения импульса
Для единицы объема жидкости импульс равен 𝑝 = 𝜌𝑣⃗. Если закон сохранения

энергии мы выводили в интегральной форме, то здесь мы будем стартовать с
дифференциальных уравнений. Запишем изменения для 𝑖-ой компоненты:

𝜕

𝜕𝑡

(︀
𝜌𝑣𝑖
)︀

= 𝜌
𝜕𝑣𝑖
𝜕𝑡

+ 𝑣𝑖
𝜕𝜌

𝜕𝑡

3Введён в 1874 году Умовым.
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Запишем уравнение Эйлера и уравнение непрерывности по компонентам:

𝜕𝑣𝑖
𝜕𝑡

+
3∑︁

𝑘=1

𝑣𝑘
𝜕𝑣𝑖
𝜕𝑥𝑘

= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝑓𝑖

𝜕𝜌

𝜕𝑡
+

3∑︁

𝑘=1

𝜕 (𝜌𝑣𝑘)

𝜕𝑥𝑘
= 0

В результате для изменения компоненты импульса имеем

𝜕

𝜕𝑡
(𝜌𝑣𝑖) = 𝜌

(︃
−

3∑︁

𝑘=1

𝑣𝑘
𝜕𝑣𝑖
𝜕𝑥𝑘

− 1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝑓𝑖

)︃
+ 𝑣𝑖

(︃
−

3∑︁

𝑘=1

𝜕(𝜌𝑣𝑘)

𝜕𝑥𝑘

)︃
.

Здесь по индексу 𝑘 идет суммирование. Обычно для сокращения записей сумми-
рование по повторяющимся индексам не пишут: такое правило называется согла-
шением Эйнштейна. Таким образом, далее сумма по индексу 𝑘 будет опускаться.

Хочется привести получившееся уравнение к дивергентной форме, чтобы по-
лучить закон сохранения. Учтем, что

𝜌𝑣𝑘
𝜕𝑣𝑖
𝜕𝑥𝑘

+ 𝑣𝑖
𝜕 (𝜌𝑣𝑘)

𝜕𝑥𝑘
=
𝜕 (𝜌𝑣𝑖𝑣𝑘)

𝜕𝑥𝑘
.

Внешние силы приводят к изменению импульса. Нужно что-то придумать с дав-
лением:

𝜕𝑝

𝜕𝑥𝑖
=
𝜕 (𝛿𝑖𝑘𝑝)

𝜕𝑥𝑘

Здесь 𝛿𝑖𝑘 = 1, 𝑖 = 𝑘; 𝛿𝑖𝑘 = 0, 𝑖 ̸= 𝑘 - символ Кронекера.
В результате получим:

𝜕

𝜕𝑡
(𝜌𝑣𝑖) = − 𝜕

𝜕𝑥𝑘
(𝑝𝛿𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘) + 𝜌𝑓𝑖

Введем тензор плотности потока импульса: Π𝑖𝑘 = 𝑝𝛿𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘. Тогда закон
сохранения импульса запишется как:

𝜕

𝜕𝑡
(𝜌𝑣𝑖) = −𝜕Π𝑖𝑘

𝜕𝑥𝑘
+ 𝜌𝑓𝑖

Проинтегрируем последнее равенство по объему:

𝜕

𝜕𝑡

∫︁

𝑉

𝜌𝑣𝑖 d𝑉 = −
∫︁

𝑉

𝜕Π𝑖𝑘

𝜕𝑥𝑘
d𝑉 +

∫︁

𝑉

𝜌𝑓𝑖 d𝑉

16



Механика сплошных сред С. Н. Гурбатов

Используя теорему Остроградского-Гаусса для тензора получаем:

𝜕

𝜕𝑡

∫︁

𝑉

𝜌𝑣𝑖 d𝑉 = −
∮︁

𝑆

Π𝑖𝑘𝑛𝑘d𝜎 +

∫︁

𝑉

𝜌𝑓𝑖 d𝑉

Таким образом, изменение импульса в объеме 𝑉 связано с потоком импульса через
поверхность 𝑆. Векторная же форма закона сохранения импульса имеет вид:

𝜕

𝜕𝑡

∫︁

𝑉

𝜌𝑣⃗ d𝑉 = −
∮︁

𝑆

[︂
𝑝𝑛⃗+ 𝜌𝑣⃗(𝑣⃗𝑛⃗)

]︂
d𝜎,

где 𝑛⃗ – внешняя нормаль. Последнее уравнение записано в случае отсутствия
внешних сил.

Следствие. Как использовать закон сохранения импульса для нахождения си-
лы действия потока на тело? Если движение стационарно, то

∮︁

𝑆

[︂
𝑝𝑛𝑖 + 𝜌𝑣𝑖𝑣𝑘𝑛𝑘

]︂
d𝜎 = 0,

отсюда для силы действия потока на тело имеем:

𝐹𝑖 = −
∮︁

𝑆

𝑝𝑛𝑖d𝜎 =

∮︁

𝑆

𝜌𝑣𝑖𝑣𝑘𝑛𝑘d𝜎

В качестве примера силы со стороны жидкости на тело, которую можно найти с
помощью ЗСИ, можно привести течение жидкости по изогнутой трубке (напри-
мер, в быту – трубка душа)

S1

S2

v1

v2

~F

Рис. 5. Реакция текущей жидкости на стенки изогнутой трубы

В одно сечение жидкость втекает, а из другого вытекает. При этом текущая
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жидкость действует на стенки трубы, и такую силу нетрудно сосчитать.
Действительно, на боковой поверхности трубки скорость жидкости направлена

по касательной к поверхности и, следовательно, интеграл по боковой поверхности
равен нулю. Таким образом, сила, действующая на трубку, может быть сосчитана
интегралами по входному и выходному сечению (площадь сечения, умноженная
на скорость и соответствующую компоненту нормали).

2.7. Гидростатика
Рассмотрим простейший случай, когда скорость жидкости равна нулю. Из ис-

ходной системы уравнений

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑓

𝜕𝜌

𝜕𝑡
+ div(𝜌𝑣⃗) = 0

𝑝 = 𝑝(𝜌)

в статическом случае следует

∇𝑝 = 𝜌𝑓, 𝑝 = 𝑝(𝜌),

из чего следует то, что градиент давления и сила параллельны.
Пусть внешняя сила потенциальна

𝑓 = −∇𝑢
∇𝑝 = −𝜌∇𝑢.

При какой зависимости плотности от координаты последнее уравнение имеет
решение? Применим к последнему уравнению операцию ротора:

rot(∇𝑝) = 0

rot(−𝜌∇𝑢) = −𝜌 rot(∇𝑝) − [∇𝑝×∇𝜌]

[∇𝑝×∇𝜌] = 0

Таким образом, вектора градиентов плотности 𝜌 и потенциала 𝑢 должны быть
параллельны.

Часто встречаются задачи на распределение давления в поле тяжести. Запи-
шем уравнения гидростатики в этом случае:

∇𝑝 = 𝜌𝑔⃗, 𝑝 = 𝑝(𝜌),

то есть в поле тяжести стационарное решение существует, если плотность зависит
от высоты.

18
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Рассмотрим некоторые примеры задач гидростатики.

Жидкость в поле тяжести. Попросту говоря, простой жизненный пример –
вода в земных условиях. Плотность постоянна. Ось 𝑧 направлена вниз.

d𝑝

d𝑧
= 𝜌0𝑔

𝑝 = 𝑝𝑎 + 𝜌0𝑔𝑧

Давление увеличивается на 1 атмосферу на 10 метрах.

Изотермическая атмосфера. Под ней понимается идеальный газ с постоян-
ной температурой 𝑇 . Ускорение можно считать постоянным. Ось 𝑧 направлена
вверх.

d𝑝

d𝑧
= −𝜌(𝑧)𝑔, 𝑝 =

𝑅

𝜇

𝑚

𝑉
𝑇 =

𝑅

𝜇
𝜌𝑇

Здесь 𝑅 - универсальная газовая постоянная. 𝜇 - молярная масса газа.

𝑅𝑇

𝜇

d𝜌(𝑧)

d𝑧
= −𝜌(𝑧)𝑔

Простое интегрирование даст ответ:

𝜌 = 𝜌0 exp(−𝑧/ℎ), 𝑝 = 𝑝0 exp(−𝑧/ℎ), где ℎ =
𝑅𝑇

𝜇𝑔

Здесь ℎ - высота атмосферы, величина порядка 8 км, поэтому изменением силы
тяжести можно пренебречь.

Закон Архимеда. На тело, погруженное в жидкость, со стороны жидкости
действует выталкивающая сила, равная весу жидкости, вытесненную этим телом.

∇𝑝 = 𝜌𝑔⃗

Сила со стороны жидкости на элемент поверхности d𝐹 = −𝑝𝑛⃗ d𝑆. Здесь 𝑛⃗ - внеш-
няя нормаль. Тогда сила Архимеда равна:

𝐹𝐴 = −
∮︁

𝑆

𝑝𝑛⃗ d𝑆 = −
∫︁

𝑉

∇𝑝 d𝑉 = −
∫︁

𝑉

𝜌𝑔⃗ d𝑉 = 𝑃

∫︁

𝑉

𝜌𝑔⃗ d𝑉 ≈ 𝜌𝑉 𝑔⃗
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Здесь 𝑃 – вес вытесненнной жидкости. Причем и плотность, и ускорение не обя-
зательно постоянны!

2.8. Гидростатическое равновесие. Частота Брента — Вяй-
сяля

Выясним условия, при которых состояние равновесия стратифицированной
жидкости в поле тяжести будет устойчивым. Будем считать, что плотность зави-
сит от глубины произвольным образом 𝜌 = 𝜌(𝑧). Ось 𝑧 направлена вниз.

𝑧
𝑧 + 𝑥

𝑓арх

𝑓тяж

𝑓арх

𝑓тяж

𝑓арх

𝑓тяж

𝑔⃗

Рис. 6. Действие силы Архимеда на возмущенный элемент

Рассмотрим элементарный элемент жидкости, который находился в равнове-
сии на глубине 𝑧, потом возмущается перемещением на глубину 𝑧 + 𝑥.

На этот элемент жидкости действуют две силы: сила тяжести и сила Архимеда,
и в равновесии они равны по величине:

𝐹𝑔(𝑧) = 𝑔𝜌(𝑧)𝑉0
𝐹𝐴(𝑧) = −𝐹𝑔(𝑧) = −𝑔𝜌(𝑧)𝑉0

Пусть данный объем смещается по вертикали на расстояние 𝑥. Масса сохра-
няется и сила тяжести не меняется. Пусть жидкость несжимаема, тогда объем
не меняется. А сила Архимеда изменяется, так как плотность вокруг частицы
изменилась. Тогда уравнение Ньютона для объема запишется как:

𝑚
d2𝑥

d𝑡2
= 𝑔𝜌(𝑧)𝑉0 − 𝑔𝜌(𝑧 + 𝑥)𝑉0

𝑚 = 𝜌(𝑧)𝑉0

Разлагая плотность в ряд, и ограничиваясь линейными членами, получаем:

d2𝑥

d𝑡2
= −𝑔

𝜌

d𝜌

d𝑧
𝑥
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Это уравнение гармонического осциллятора:

d2𝑥

d𝑡2
+𝑁 2𝑥 = 0

𝑁 2 =
𝑔

𝜌

d𝜌

d𝑧
∼ 𝑔

𝐿

Здесь 𝑁 =

(︂
𝑔

𝜌

d𝜌

d𝑧

)︂1/2

– частота Брента-Вяйсаля.

1) Устойчивость жидкости наблюдается при 𝑁 2 > 0, d𝜌d𝑧 > 0. Уравнение име-
ет два осцилляторных решения. Элемент совершает колебания с частотой
𝑁 .

2) Неустойчивость жидкости наблюдается при 𝑁 2 < 0. Частота становит-
ся мнимой и есть два решения, одно из которых экспоненциально растет.
Элемент падает вниз или стремится всплыть.

2.9. Уравнение Бернулли
Запишем уравнение Эйлера. Внешней силой здесь является сила тяжести, ко-

торую можно записать через градиент (так как орт оси 𝑧 равен ∇𝑧):

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑔⃗, 𝑔⃗ = 𝑔∇𝑧

Ось 𝑧 направлена вниз. Учтем два равенства: из курса векторного анализа

(𝑣⃗∇)𝑣⃗ =
1

2
grad

(︀
𝑣2
)︀
− [𝑣⃗, [∇, 𝑣⃗ ]]

и из курса термодинамики (для равновесных обратимых изобарических процес-
сов):

∇𝑝
𝜌

= ∇𝑊,

где 𝑊 – энтальпия. Заметим, что если плотность среды постоянна, то ∇𝑝
𝜌 = ∇

(︁
𝑝
𝜌

)︁
.

Получаем уравнение Эйлера в форме Громэко-Лэмба:

𝜕𝑣⃗

𝜕𝑡
+ grad

(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
= [𝑣⃗, rot 𝑣⃗ ]

Рассмотрим частные случаи, получающиеся из этого уравнения при некоторых
условиях.
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2.9.1 Случай стационарного движения

В стационарном случае (𝑣⃗ = const ) можно выделить два подслучая: безвих-
ревого и вихревого движения. Рассмотрим их подробнее.

Безвихревое движение. Движение потенциальное, rot 𝑣⃗ = 0. Тогда из урав-
нения Громэко-Лэмба имеем

grad

(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
= 0

𝑣2

2
+𝑊 − 𝑔𝑧 = const

Заметьте, константа в этом случае сохраняется во всем пространстве. Если жид-
кость несжимаема и однородна, то:

𝑣2

2
+
𝑝

𝜌
− 𝑔𝑧 = const

Это уравнение Бернулли для стационарного потенциального движения одно-
родной несжимаемой жидкости.

Вихревое движение. Теперь rot 𝑣⃗ ̸= 0. Введем понятие линии тока.
Линия тока - это линия, касательные к которой в данный момент времени и

в каждой точке совпадают с вектором скорости 𝑣⃗.

~v

~v

~v

Рис. 7. Линии тока

Линии тока определяются системой дифференциальных уравнений:

d𝑥

d𝑣𝑥
=

d𝑦

d𝑣𝑦
=

d𝑧

d𝑣𝑧

Умножим скалярно уравнение Эйлера в форме Громэко-Лэмба на вектор скорости
(т.е. спроецируем уравнение на линии тока):

𝑣⃗ · [𝑣⃗, rot 𝑣⃗ ] = 0, так как 𝑣⃗ ⊥ [𝑣⃗, rot 𝑣⃗ ]
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В таком случае уравнение Эйлера в проекции на линию тока сведется в виду

𝑣⃗ · grad

(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
= 0

Но такое произведение можно трактовать как производную по направлению:

𝑣⃗∇
(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
=

d

d𝑙

(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
= 0

отсюда получаем по форме тот же закон сохранения, что и для безвихревого
движения:

𝑣2

2
+𝑊 − 𝑔𝑧 = const

Но здесь константа сохраняется только вдоль линии тока, и для разных линий
тока константы разные!

2.9.2 Случай нестационарного невихревого движения

В этом случае

𝜕𝑣⃗

𝜕𝑡
̸= 0, rot 𝑣⃗ = 0

Рассматриваем потенциальные течения: 𝑣⃗ = ∇𝜙. Если жидкость однородна и
несжимаема, то уравнение Громэко-Лэмба

𝜕𝑣⃗

𝜕𝑡
+ grad

(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
= [𝑣⃗, rot 𝑣⃗ ],

примет следующий вид (нужно использовать возможность перестановки в данном
∇ и 𝜕

𝜕𝑡 местами):

𝜕𝜙

𝜕𝑡
+
𝑣2

2
+
𝑝

𝜌
− 𝑔𝑧 = const

Этот интеграл движения носит название интеграла Коши.

2.9.3 Энергетический смысл уравнения Бернулли

Закон Бернулли – это ничто иное, как следствие законов сохранения массы и
энергии вдоль некоторой лучевой трубки через 2 сечения: входящее 𝑆1 и выходя-
щее 𝑆2 (см. рис. 8).

Определение. Лучевая трубка тока – это трубка, образованная множеством
линий тока, проходящих через некоторый замкнутый контур
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S1

S2

Рис. 8. Лучевая трубка

Закон сохранения массы заключается в равенстве: сколько втекает, столько и
вытекает.

𝑚𝑖 = 𝜌𝑖𝑆𝑖𝑣𝑖∆𝑡, 𝑖 = 1, 2

Изменение энергии за счет вытекания и работы силы тяжести равно работе внеш-
них сил:

𝐴𝑖 = 𝑝𝑖𝑆𝑖𝑣𝑖∆𝑡

𝐸𝑖 =
𝑣2𝑖
2

+ 𝑢𝑖 + 𝜀𝑖

𝐴1 − 𝐴2 = ∆𝑚 (𝐸2 − 𝐸1)

Здесь 𝑢 и 𝜀 - потенциальная и внутренняя энергия. Рассмотрим случай несжи-
маемой жидкости. В этом случае внутренняя энергия не меняется, а 𝑢 = −𝑔𝑧. В
результате получим уравнение Бернулли.

Уравнение Бернулли имеет множество приложений.

Трубка Вентури. Трубка представляет собой устройство для измерения ско-
рости потока жидкости (газа). Измерение возможно за счет специальной формы
трубки: она имеет сужение и пару отводов из разных сечений трубы, в которых
можно измерять давление. Зная сечения и измеряя давления – можно найти ско-
рость потока:

𝑣21
2

+
𝑝1
𝜌

=
𝑣22
2

+
𝑝2
𝜌

𝑆1𝑣1 = 𝑆2𝑣2
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p1 p2

S1 S2

Рис. 9. Трубка Вентури

Обтекание двух цилиндров. Сближение линий тока, увеличение скорости.
Возникает притяжение цилиндров.

Рис. 10. Схематический вид цилиндров

Вытекание жидкости из сосуда. Будем считать, что отверстие мало (мно-
го меньше площади сосуда). В этом случае, используя уравнение Бернулли для
лучевой трубки тока, идущей от поверхности к отверстию, имеем

𝑣 =
√︀

2𝑔 (𝑧1 − 𝑧2), где 𝜎 ≪ 𝑆.

S

σσ
h2h2

h1h1

Рис. 11. Схематичный вид вытекающей жидкости

Задача Прандтля. Еще один нетривиальный пример, когда можно использо-
вать приближение идеальной несжимаемой жидкости. Эта задача описывает косое
падение плоской струи на поверхность и так называемые кумулятивные снаряды.
Наряду с уравнением Бернулли нужно использовать закон сохранения импульса.
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~v0

Рис. 12. Наклонное падение струи

Кумулятивный эффект, эффект Манро (англ. Munroe effect) — усиление дей-
ствия взрыва путём его концентрации в заданном направлении, достигаемое при-
менением заряда с конической выемкой, основание которой обращёно в сторону
поражаемого объекта, а детонатор располагается у вершины выемки. Поверхность
заряда со стороны выемки покрывается металлической облицовкой, толщина ко-
торой варьируется от долей миллиметра до нескольких миллиметров.осле взрыва
капсюля-детонатора заряда, возникает детонационная волна, которая перемеща-
ется вдоль оси заряда.

Рис. 12. Устройство кумулятивного снаряда: 1 – обтекатель, 2 – воздушная по-
лость, 3 – облицовка, 4 – детонатор, 5– взрывчатое вещество, 6 – пьезоэлектри-
ческий взрыватель

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в ра-
диальном направлении, при этом в результате соударения частей облицовки дав-
ление в ней резко возрастает. Давление продуктов взрыва, значительно превосхо-
дит предел текучести металла, поэтому движение металлической облицовки под
действием продуктов взрыва подобно течению жидкости, которое, однако, обу-
словлено не плавлением, а пластической деформацией. В силу симметрии движе-
ния металла эквивалентно падению струи идеальной жидкости на твердую по-
верхность.

Поскольку при встрече кумулятивной струи с бронёй развивается очень вы-
сокое давление, на один-два порядка превосходящее предел прочности металлов,
то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то
есть при соударении они ведут себя как идеальные жидкости.
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2.10. Теорема Томсона. Потенциальные и вихревые движе-
ния жидкости

Введём понятие циркуляции скорости – интеграл, взятый вдоль некоторого
замкнутого контура

Γ =

∮︁

𝐿

𝑣⃗ d𝑟⃗

Докажем теорему о сохранении циркуляции скорости – теорему Томсона (лорда
Кельвина): Циркуляция скорости вдоль замкнутого контура, перемеща-
ющегося в идеальной жидкости, остается постоянной.

Рис. 13. Два контура: начальный и смещенный

Выберем замкнутый контур, состоящий из фиксированных частиц («жидкий»
контур) и перемещающийся вместе с ними. Найдем полную производную по вре-
мени от этого контура. Происходит изменение как скорости, так и изменение кон-
тура во времени

dΓ

d𝑡
=

𝑑

d𝑡

∮︁

𝐿

𝑣⃗d𝑟⃗ =

∮︁

𝐿

d𝑣⃗

d𝑡
d𝑟⃗ +

∮︁

𝐿

𝑣⃗ 𝑑

(︂
d𝑟⃗

d𝑡

)︂
.

Распишем вначале второе слагаемое. d𝑟⃗/d𝑡 = 𝑣⃗, а интеграл
∮︀
𝑣⃗ d𝑣⃗ = 0. Исполь-

зуем определение скорости и уравнение Эйлера

d𝑣⃗

d𝑡
= −∇𝑝

𝜌
+ 𝑓.

Пусть внешняя сила потенциальна, а процесс адиабатический:

𝑓 = −∇𝑢, ∇𝑝
𝜌

= ∇𝑊,

где 𝑊 – энтальпия. Учтем, что (∇𝜙 d𝑟⃗ ) = d𝜙 и окончательно получим

dΓ

d𝑡
=

∮︁

𝐿

d

(︂
𝑣2

2
−𝑊 − 𝑢

)︂
= 0 ⇒ Γ = const .
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Следствие 1. Используем теорему Стокса:

Γ =

∮︁

𝐿

𝑣⃗ d𝑟⃗ =

∫︁

𝑆

𝑛⃗ rot 𝑣⃗ d𝑆

Для потенциальных течений rot 𝑣⃗ = 0 ⇒ Γ = 0: Циркуляция скорости по
односвязному контуру в потенциальном течении идеальной жидкости равна
нулю.

Следствие 2. Поток вихря через поверхность, натянутую на односвязный кон-
тур в потенциальном течении идеальной жидкости – величина постоянная:

Γ =

∮︁

𝐿

𝑣⃗ d𝑟⃗ =

∫︁

𝑆

𝑛⃗ rot 𝑣⃗ d𝑆 = const

Следствие 3. В потенциальном течении не может быть замкнутых линий тока
(иначе, взяв одну из них в качестве контура, мы получим, что циркуляция вдоль
данного контура не равна нулю).

Следствие 4. В однородной несжимаемой жидкости можно исключить из рас-
смотрения уравнений движения давление. Запишем уравнение Эйлера в форме
Громэко-Лэмба

𝜕𝑣⃗

𝜕𝑡
+ grad

(︂
𝑣2

2
+𝑊 − 𝑔𝑧

)︂
= [𝑣⃗, rot 𝑣⃗ ]

Возьмем от него ротор и учтем, что ротор от градиента равен нулю (rot (∇(. . .)) =
0):

𝜕

𝜕𝑡
rot 𝑣⃗ = rot[𝑣⃗ rot 𝑣⃗ ], div 𝑣⃗ = 0

Получили полное описание поля скорости с помощью одного уравнения.

Основные выводы из теоремы Томсона. Если в какой-то точке линии тока
завихренность отсутствует, то она отсутствует и вдоль этой линии. На первый
взгляд, отсюда следует:

Первый вывод. Стационарное обтекание любого тела набегающим из бесконеч-
ности потоком должно быть потенциальным: 𝑣⃗ = const , rot 𝑣⃗ = 0.

Второй вывод. Если движение жидкости потенциально в некоторый момент
времени, то оно будет потенциальным и в дальнейшем. В частности, потенциаль-
ным должно быть всякое движение, при котором в начальный момент жидкость
покоилась.
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В реальности, однако, это имеет ограниченную область применимости. Дело в
том, что приведенное выше утверждение о сохранении ротора скорости вдоль ли-
нии тока неприменимо для линий, проходящих вдоль поверхности твердого тела.
Около стенки нельзя провести односвязный замкнутый контур.

Застойная зонаЗастойная зона

Рис. 14. Обтекание тела с застойными зонами

Уравнения движения идеальной жидкости допускают решения в которых на
поверхности твердого тела, обтекаемого жидкостью твердого тела происходит «от-
рыв» струи: линии тока, следовавшие вдоль поверхности, в некотором месте от-
рываются от него, уходя в глубь жидкости. Возникает застойная область и на гра-
нице течение становится непотенциальным (см. рис. 14), возникает поверхность
«тангенциального» разрыва. Скорость терпит разрыв непрерывности.

При учете таких разрывных решений решение уравнений идеальной жидкости
неоднозначно: наряду с непрерывным решением появляется бесконечное множе-
ство разрывных решений. При этом разрывные решения не имеют физического
смысла, так как тангенциальные разрывы абсолютно неустойчивы, в резуль-
тате чего движение жидкости становится турбулентным.

Реальное течение безусловно однозначно. Всякая жидкость обладает вязко-
стью. Малая вязкость практически не проявляется во всем пространстве, но она
будет играть определяющую роль в пристеночной области (пограничный слой).

Тем не менее, в ряде случаев это достаточно хорошее приближение. Например,
хорошо обтекаемые тела: самолет, автомобиль, корабль – движение жидкости
от потенциального отличатся только в области «пограничного» слоя и «следа»
позади тела.

Кроме того, это приближение работает и в случае малых нестационарных
колебаний. Рассмотрим его подробнее.

2.10.1 Нестационарные малые колебания

Рассмотрим слабо колеблющееся тело в жидкости. Пусть 𝑙 – линейный размер
тела, 𝑎 – характерная амплитуда колебаний, 𝑣 – скорость колеблющегося тела.

a
ll

Рис. 15. Сфера размером 𝑙 и сфера, смещённая на 𝑎.
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Если 𝑙 ≫ 𝑎, то движение жидкости вокруг тела потенциально. Покажем это,
оценив порядок величины различных членов в уравнении Эйлера (для несжима-
емой жидкости, без внешних сил):

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑊

Скорость (порядка скорости колеблющегося тела 𝑢) изменяется на масштабах 𝑙.
Поэтому производные от скорости по координатам порядка ∼ 𝑢/𝑙. Изменения же
скорости во времени определяются частотой колебаний ∼ 𝜔𝑢 ∼ (𝑢/𝑎)𝑢. Тогда

⃒⃒
⃒⃒𝜕𝑣⃗
𝜕𝑡

⃒⃒
⃒⃒

|(𝑣⃗∇)𝑣⃗| ∼
𝑢2

𝑎
𝑢2

𝑙

∼ 𝑙

𝑎
≫ 1

Значит, вторым членом можно пренебречь, и тогда уравнение Эйлера принимает
вид:

𝜕𝑣⃗

𝜕𝑡
= −∇𝑊

Возьмем от полученного уравнения ротор. Так как при колебательном движении
среднее значение скорости по периоду равно нулю, то const = 0:

𝜕

𝜕𝑡
rot 𝑣⃗ = 0, rot 𝑣⃗ = const = 0

Таким образом, малые нестационарные колебания потенциальны.

2.11. Потенциальные течения несжимаемой жидкости
В идеальной баротропной жидкости в поле потенциальных сил вихри не исче-

зают и не возникают. Если в начальный момент течение было потенциально, то
оно будет потенциальным всегда. В ряде случаев это достаточно хорошее прибли-
жение, а уравнения гидродинамики существенно упрощаются.

Уравнение непрерывности несжимаемой жидкости:

d𝜌

d𝑡
= 0, div 𝑣⃗ = 0

Поле скорости несжимаемой жидкости соленоидально. Уравнение Эйлера для
несжимаемой жидкости в форме Громэко-Лэмба:

𝜕𝑣⃗

𝜕𝑡
+ grad

(︂
𝑣2

2
+
𝑝

𝜌
− 𝑔𝑧

)︂
= [𝑣⃗ rot 𝑣⃗ ]
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Отсюда легко получить следствие из уравнения Эйлера (мы это делали раньше):

𝜕

𝜕𝑡
rot 𝑣⃗ = rot[𝑣⃗ rot 𝑣⃗ ]

Это означает, что если движение было потенциально в начальный момент време-
ни, то и в дальнейшем оно будет потенциальным. Поэтому можно ввести потен-
циал поля скорости

rot 𝑣⃗ = 0, 𝑣⃗ = grad𝜙

div grad𝜙 = ∆𝜙 = 0

Таким образом, описание потенциального движения идеальной несжимаемой
жидкости описывается уравнением Лапласа:

∆𝜙 = 0, 𝑣⃗ = grad𝜙

Для решения этого уравнения также необходимы граничные условия.
Граничное условие непротекания: нормальная компонента скорости жид-

кости на поверхности тела должна совпадать с проекцией 𝑣𝑛 = 𝜕𝜙
𝜕𝑛 = 𝑢𝑛 скорости

самого тела на эту нормаль. В частности, для неподвижного тела нормальная
компонента равна нулю.

Граничное условие на бесконечности: обычно используют значение по-
тенциала на бесконечности.

Давление теперь можно найти из уравнения Бернулли:

𝜕𝜙

𝜕𝑡
+
𝑣2

2
+
𝑝

𝜌
+ 𝑢 = const

𝑝 = −𝜌
(︂
𝜕𝜙

𝜕𝑡
+
𝑣2

2
+ 𝑢

)︂
+ const

Константа может зависеть от времени. Для стационарного течения:

𝑝 = −𝜌
(︂
𝑣2

2
+ 𝑢

)︂
+ const

Рассмотрим несколько частных решений уравнения Лапласа, известных в элек-
тростатике.

Сдвиговый поток. Эта задача аналогична задаче поля плоского конденсатора
в электростатике. Все частицы жидкости двигаются с постоянной скоростью

𝑣⃗0 = {𝑣𝑥, 𝑣𝑦, 𝑣𝑧}, 𝑟⃗ = {𝑥, 𝑦, 𝑧}
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Потенциал здесь будет

𝜙 = (𝑣⃗0, 𝑟⃗ ) = 𝑣𝑥𝑥+ 𝑣𝑦𝑦 + 𝑣𝑧𝑧

Очевидно, он удовлетворяет уравнению Лапласа:

∆𝜙 =
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
+
𝜕2𝜙

𝜕𝑧2
= 0, 𝑣⃗ = 𝑣𝑥𝑖+ 𝑣𝑦𝑗⃗ + 𝑣𝑧𝑘⃗

~v

Рис. 16. Параллельные линии тока

Монополь. Эта задача о стоке и истоке массы: потенциал здесь

𝜙 =
𝛼

𝑟
, 𝑣⃗ = grad𝜙 =

𝜕𝜙

𝜕𝑟
𝑖⃗, 𝑣⃗ = − 𝛼

𝑟2
𝑟⃗

𝑟
= − 𝛼

𝑟2
𝑖⃗

Решение сферически симметрично и имеет особенность в точке 𝑟 = 0. Заметим,
что поток массы через сферу вокруг монополя произвольного радиуса – величина
постоянная:

𝑚 = 𝜌 4𝜋𝑟2 |𝑣| = 𝜌 · 4𝜋𝛼

Знак «+» говорит о стоке массы, «-» – о истоке.

Исток Сток

Рис. 17. Сток и исток массы

Диполь. Поместив сток и исток рядом, устремим их интенсивность в бесконеч-
ность, а расстояние между ними к нулю. Потенциал диполя

𝜙 = 𝐴⃗ · grad
1

𝑟

2.11.1 Движение сферы в идеальной жидкости

Пусть сфера радиуса 𝑅 движется с постоянной скоростью в несжимаемой
неограниченной жидкости. Течение при этом потенциально, а на бесконечности
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поставим «граничное условие» 𝑣 = 0. На поверхности сферы должны быть равны
нормальные (относительно поверхности) компоненты скорости сферы и жидко-
сти. При этом систему координат выберем с началом в центре сферы.

Математическая формулировка такой задачи будет следующей:

∆𝜙 = 0, 𝑣⃗|𝑟→∞ = 0, 𝑣𝑟|𝑟=𝑅 = 𝑣сф𝑟
|𝑟=𝑅

Попробуем подобрать решение в виде диполя (плоское течение и сток-исток не
подходят):

𝜙 = 𝐴⃗ grad
1

𝑟
= 𝐵𝑣⃗0 grad

1

𝑟
= −𝐵 (𝑣⃗0, 𝑟⃗ )

𝑟3

Тогда скорость жидкости

𝑣⃗ = grad𝜙 = −𝐵𝑣⃗0
𝑟3

+ 3𝐵
(𝑣⃗0, 𝑟⃗ ) · 𝑟⃗

𝑟5

Удовлетворим граничным условиям. Условие равенства нормальных (в нашей си-
стеме координат направление нормали – радиальное):

𝑣𝑟|𝑟=𝑅 = 𝑣0𝑟 |𝑟=𝑅 − 𝐵𝑣0𝑟
𝑅3

+ 3
𝐵𝑣0𝑟
𝑅3

= 𝑣0𝑟

Отсюда константа 𝐵 = 𝑅3

2 , и тогда для потенциала и скорости конечные формулы

𝜙 = −1

2

𝑅3

𝑟3
(𝑣⃗0, 𝑟⃗ ), 𝑣⃗ = −1

2

𝑅3

𝑟3
𝑣⃗0 +

1

2

𝑅3

𝑟5
(𝑣⃗0, 𝑟⃗ ) · 𝑟⃗

В сферической системе координат

𝜙 = −1

2

𝑅3

𝑟2
𝑣0 cos 𝜃, 𝑣⃗ = grad𝜙 =

𝜕𝜙

𝜕𝑟
𝐼𝑟 +

1

𝑟

𝜕𝜙

𝜕𝜃
𝐼𝜃,

Отсюда радиальная и тангенциальная компоненты скорости соответственно

𝑣𝑟 =
𝑣0𝑅

3

𝑟3
cos 𝜃, 𝑣𝜃 =

𝑣0𝑅
3

2𝑟3
sin 𝜃

Объединение решений сферы и плоского потока. В силу линейности
уравнения Лапласа, можно легко решить задачу об обтекании сферы постоянным
потоком объединением решений плоского потока и диполя (сферы). Для опреде-
лённости, будем считать что поток набегает на сферу справа.

При этом математическая формулировка задачи будет

∆𝜙 = 0,
𝜕𝜙

𝜕𝑟

⃒⃒
⃒⃒
𝑟→∞

= −𝑣0 cos 𝜃,
𝜕𝜙

𝜕𝑟

⃒⃒
⃒⃒
𝑟=𝑅

= 0

Решение задачи будут суперпозицией решений задачи сферы и задачи плоско-
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го потока:
𝜙 = −𝑣0 cos 𝜃

(︂
1 +

1

2

𝑅3

𝑟2

)︂
, 𝑣𝑟 = −𝑣0 cos 𝜃

(︂
1 − 𝑅3

𝑟3

)︂
,

𝑣𝜃 = 𝑣0 sin 𝜃

(︂
1 +

𝑅3

2𝑟3

)︂

При этом на поверхности сферы

𝑣𝑟 = 0, 𝑣𝜃 =
3

2
𝑣0 sin 𝜃

В точках 𝜃 = 0, 𝜋 скорость 𝑣𝜃 = 0, а в точках 𝜃 = 𝜋
2 ,

3𝜋
2 скорость 𝑣𝜃 = 3

2𝑣0.

2.11.2 Парадокс Даламбера-Эйлера.

Найдём давление и силу, действующие со стороны потока на неподвижную
сферу. Для этого задействуем уравнение Бернулли:

𝑝0 +
𝜌𝑣20
2

= 𝑝𝑠 +
𝜌𝑣2𝜃
2

Учитывая, что 𝑣𝜃 = 3
2𝑣0 sin 𝜃, получим

𝑝𝑠 = 𝑝0 +
𝜌𝑣20
2

(︂
1 − 9

4
sin2 𝜃

)︂

𝑣𝜃

𝜃

𝑝𝑠

𝜃

Рис. 18. Графики скорости и давления от угла

Давление симметрично относительно миделя (серединной плоскости) сферы.
Найдём полную силу со стороны жидкости на сферу:

𝐹 = −
∮︁

𝑆

𝑝𝑠𝑛⃗ d𝑆
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Можно подставить сюда давление и посчитать силу в лоб. Но намного проще
заметить, что давление - чётная функция угла 𝜃, а нормаль меняет знак при
интегрировании. Значит, интеграл будет равен нулю, и это и есть содержание
парадокса Даламбера-Эйлера:

𝐹 = 0

Словами можно сформулировать парадокс так:
Формулировка 1. При обтекании тела с гладкой поверхностью идеальной

несжимаемой жидкостью сила лобового сопротивления, действующая на тело
со стороны потока, равна нулю.

Формулировка 2. Для тела, движущегося равномерно в идеальной несжи-
маемой жидкости постоянной плотности без границ, сила сопротивления равна
нулю.

Парадокс возникает вследствие идеализации: отсутствия вязкости и волн, убе-
гающих от тела. Физический смысл этого заключается в том, что если бы сила
была не равна нулю, то внешняя сила, поддерживающая движение с постоянной
скоростью, совершала бы работу, которая должна либо диссипироваться в жид-
кости, либо уносится волнами на бесконечность.

2.11.3 Присоединённая масса

При формулировке парадокса Даламбера-Эйлера особое внимание следует
уделить тому факту, что силы лобового сопротивления нет при равномерном дви-
жении тела. Если же тело будет двигаться с ускорением 𝑎, то сила появится.
Второй закон Ньютона даёт тогда

𝐹 − 𝐹сопр = 𝑚𝑎,

или, если ввести присоединённую массу как 𝑀 = 𝐹сопр/𝑎,

𝐹 = (𝑚+𝑀)𝑎

Получить выражение для присоединённой массы можно двумя способами: энер-
гетическим и динамическим (решением уравнений). Рассмотрим оба способа.

Энергетический вывод присоединённой массы. Пусть шар массы 𝑚 и ра-
диуса 𝑅 движется с постоянным ускорением 𝑎 из состояния равновесия до скоро-
сти 𝑣0.

В таком случае нетрудно найти время, путь и работу:

𝑇 =
𝑣0
𝑎
, 𝑆 =

𝑎𝑇 2

2
=
𝑣20
2𝑎
, 𝐴 = 𝐹𝑆 =

𝐹𝑣20
2𝑎
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Закон сохранения энергии:

𝐹𝑣20
2𝑎

=
𝑚𝑣20

2
+

∫︁

𝑟>𝑅

𝜌𝑣2

2
d𝑉 ,

где интегрирование идёт по внешнему объёму. Теперь запишем второй закон Нью-
тона через присоединённую массу:

𝐹 = 𝑚𝑎+𝑀𝑎

Подставив силу в ЗСЭ, получим выражение для присоединённой массы шара:

𝑀 =
𝜌

𝑣20

∫︁

𝑟>𝑅

𝑣2 d𝑉

Найдём её, задействовав выведенные ранее формулы для скорости жидкости при
движении в ней шара со скоростью 𝑣0:

𝑣𝑟 =
𝑣0𝑅

3

𝑟3
cos 𝜃, 𝑣𝜃 =

𝑣0𝑅
3

2𝑟3
sin 𝜃 ⇒ 𝑣2 = 𝑣2𝑟 + 𝑣2𝜃 =

𝑣20𝑅
6

4𝑟6
(︀
1 + 3 cos2 𝜃

)︀

Для поиска массы надо провести интегрирование в сферической системе коорди-
нат:

𝑀 =
𝜌

𝑣20

∫︁

𝑟>𝑅

𝑣2 d𝑉 =
𝜌

𝑣20

𝜋∫︁

0

∞∫︁

𝑅

𝑣20𝑅
6

4𝑟6
(︀
1 + 3 cos2 𝜃

)︀
2𝜋𝑟2 d𝜃 d𝑟

Заметим, что если честно довести интегрирование до конца, получится

𝑀 = 𝜌 · 2

3
𝜋𝑅3

Этот результат можно трактовать так: присоединённая масса шара равна
половине массы жидкости, вытесненной шаром.

Вывод на основе динамических уравнений. Векторное поле жидкости
определяется только скоростью шара, и не зависит от его ускорения. Но для дав-
ления это не так. Запишем нестационарное уравнение Бернулли:

𝜕𝜙

𝜕𝑡
+
𝑣2

2
+
𝑝

𝜌
− 𝑔𝑧 = const =

𝑝0
𝜌

⇒ 𝑝𝑠 = 𝑝|𝑟=𝑅 = 𝑝0 + 𝜌𝑔𝑧 − 𝜌𝑣2

2
− 𝜌

𝜕𝜙

𝜕𝑡
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Теперь, зная давление на поверхности, можем найти силу, действующую на шар
со стороны жидкости:

𝐹 = −
∮︁

𝑆

𝑝𝑠𝑛⃗ d𝑆 = 𝐹0 + 𝐹𝐴 + 𝐹Ber + 𝐹𝑎

Интеграл от 𝑝0 даёт силу 𝐹0, и она очевидно равна нулю, так как 𝑝0 – константа
на площади сферы. Вторая сила – это сила Архимеда. В лоб её считать трудно, но
ранее мы уже этим занимались и можем считать известным, что она направлена
по вертикали. Третья сила – связана с движением тела с постоянной скоростью,
и мы только что показали парадокс Даламбера: она равна нулю.

Таким образом, остаётся сосчитать только последнюю силу.

𝐹 = 𝜌

∮︁

𝑆

𝜕

𝜕𝑡

[︂
−1

2

𝑅3

𝑟3
(𝑣⃗0, 𝑟⃗0 )

]︂
𝑛⃗ d𝑆 = 𝜌

∮︁

𝑆

[︂
−1

2
𝑅𝑎 cos 𝜃

]︂
𝑛⃗ d𝑆

Найдём значение силы в проекции на ось 𝑥, соноправленную ускорению:

𝐹𝑥 = 𝜌

∮︁
𝜕𝜙

𝜕𝑡
𝑛𝑥 d𝑆 = −𝜌𝑅𝑎

2

𝜋∫︁

0

2𝜋∫︁

0

cos 𝜃 · cos 𝜃 ·𝑅2 sin 𝜃 d𝜃 d𝜓 =

= −𝜋𝜌𝑅3𝑎

𝜋∫︁

0

cos2 𝜃 sin 𝜃d𝜃 = 𝜋𝜌𝑅3𝑎

−1∫︁

1

𝑥2 d𝑥 = −2

3
𝜋𝜌𝑅3𝑎 ⇒

⇒ 𝐹𝑥 = −𝑀𝑎, 𝑀 = 𝜌 · 2

3
𝜋𝑅3 =

𝑀𝑔

2

Получили тот же результат, что и энергетическим способом.

Применение присоединённой массы. Решим такую задачу: шарик падает в
идеальной жидкости. Запишем для него второй закон Ньютона, учитывая присо-
единённую массу, в проекции на ось 𝑥, направленную вниз:

(︂
𝜌ш𝑉 +

𝜌ж𝑉

2

)︂
𝑎𝑥 = 𝐹тяж𝑥

+ 𝐹арх𝑥
= 𝜌ш𝑉 𝑔 − 𝜌ж𝑉 𝑔 ⇒

⇒ 𝑎𝑥 =
𝜌ш − 𝜌ж

𝜌ш + 𝜌ж
2

𝑔

Если это капля воды в воздухе, то 𝑎𝑥 ≈ 𝑔, а если капля воздуха в воде, то 𝑎𝑥 ≈
−2𝑔.
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2.12. Гидродинамика плоских течений
Займёмся изучением плоских потенциальных течений. В этом случае оказыва-

ется эффективным использование математического формализма теории функций
комплексного переменного.

2.12.1 Функция тока

Течение плоское, потенциальное, в несжимаемой идеальной жидкости:

𝑣⃗ =

(︂
𝑣𝑥(𝑥, 𝑦)
𝑣𝑦(𝑥, 𝑦)

)︂
, rot 𝑣⃗ = 0, 𝑣⃗ = grad𝜙, ∆𝜙 = 0, div 𝑣⃗ = 0

Введём новую функцию – функцию тока так, чтобы уравнения неразрывности
выполнялись автоматически:

𝜓 = 𝜓(𝑥, 𝑦, 𝑡), 𝑣𝑥 =
𝜕𝜓

𝜕𝑦
, 𝑣𝑦 = −𝜕𝜓

𝜕𝑥
⇒ div 𝑣⃗ =

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝑦

= 0

Термин функция тока обусловлен тем, что в каждой точке линий уровня этой
функции (𝜓 = const ) вектор скорости направлен к ним по касательной. Эти
линии также называют линиями тока. Покажем это.

Если уравнения линий тока заданы как 𝑦 = 𝑦(𝑥), то

d𝑦

d𝑥
=
𝑣𝑦
𝑣𝑥

⇒ 𝑣𝑥 d𝑦 = 𝑣𝑦 d𝑥

Распишем формально дифференциал функции тока:

d𝜓 =
𝜕𝜓

𝜕𝑥
d𝑥+

𝜕𝜓

𝜕𝑦
d𝑦 = −𝑣𝑦 d𝑥+ 𝑣𝑥 d𝑦

Но в силу предыдущего равенства эта сумма равна нулю. Значит, на линии тока
𝜓 = const .

Поток через функцию тока. Найдём поток через плоскую кривую, соединя-
ющую точки 𝐴 и 𝐵:

𝑄 =

𝐵∫︁

𝐴

(𝑣𝑥𝑛𝑥 + 𝑣𝑦𝑛𝑦) d𝑙 =

𝐵∫︁

𝐴

(𝑣𝑥 d𝑦 − 𝑣𝑦 d𝑥) =

=

𝐵∫︁

𝐴

(︂
𝜕𝜓

𝜕𝑦
d𝑦 +

𝜕𝜓

𝜕𝑥
d𝑥

)︂
=

𝐵∫︁

𝐴

dΨ = 𝜓(𝐵) − 𝜓(𝐴)

38



Механика сплошных сред С. Н. Гурбатов

Видно, что поток не зависит от формы кривой и равен разности значений функции
тока на концах линии.

Найдём связь между потенциалом и функцией тока:

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
=
𝜕𝜓

𝜕𝑦
, 𝑣𝑦 =

𝜕𝜙

𝜕𝑦
= −𝜕𝜓

𝜕𝑥

Используя эту связь, нетрудно показать ортогональность линий уровня 𝜙 =
const и 𝜓 = const :

(∇𝜙,∇𝜓) =
𝜕𝜙

𝜕𝑥

𝜕𝜓

𝜕𝑥
+
𝜕𝜙

𝜕𝑦

𝜕𝜓

𝜕𝑦
= −𝑣𝑥𝑣𝑦 + 𝑣𝑦𝑣𝑥 = 0

Функция тока и потенциал скорости являются гармоническими функциями и
удовлетворяют уравнению Лапласа. В некотором смысле их можно считать рав-
ноправными. Течение, у которого эти функции поменяны местами, называют со-
пряжённым течением.

2.12.2 Аналитические функции

У нас есть некоторое комплексное число

𝑧 = 𝑥+ 𝑖𝑦 ↔ 𝐹 (𝑧) = 𝛼 + 𝑖𝛽

Функция аналитическая, если независимо от направления стремления ∆𝑧 к нулю
существует предел:

𝐹 ′(𝑧) = lim
Δ𝑧→0

𝐹 (𝑧 + ∆𝑧) − 𝐹 (𝑧)

∆𝑧

Будем стремить разными способами ∆𝑧 к нулю.
Первый способ: ∆𝑧 = ∆𝑥

𝐹 ′(𝑧) = lim
Δ𝑥→0

𝛼(𝑥+ ∆𝑥, 𝑦) + 𝑖𝛽(𝑥+ ∆𝑥, 𝑦) − 𝛼(𝑥, 𝑦) − 𝑖𝛽(𝑥, 𝑦)

∆𝑥
=

=
𝜕𝛼

𝜕𝑥
+ 𝑖

𝜕𝛽

𝜕𝑥

Второй способ: ∆𝑧 = 𝑖∆𝑦

𝐹 ′(𝑧) = lim
Δ𝑦→0

𝛼(𝑥, 𝑦 + ∆𝑦) + 𝑖𝛽(𝑥, 𝑦 + ∆𝑦) − 𝛼(𝑥, 𝑦) − 𝑖𝛽(𝑥, 𝑦)

𝑖∆𝑦
=

=
𝜕𝛽

𝜕𝑦
− 𝑖

𝜕𝛼

𝜕𝑦

Очевидно, производные должны совпасть. Отсюда условие аналитичности функ-
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ции

𝜕𝛼

𝜕𝑥
=
𝜕𝛽

𝜕𝑦
,

𝜕𝛼

𝜕𝑦
= −𝜕𝛽

𝜕𝑥

Раньше мы вводили потенциал и функцию тока следующим образом:

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
=
𝜕Ψ

𝜕𝑦
, 𝑣𝑦 =

𝜕𝜙

𝜕𝑦
= −𝜕Ψ

𝜕𝑥

Теперь, если взять комплексную функцию 𝐹 (𝑧) = 𝜙 + 𝑖Ψ (действительная часть
потенциал, мнимая – функция тока), то это и будет т.н. комплексный потенциал.

Мы помним, что

∇2𝜙 = 0, ∇2Ψ = 0, 𝜙 = Re{𝐹}, Ψ = Im{𝐹}

𝑣 = |𝐹 ′
𝑧|, 𝑣 =

√︁
𝑣2𝑥 + 𝑣2𝑦,

где 𝑣 – модуль скорости течения.

2.12.3 Конформное отображение

Пусть у нас есть функция 𝑧 = 𝑓(𝜉), где 𝑧, 𝜉 – комплексные. Соответственно

𝐹 (𝑧) = 𝐹
(︁
𝑓(𝜉)

)︁

Ниже мы будем решать задачу об обтекании цилиндра. Но крыло самолета в
сечении конформными преобразованиями связано с окружностью. Имея решение
об обтекании цилиндра, сможем решить задачу об обтекании крыла самолета. А
здесь рассмотрим несколько примеров.

Однородный поступательный поток. 𝐹 (𝑧) = 𝑎 · 𝑧 = 𝑎𝑥 + 𝑖 · 𝑎𝑦, 𝜙 = 𝑎𝑥,
Ψ = 𝑎𝑦. Что такое линии тока? Это линии Ψ = const . Скорость 𝑣𝑥 = 𝜕Ψ

𝜕𝑥 = 𝑎

Ψ = constΨ = const

ϕ = const

Рис. 19. Однородный поступательный поток

Cопряженное течение. 𝐹 (𝑧) = −𝑖𝐹 (𝑧) = 𝑎𝑦 − 𝑖 · 𝑎𝑥:
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ϕ = constϕ = const

Ψ = const

Рис. 20. Сопряженное течение

𝜙 = 𝑎𝑦, Ψ = −𝑎𝑥. Линии тока Ψ = const ортогональны линиям равного
потенциала 𝑦 = const . Скорость 𝑣𝑥 = 𝜕Ψ

𝜕𝑦 = 0, 𝑣𝑦 = −𝜕Ψ
𝜕𝑥 = 𝑎.

Пусть 𝑎 = 𝛼+ 𝑖𝛽. Подумайте, что будут представлять из себя линии тока, если
𝛼 = 1, 𝛽 = 1? Нужно найти угол наклона.

Cток-исток-вихрь. В предыдущем разделе было рассмотрено поле конденса-
тора и поле точечного заряда. В двумерном случае рассмотрим потенциал равно-
мерно заряженной нити.

𝐹 (𝑧) = 𝑚 ln(𝑧)

Используем полярную систему координат

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑧 = 𝑥+ 𝑖𝑦 = 𝑟𝑒𝑖𝜃

𝐹 (𝑧) = 𝑚 ln
(︀
𝑟𝑒𝑖𝜃
)︀

= 𝑚 ln(𝑟) +𝑚𝑖𝜃

𝜙 = 𝑚 ln 𝑟, Ψ = 𝑚𝜃, 𝑣𝑟 =
𝜕𝜙

𝜕𝑟
=
𝑚

𝑟
Линии уровня Ψ = const задают радиально отходящие от центра при 𝑚 > 0

и подходящие при 𝑚 < 0 линии тока:

Рис. 21. Линии тока при 𝑚 > 0

Посчитаем поток.

𝑄 =

𝐵∫︁

𝐴

𝑣⃗𝑛⃗𝑑𝑙 = Ψ(𝐵) − Ψ(𝐴) = 𝑚(𝜃𝑏 − 𝜃𝑎)
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Если контур является замкнутым, то 𝜃𝑏 = 𝜃𝑎 и интеграл равен нулю. Попробуем
вычислить поток через замкнутый контур произвольного радиуса 𝑅, зная зави-
симость скорости от пространственных координат:

𝑄 =

𝐵∮︁

𝐴

𝑣⃗𝑛⃗𝑑𝑙 =

𝐵∮︁

𝐴

𝑣𝑟𝑑𝑙 =

𝑅∫︁

0

𝑚

𝑟
· 2𝜋𝑑𝑟 = 2𝜋𝑚

Отличие величины потока, вычисленным двумя разными способами, заключает-
ся в том, что выбранный контур охватывает особую точку 𝑟 = 0. Необходимо
использовать теорему о вычетах для подсчета потока первым способом. Тогда
ответ совпадет со значением 𝑄 = 2𝜋𝑚.

Сопряженное течение.

𝐹 (𝑧) = 𝑖 ·𝑚 ln 𝑧 = 𝑖 ·𝑚 ln 𝑟𝑒𝑖𝜃 = Im ln 𝑟 −𝑚𝜃

𝜙 = 𝑚𝜃, Ψ = 𝑚 ln 𝑟

Тогда

𝑣𝑟 =
𝜕𝜙

𝜕𝑟
= 0, 𝑣𝜃 =

1

𝑟

𝜕𝜙

𝜕𝜃
= −𝑚

𝑟

Рис. 22. Линии Ψ = const

Посчитаем интеграл и найдем циркуляцию:

Γ =

∮︁
𝑣⃗𝑑𝑙 =

∫︁
𝑚

𝑟
· 2𝜋𝑑𝑟 = 2𝜋𝑚 = const .

Здесь опять тоже проявилось разногласие. Так как течение потенциально, то и
циркуляция по замкнутому контуру (вследствие теоремы Томсона) должна рав-
няться нулю. Но внутри контура имеется особая точка.

Самостоятельно исследуйте случай 𝑚 = 𝛼+𝑖𝛽. Линии тока для данной задачи
представляют собой спираль.

Гидродинамический диполь.

𝐹 (𝑧) = −𝑃
𝑧

= − 𝑃

𝑥+ 𝑖𝑦
= 𝜙+ 𝑖Ψ
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x

y

Рис. 23. Линии тока диполя

Выражения для потенциала скорости 𝜙 и функции тока Ψ примут следующий
вид:

𝜙 = − 𝑃𝑥

𝑥2 + 𝑦2
, Ψ =

𝑃𝑦

𝑥2 + 𝑦2

Линии тока 𝑥2 + 𝑦2 = 𝑐 · 𝑦 – смещенные окружности.

𝑥2 + 𝑦2 − 2
1

2
𝑐𝑦 +

1

4
𝑐2 =

1

4
𝑐2

Отсюда
𝑥2 + (𝑦 − 𝑐/2)2 =

1

4
𝑐2 = 𝑟2,

где 𝑟 = 𝑐
2 – радиус окружности, координаты центра окружности (0, 𝑐/2).

Найдем куда направлена скорость. Вспомним, что 𝜙 = − 𝑃𝑥
𝑥2+𝑦2 , а 𝑣𝑥 = 𝜕𝜙

𝜕𝑥 .
Тогда

𝑣𝑥 =
𝑃 (𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)2

Циркуляционное обтекание кругового цилиндра. На круговой цилиндр
радиуса 𝑅 слева набегает из бесконечности (справа) поток жидкости с постоянной
скоростью 𝑣0.

Поток

𝑅𝑅

Рис. 24. Поток, набегающий на цилиндр

43



Механика сплошных сред С. Н. Гурбатов

На цилиндре реализовано условие непротекания, а на больших расстояниях
постоянный поток:

𝑣𝑟|𝑟=𝑅 = 0, 𝑣𝑥|𝑟→∞ = −𝑣0, 𝑣𝑦|𝑟→∞ = 0.

В силу линейности уравнения Лапласа будем искать решение в виде сумму двух
решений, сдвиговый поток и потенциал диполя. По отдельности они не удовле-
творяют граничным условиям

𝐹 = 𝐹1 + 𝐹2

𝐹1 = −𝑣0𝑧 – набегает поток. 𝐹2 = −𝐴
𝑧

– потенциал диполя
Тогда

𝐹 = −𝑣0
𝑧
− 𝐴

𝑧
= −𝑣0𝑟𝑒𝑖𝜃 −

𝐴

𝑟
𝑒−𝑖𝜃

Вычислим 𝑣𝑟:
𝜕𝜙

𝜕𝑟
= −

(︂
𝑣0 −

𝐴

𝑟

)︂
cos 𝜃

Воспользовавшись граничным условиями 𝑣𝑟 = 0 при 𝑟 = 𝑅, находим константу
𝐴 = 𝑣0𝑅

2.
Тогда

𝐹 = −𝑣0
(︂
𝑧 +

𝑅2

𝑧

)︂
.

Добавим течение типа «вихрь» 𝐹3 = − Γ𝑖
2𝜋 ln 𝑧.

Поток

𝑅𝑅

Рис. 25. Обтекание потоком цилиндра

𝐹 = −𝑣0
(︂
𝑧 +

𝑅2

𝑧

)︂
− Γ𝑖

2𝜋
ln 𝑧

Течение автоматически удовлетворяет граничным условиям. Для потенциала
и функции тока имеем

𝜙 = −𝑣0
(︂
𝑟 +

𝑅2

𝑟

)︂
cos 𝜃 +

Γ𝜃

2𝜋

44



Механика сплошных сред С. Н. Гурбатов

Найдем выражение для скорости.

𝑣𝑟 =
𝜕𝜙

𝜕𝑟
= −𝑣0

(︂
1 − 𝑅2

𝑟

)︂
cos 𝜃

𝑣𝜃

⃒⃒
⃒⃒
𝑟=𝑅

= 2𝑣0 sin 𝜃 +
Γ

2𝜋𝑅

Ниже приведены картины линий тока при разных значениях Γ.

Рис. 26. Линии тока при Γ = 0 (слева) и 0 < Γ < Γ* (справа)

При добавлении кругового движения линии тока искривляются, исчезает сим-
метрия по вертикали. При дальнейшем увеличении Γ искривление нарастает:

Рис. 27. Линии тока при Γ = Γ* (слева) и Γ > Γ* (справа)

Критическое значение
Γ* = 4Π𝑣0𝑅.

Если Γ меньше критического, то критическая точка на поверхности цилиндра, ес-
ли больше, то вне области цилиндра и появляется сепаратриса (на рисунке спра-
ва).
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Как видно из рисунков, при циркуляции цилиндра не нарушается симметрия
относительно миделя (то есть силы сопротивления потоку не возникает) но над
цилиндром скорость больше чем под ним. Этот факт отражает возникновение
подъёмной силы.

Используя уравнение Бернулли, найдем распределение давления на поверхно-
сти цилиндра

𝑝0 +
𝜌𝑣20
2

= 𝑝𝑠 +
𝜌𝑣2𝜃
2

Отсюда
𝑝𝑠 = 𝑝0 +

𝜌

2

(︀
𝑣20 − 𝑣2𝜃

)︀

Ну и получается

𝑝𝑠 = 𝑝0 +
1

2
𝜌

(︃
𝑣20 − 4𝑣20 sin2 𝜃 −

(︂
Γ

2𝜋𝑅

)︂2

− 2Γ𝑣0 sin 𝜃

𝜋𝑅

)︃

Найдем силу действующую на единицу длины цилиндра со стороны потенциаль-
ного потока

𝐹 = −
∫︁
𝑝𝑛⃗𝑑𝑙.

По горизонтали силы никакой нет, по вертикали вклад дает только последнее
слагаемое в выражении для давления. Давление больше где скорость меньше,
значит оно больше внизу, значит, возникнет подъемная сила. (скорость больше,
сложение скорости набегающего потока и кругового).

𝐹𝑦 = −
∫︁
𝑝𝑛𝑦 d𝑙 = 𝜌Γ𝑣0.

Это есть формула Жуковского. Сила пропорциональна плотности, скорости па-
раметру, характеризующему вихрь.

2.12.4 Вихревые движения в идеальной жидкости

До сих пор мы занимались потенциальными течениями: сток, исток, двумер-
ное движение и так далее. Теперь рассмотрим другой класс движений идеальной
жидкости – вихревые движения.

Введем понятие вектора завихрённости Ω:

Ω⃗ = rot 𝑣⃗

Завихренность можно связать с циркуляцией скорости. Для этого запишем опре-
деление циркуляции и применим теорему Остроградского-Гаусса:

Γ =

∮︁

𝐿

𝑣⃗ d⃗𝑙 =

∫︁

𝑆

rot 𝑣⃗d𝑆⃗ =

∫︁

𝑆

Ω⃗𝑛⃗ d𝑆
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Это означает, что циркуляция скорости по замкнутому контуру равна потоку
завихрённости.

Воспользуемся ранее доказанной теоремой Томсона: циркуляция скорости
вдоль замкнутого контура, перемещающегося в идеальной жидкости, остается
постоянной.

Следовательно, сохраняется постоянным и поток вихря через поверхность, на-
тянутую на односвязный контур: Γ = const .

Введем понятие вихревой линии и вихревой трубки. Вихревой линией назы-
вают линию, касательные к которой в каждой точке коллинеарны вектору вихря.
Если взять замкнутый контур и через каждую его точку провести вихревую ли-
нию, то внутри образуется вихревая трубка.

Теорема Лагранжа. Элементы идеальной жидкости, лишенные вихрей в на-
чальный момент времени, будут лишены их и в дальнейшем.

L1, S1

Рис. 28.

На поверхности трубки разместим маленький контур 𝐿1 с площадью 𝑆1. Со-
считаем поток через этот маленький контур:

Γ1 =

∫︁
Ω⃗𝑛⃗d𝑆1 =

∮︁

𝐿1

𝑣⃗ d⃗𝑙 = 0

Так как на поверхности трубки все линии тока проходят сквозь выбранный
контур в поверхности контура, то циркуляция по такому контуру будет равна
нулю.

В силу теоремы Томсона, если циркуляция Γ1 = 0 в начальный момент вре-
мени, то она будет равна нулю и в любой дальнейший момент времени. А так
как маленький контур произвольный, то он все время будет находиться на по-
верхности вихревой трубки. Устремляя сечение трубки к нулю, мы получаем, что
элементы идеальной жидкости, лишенные вихрей в начальный момент времени,
будут лишены их и в дальнейшем.

Вихри в идеальной жидкости возникнуть и исчезнуть не могут. Чтобы они
появились, необходимы взаимодействие с поверхностью (что приводит к неодно-
связности контура), и непотенциальность сил. Например, вихри могут возникнуть
в заряженной жидкости в магнитном поле.
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Вторая теорема Гельмгольца. Поток вектора вихря через поперечное сече-
ние лучевой трубки остается постоянным.

Распишем поток через поверхность лучевой трубки, представив её как объеди-
нение боковой поверхности 𝑆𝑏 и поверхностей двух торцов 𝑆1,2:

∮︁
Ω⃗𝑛⃗d𝑆 =

∫︁

𝑆1

Ω⃗𝑛⃗1d𝑆 +

∫︁

𝑆2

Ω⃗𝑛⃗2d𝑆 +

∫︁

𝑆𝑏

Ω⃗𝑛⃗𝑏d𝑆

Очевидно, поток через боковую поверхность равен нулю. Используем формулу
Остроградского-Гаусса и учитываем, что div rot = 0:

∮︁
Ω⃗𝑛⃗𝑑𝑆 =

∫︁∫︁∫︁
div Ω⃗d𝑉 = 0

Учитывая произвольность выбора поверхностей и то, что единичный вектор нор-
мали 𝑛⃗ меняет на торцах знак, получаем инвариантность потока вихря через се-
чение вихревой трубки ∫︁

𝑆1

Ω⃗𝑛⃗d𝑆 =

∫︁

𝑆2

Ω⃗𝑛⃗d𝑆.

Замечание. Если сечение достаточно мало, так что завихренность постоянна
вдоль трубки Ω𝑆, сохраняется величина Ω𝑆 – называемая интенсивностью вих-
ревой трубки.

Рассмотрим несколько примеров, в которых получим значение вектора завих-
ренности.

Плоское течение. Пусть течение направлено вдоль оси 𝑥: 𝑣⃗ = (𝑣𝑥(𝑦), 0, 0).

𝑣⃗

⨂︀

Ω⃗

𝑥

𝑦

⨀︀
𝑧𝑧

Рис. 29. Плоское течение

Дивергенция, как нетрудно получить, равна нулю:

div 𝑣⃗ =
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝑦

+
𝜕𝑣𝑧
𝜕𝑧

= 0
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Сосчитаем завихренность Ω⃗.

Ω⃗ =

⃒⃒
⃒⃒
⃒⃒
𝑖⃗ 𝑗⃗ 𝑘⃗
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑣𝑥 0 0

⃒⃒
⃒⃒
⃒⃒ = −𝑘⃗ · 𝜕𝑣𝑥

𝜕𝑦

Итак, завихренность есть, но она направлена либо на нас, либо от нас по рисунку.
Если 𝑣𝑥 = 𝑏𝑦, то Ω⃗ = −𝑏𝑘⃗. Это тривиальная задача.

Рассмотрим ещё случай, когда скорость задана ступенчатой функцией. В этом
случае наблюдается так называемая вихревая пелена:

𝑣𝑥(𝑦) =

{︂
𝑣0, 𝑦 > 0

0, 𝑦 < 0
⇒ Ω⃗ = 𝑘⃗ · 𝑣0𝛿(𝑦)

Найти циркуляцию можно двумя способами: сосчитать интеграл

Γ = 𝑙𝑣0 + 0 + 0 + 0,

или найти поток вектора завихренности

Γ =

∫︁
Ω⃗𝑛⃗d𝑆 = 𝑙𝑣0.

Мы привыкли считать, что завихренность – это вращение слоев жидкости. В
этой задаче течение плоско-параллельное, но скорости у разных сечений разные:
движение остается вихревым.

Вращение жидкого цилиндра. Пусть жидкий цилиндр радиуса 𝑅 вращается
как твердое тело: При этом скорость жидкости задается как

𝑟𝑟

𝑧
Ω⃗

Рис. 30. Вращение жидкого цилиндра

𝑣𝜃(𝑟) =

{︂
𝜔𝑟, 𝑟 < 𝑅

0, 𝑟 > 𝑅
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Нам нужно знать выражение для ротора в в цилиндрической системе кор-
динат. Но здесь можно обойтись формулой попроще. Ω⃗ направлен по оси 𝑧, и
получается простая формула:

rot 𝑣⃗ = Ω⃗ = 𝐼𝑧
1

𝑟

𝜕

𝜕𝑟
𝑟𝑣𝜃 = 2𝜔𝐼𝑧, когда 𝑟 < 𝑅

Будем считать, что снаружи от цилиндра течение потенциальное: Ω⃗ = 0, тогда

𝜕

𝜕𝑟
𝑟𝑣𝜃 = 0 ⇒ 𝑣𝜃 =

𝐴

𝑟

Найдем циркуляцию Γ по контуру 𝐿:

Γ =

∫︁

𝐿

𝑣⃗d⃗𝑙 = 2𝜋𝑅 𝑣𝜃 = 2𝜋𝐴.

С другой стороны, Γ – это поток вихря в области, где течение вихревое, 𝑆 = 𝜋𝑅2:

Γ =

∫︁∫︁
(rot 𝑣⃗, 𝑛⃗)d𝑆 =

∫︁∫︁
Ω𝑛d𝑆 = 2𝜔 𝜋𝑅2.

Из этих формул находим

𝑣𝜃 =
𝜔𝑅2

𝑟
=

Γ

2𝜋𝑟
.

Ради чего мы все это делали? Надо найти давление:

𝑝+
𝜌𝑣2

2
= 𝑝0 ⇒ 𝑝 = 𝑝0 −

𝜌𝑣2

2
.

Используем уравнение Бернулли, и ищем ошибку, которая здесь была допущена.
По формуле получилось на бесконечности и в центре скорость ноль, и давление в
центре нуля и на бесконечности одно и тоже. А из опыта известно, что в центре
смерча, например, давление пониженное.

Подсказка: использовали уравнение Бернулли, а оно сформулировано в разных
случаях: 1) для стационарного потенциального течения во всем пространстве, 2)
вдоль лучевой трубки, 3) нестационарное

При 𝑟 > 𝑅 можно пользоваться, течение потенциальное. А внутри-то там есть
вихрь, течение не потенциально, и формулой Бернулли пользоваться нельзя.

𝑟 > 𝑅 : 𝑝 = 𝑝0 −
𝜌𝜔2𝑅4

2𝑟2

Внутри пользуемся уравнением Эйлера. Как мы его выводили: масса умно-
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жить на ускорение равно силе.

𝜕𝑣

𝜕𝑡
+ 𝑣⃗∇𝑣⃗ = −∇𝑝

𝜌

У нас 𝜕𝑣
𝜕𝑡 = 0. Нужно знать 𝑣⃗∇𝑣⃗ в цилиндрической системе координат. Частичка

движется по окружности, радиус у неё известен – 𝑅, скорость известна – 𝜔𝑟.
Ускорение центростремительное 𝑎𝑟 = −𝑣2

𝑅 = −𝜔2𝑟. Тогда можем записать:

−𝜔2𝑟 = −d𝑝

d𝑟

1

𝜌

𝑝(𝑟) =

⎧
⎪⎪⎨
⎪⎪⎩

𝑝0 −
𝜌𝜔2𝑅4

2𝑟2
, 𝑟 > 𝑅

𝑝0 −
𝜌𝜔2𝑅4

𝑅2
+
𝜌𝜔2𝑟2

2
, 𝑟 < 𝑅

𝑟

𝑝

𝑅

𝑝0

Рис. 31. Зависимость давления от расстояния

Получается, что давление в центре 𝑝(𝑟 = 0) = 𝑝0 − 𝜌𝜔2𝑅2 меньше, чем на
давление на бесконечности. Чем больше радиус вихря, тем меньше давление.

2.12.5 Точечные вихри

Устремляем сечение нашей вихревой трубки к нулю так:

𝑅 → 0, 𝜔 → ∞, Γ = 2𝜋𝜔𝑅2 = 2𝜋𝐴, 𝑣𝜃 =
Γ

2𝜋𝑟

Пусть у нас есть много вихрей:
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Γ1

𝑣⃗1 Γ2

𝑣⃗2

Γ𝑖

𝑣⃗𝑖

Рис. 32. Много вихрей

Как они между собой будут взаимодействовать? У нас есть уравнение Ла-
пласа, которое работает всюду, кроме вихревых линий. Скорость в данной точке
равняется суперпозиции скорости от всех вихрей. Дальше, по теореме Гельмголь-
ца, завихренность переносится частицами жидкости. То есть, скорость точечного
вихря Γ𝑖 равняется скорости жидкости в данной точке, создаваемой всеми осталь-
ными вихрями.

d𝑟⃗𝑖
d𝑡

=
∑︁

𝑘 ̸=𝑖

𝑣⃗𝑘(𝑟⃗𝑖)

𝑥

𝑦

Γ𝑘(𝑥𝑘, 𝑦𝑘)

Γ𝑖(𝑥𝑖, 𝑦𝑖)

𝑥𝑖

𝑦𝑖

𝜃

𝜃

Рис. 33. Координаты вихря

𝑟 =
√︀

(𝑥𝑘 − 𝑥𝑖)2 + (𝑦𝑘 − 𝑦𝑖)2, sin 𝜃 =
𝑦𝑖 − 𝑦𝑘
𝑟

, 𝑣𝜃 =
Γ𝑘

2𝜋𝑟𝑖𝑘
.

Запишем уравнения для координат вихря

d𝑥𝑖
d𝑡

= − 1

2𝜋

∑︁

𝑘 ̸=𝑖

Γ𝑘(𝑦𝑖 − 𝑦𝑘)

𝑟2𝑖𝑘
,

d𝑦𝑖
d𝑡

= − 1

2𝜋

∑︁

𝑘 ̸=𝑖

Γ𝑘(𝑥𝑖 − 𝑥𝑘)

𝑟2𝑖𝑘
.
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Какие интегралы есть у этой системы?

∑︁
Γ𝑖

d𝑥𝑖
d𝑡

= −
∑︁∑︁ Γ𝑘Γ𝑖(𝑦𝑖 − 𝑦𝑘)

𝑟2𝑖𝑘
= 0

Это значит, что

∑︁
𝑥𝑖Γ𝑖 = const = 𝑥

∑︁
Γ𝑖, где 𝑥 =

∑︀
𝑥𝑖Γ𝑖∑︀
Γ𝑖

Тривиально, что то же самое можно записать по координате 𝑦. Если 𝑛 > 2, других
интегралов нету.

Рассмотрим более простую задачу. Всего два вихря: 𝑟1 и 𝑟2.

d𝑥1
d𝑡

= −Γ2(𝑦1 − 𝑦2)

2𝜋𝑟2
, 𝑟2 =

√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2.

d𝑥2
d𝑡

=
Γ1(𝑦1 − 𝑦2)

2𝜋𝑟2
, 𝑟2 =

√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2.

d𝑦1
d𝑡

=
Γ2(𝑥1 − 𝑥2)

2𝜋𝑟2
, 𝑟2 =

√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2.

d𝑦2
d𝑡

= −Γ1(𝑥1 − 𝑥2)

2𝜋𝑟2
, 𝑟2 =

√︀
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2.

Домножаем, складываем:

Γ1𝑥1 + Γ2𝑥2 = const , Γ1𝑦1 + Γ2𝑦2 = const

Мы нашли два интеграла: центр тяжести не изменяется. Ну, давайте попробуем
еще найти интегралы. Если мы найдем еще два интеграла, то задачу сделаем.
Подсказка: из первого уравнения вычесть второе.

d

d𝑡
(𝑥1 − 𝑥2) = −(Γ1 + Γ2)

2𝜋

𝑦1 − 𝑦2
𝑟

,

d

d𝑡
(𝑦1 − 𝑦2) =

(Γ1 + Γ2)

2𝜋

𝑥1 − 𝑥2
𝑟

Домножаем, складываем:

(𝑥1 − 𝑥2)
d𝑥1 − 𝑥2

d𝑡
+ (𝑦1 − 𝑦2)

d𝑦1 − 𝑦2
d𝑡

= 0 ⇒

⇒ d(𝑥1 − 𝑥2)
2

d𝑡
+

d(𝑦1 − 𝑦2)
2

d𝑡
= 0

Отсюда еще один интеграл

(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 = 𝑟2 = const
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Вихри вращаются вокруг неподвижного центра тяжести, с сохранением рас-
стояния между ними. Какие при этом траектории движения? Чтобы найти траек-
торию, из первого уравнения находим 𝑥1, из второго 𝑦2, подставляем в это урав-
нение и получим уравнение окружности.

а) Что же у нас теперь будет? Посмотрим частный случай, когда Γ2 = 0,
Γ1 = Γ. (рис) Движение по окружости 𝑣𝜃 = Γ

2𝜋𝑟 , центр тяжести в точке ненулевого
вихря.

Γ
Γ2 = 0Γ2 = 0

Рис. 34.

б) Два вихря Γ,Γ – центр тяжести посередине, расстояние между вихрями 𝑙,
𝑣𝜃 = Γ

2𝜋𝑙 .

𝑙
ΓΓ

Рис. 35.

в) Два вихря Γ,−Γ. Центр тяжести будет находится на бесконечности (нетруд-
но посчитать). 𝑣 = Γ

2𝜋𝑙 . Два таких вихря двигаются с постоянной скоростью.

Γ−Γ

Рис. 36.

г) Вихрь над плоскостью. Метод изображений даст, что вихри будут двигаться
параллельно плоскости.

Γ

Γ

Рис. 37.

д) Вихрь в угле будет двигаться на бесконечности параллельно линиям угла.
Для нахождения траектории можно использовать метод изображений:
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Рис. 38.

e) Цепочка вихрей после обтекания цилиндра – цепочка Кармана.

Рис. 39. Цепочка Кармана

Задача для самостоятельного решения. Найти скорость вихрей, если рас-
стояние между цепочками 𝑑, а расстояние между вихрями в цепочке 𝑙.
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2.13. Поверхностные гравитационные волны
Надо отметить большое разнообразие волновых движений в жидкостях и га-

зах. Это волны на поверхности жидкости, внутренние волны в океане.
Мы будем рассматривать гравитационные волны на поверхности несжимаемой

жидкости. Если ровная поверхность жидкости выведена из состояния равновесия,
то под действием силы тяжести возмущение стремится вернутся в равновесие и
возникнет колебательное движение.

К таким волнам относятся корабельные волны, цунами, ветровые волны, внут-
ренние волны в неоднородной жидкости. При исследовании мы будем использо-
вать ряд приближений. Во-первых, жидкость должна быть идеальная и несжи-
маемая (нет вязкости, звука). Также она должна быть однородна (плотность
постоянна). При этом поверхность жидкости плоская и неограниченная
(земля в данных масштабах плоская). Кроме того, мы будем рассматривать толь-
ко волны малой амплитуды.

𝑥

𝑧

𝑙𝑙

𝐴𝐴

Рис. 40. Характеристики волны

Оценим слагаемые в уравнении Эйлера:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗,∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑔⃗

𝜕𝑣

𝜕𝑡
∼ 𝑣

𝜏
, 𝐴 ∼ 𝑉 𝜏, 𝜏 ∼ 𝐴

𝑣
,

𝜕𝑣

𝜕𝑡
∼ 𝑣2

𝑎
, (𝑣⃗,∇)𝑣⃗ ∼ 𝑣2

𝑙
, 𝑙 ≫ 𝑎

Значит, вторым слагаемым можно пренебречь, и тогда

𝜕𝑣⃗

𝜕𝑡
= −∇𝑝

𝜌
−∇(𝑔𝑧)

Берем от этого уравнения ротор:

rot grad = 0, rot 𝑣⃗ = 0, 𝑣⃗ = grad𝜙,
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Из несжимаемости
div 𝑣⃗ = 0

Тогда
∇2𝜙 = 0.

Волны описываются (в отсутствии силы тяжести и постоянной плотности воды)
уравнением Лапласа.

𝑥

𝑧

𝑧0

𝜉

Рис. 41. Новые координаты

Решение задачи о волнах. Введем новую координату 𝜉 = 𝑧−𝑧0 для решения
задачи так, как это показано на рисунке 41. Начнем решение задачи с поверхности
волны: это граница с воздухом, значит, есть некое давление 𝑝0. Можем вернуть-
ся к уравнению Эйлера, вместо скорости подставить ∇𝜙, и тогда мы получим
нестационарное уравнение Бернулли

grad

(︂
𝜕𝜙

𝜕𝑡
+
𝑝

𝜌0
+ 𝑔𝑧

)︂
= 0,

откуда следует, что на поверхности жидкости

𝜌
𝜕𝜙

𝜕𝑡
+ 𝜌𝑔𝜉 = −𝑝0,

где введено малое смещение волны от плоскости 𝜉(𝑥, 𝑦, 𝑡).
Переопределим потенциал, чтобы избавиться от 𝑝0, добавлением не зависящей

от координат величины 𝑝0𝑡/𝜌. Тогда условие на поверхности примет вид

𝜌
𝜕𝜙

𝜕𝑡

⃒⃒
⃒⃒
𝑧=𝜉

+ 𝜌𝑔𝜉 = 0

Найдем, чему равняется вертикальная скорость:

𝑣𝑧 =
d𝜉

d𝑡
=
𝜕𝜉

𝜕𝑡
+���

���
�XXXXXXX(𝑣𝑧 grad)𝜉,
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здесь из-за малости колебаний вторым слагаемым мы пренебрегли, и тогда

𝑣𝑧 =
d𝜉

d𝑡
=
𝜕𝜉

𝜕𝑡

С другой стороны,

𝑣𝑧 =
𝜕𝜉

𝜕𝑡
=
𝜕𝜙

𝜕𝑧

Продифференцировав по времени уравнение для 𝜙 и заменив 𝜕𝜉
𝜕𝑡 на 𝜕𝜙

𝜕𝑧 , получим
окончательно граничное условие на потенциал:

𝜕2𝜙

𝜕𝑡2

⃒⃒
⃒⃒
𝑧=0

+ 𝑔
𝜕𝜙

𝜕𝑧

⃒⃒
⃒⃒
𝑧=0

= 0

В силу малости возмущений мы заменили граничное условие на поверхности жид-
кости на граничное условие на плоскости 𝑧 = 0. Граничное условие на поверхности
мы получили выше. Еще нужно граничное условие на дне – условие непротекания:
вертикальная компонента скорости на дне равна нулю:

𝜕𝜙

𝜕𝑧
= 0

⃒⃒
⃒⃒
𝑧=−𝐻

Если волны идут в однородном полупространстве, то в качестве второго гранич-
ного условия берем 𝜙→ 0 при 𝑧 → ∞.

Введем волновую замену потенциала 𝜙 = Φ(𝑧) · 𝑒𝑖(𝑘𝑥−𝜔𝑡). Тогда уравнение Ла-
пласа примет вид

d2Φ

d𝑧2
− 𝑘2Φ = 0

Оно взялось из ∇2𝜙 = 0. Нам надо найти такое решение, чтобы оно удовлетворяло
нулю на дне.

Будем искать решение в виде

Φ = 𝐴 ch 𝑘(𝑧 +𝐻),

тогда
𝜙 = 𝐴 ch 𝑘(𝑧 +𝐻) · 𝑒𝑖(𝑘𝑥−𝜔𝑡).

Считаем производные:

𝜕𝜙

𝜕𝑧
= 𝐴𝑘 sh 𝑘(𝑧 +𝐻) · 𝑒𝑖(𝑘𝑥−𝜔𝑡)

𝜕2𝜙

𝜕𝑡2
= −𝜔2𝐴 ch 𝑘(𝑧 +𝐻) · 𝑒𝑖(𝑘𝑥−𝜔𝑡)
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В итоге получаем дисперсионное уравнение:

−𝜔2𝐴 ch 𝑘(𝑧 +𝐻) · 𝑒𝑖(𝑘𝑥−𝜔𝑡) + 𝑔𝐴𝑘 sh 𝑘(𝑧 +𝐻) · 𝑒𝑖(𝑘𝑥−𝜔𝑡) = 0

⃒⃒
⃒⃒
𝑧=0

(1)

⇒ 𝜔2 = 𝑔𝑘 th 𝑘𝐻 = 𝑔𝑘
𝑒𝑘𝐻 − 𝑒−𝑘𝐻

𝑒𝑘𝐻 + 𝑒−𝑘𝐻
= 𝑔𝑘

sh 𝑘𝐻

ch𝑥

Траектории частиц в волне. Нас интересует, как двигаются частицы. Запи-
шем потенциал:

𝜙 = 𝐴 ch 𝑘(𝑧 +𝐻) · exp(𝑖𝑘𝑥− 𝑖𝜔𝑡)

Найдем компоненты скоростей на глубине 𝑧:

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
= 𝑖𝑘𝐴 ch 𝑘(𝑧 +𝐻)𝑒𝑖(𝑘𝑥−𝜔𝑡)

𝑣𝑧 =
𝜕𝜙

𝜕𝑧
= 𝑘𝐴 sh 𝑘(𝑧 +𝐻)𝑒𝑖(𝑘𝑥−𝜔𝑡)

Отсюда

d𝜉

d𝑡
= 𝑣𝑥, 𝜉 =

𝑣𝑥
−𝑖𝜔 = −𝑘𝐴

𝜔
ch 𝑘(𝑧 +𝐻)𝑒𝑖(𝑘𝑥−𝜔𝑡)

d𝜂

d𝑡
= 𝑣𝑧, 𝜂 =

𝑣𝑧
−𝑖𝜔 =

𝑖𝑘𝐴

𝜔
sh 𝑘(𝑧 +𝐻)𝑒𝑖(𝑘𝑥−𝜔𝑡)

Амплитуда на поверхности 𝑧 = 0 равна амплитуде колебаний, т.е. 𝜉 = 𝑎, и мы
можем найти 𝐴:

𝑎 = 𝜉|𝑧=0 =
𝑖𝑘𝐴

𝜔
sh 𝑘𝐻

Поскольку величины у нас комплексные, мы должны взять действительную часть.
После нехитрых математических операций смещения частицы по вертикали (𝜉) и
по горизонтали (𝜂) найдутся в виде

𝜉 = − 𝑎

sh 𝑘𝐻
ch 𝑘(𝑧 +𝐻) sin (𝑘𝑥− 𝜔𝑡)

𝜂 =
𝑎

sh 𝑘𝐻
sh 𝑘(𝑧 +𝐻) cos (𝑘𝑥− 𝜔𝑡)

Отсюда видно, что траектории двигаются по эллипсу:

𝜉2

𝑎2𝜉
+
𝜂2

𝑎2𝜂
= 1, 𝑎𝜉 =

𝑎 ch 𝑘(𝑧 +𝐻)

sh 𝑘𝐻
, 𝑎𝜂 =

𝑎 sh 𝑘(𝑧 +𝐻)

sh 𝑘𝐻
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2.13.1 Волны на мелкой воде

Как следует из названия этого раздела, мы будем рассматривать волны на
мелкой воде, где будем работать в приближении 𝜆 ≫ 𝐻 или, что тоже самое,
𝑘𝐻 ≪ 1.

Дисперсионное уравнение (1) для волн на мелкой воде примет вид

𝜔2 = 𝑔𝑘2𝐻, 𝜔 = ±𝑘
√︀
𝑔𝐻

Зависимость от 𝑘 линейная, значит, волны на мелкой воде – это волны без дис-
персии. Яркий пример волн без дисперсии – это цунами в океане. Глубина океана
5-6 км, а цунами имеет длину волны десятки – сотни километров.

У нас есть понятие фазовой и групповой скоростей:

𝑣f =
𝜔

𝑘
, 𝑣gr =

d𝜔

d𝑘

Если воспользоваться соответствующим дисперсионным уравнением, окажет-
ся, что для волн на мелкой воде фазовая и групповая скорости совпадут.

Если у нас есть некий волновой пакет, и мы смотрим как он распространяется,
у нас есть огибающая и есть фаза. Групповая скорость - скорость огибающей,
фазовая - скорость постоянной фазы:

𝑣гр

𝑣ф𝑣ф 𝑧

Рис. 42. Распространение волнового пакета

Теперь уточним вид траекторий частицы в мелкой волне. Ранее мы нашли, то
что в любом случае это движение по эллипсу с амплитудами 𝑎𝜉, 𝑎𝜂. Найдем их
в случае 𝑘𝐻 ≪ 1, для этого разложим гиперболические функции в ряд Тейлора
при малых аргументах:

sh𝑥 ≈ 𝑥+ . . . , ch𝑥 ≈ 1 + . . .

Учтем ещё, что в выбранной нами системе координат (ось 𝑧 вверх, на глубине
𝑧 отрицательны) 𝑘(𝑧 + 𝐻) < 𝑘𝐻. Тогда из полученных ранее формул несложно
получить

𝑎𝜉 =
𝑎

𝑘𝐻
, 𝑎𝜂 = 𝑎

{︁
1 +

𝑧

𝐻

}︁

Частички двигаются по сильно вытянутым эллипсам 𝑎𝜉 ≫ 𝑎𝜂, а на дне при 𝑧 =
−𝐻 вертикальная компонента скорости равна нулю.
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𝐻

𝜆

Рис. 43. Движение частиц на разной глубине

2.13.2 Волны на глубокой воде

В этом случае 𝑘𝐻 ≫ 1. Тогда tg 𝑘𝐻 равен 1, и тогда дисперсионное уравнение
примет вид

𝜔 = ±
√︀
𝑔𝑘

Волна не чувствует дно, но появляется сильная дисперсия.
Найдем фазовую и групповую скорости:

𝑣f =

√︂
𝑔

𝑘
, 𝑣gr =

𝑔

2
√
𝑔𝑘

=
1

2
𝑣f

На мелкой воде пакет волн двигается вместе, а на глубокой гребни волн будут
убегать вперед4

Определим траектории частиц. По определению,

sh𝑥 =
𝑒𝑥 + 𝑒−𝑥

2
, ch𝑥 =

𝑒𝑥 − 𝑒−𝑥

2

Отбросив некоторые слагаемые по порядку малости, получим

sh 𝑘𝐻 ≈ ch 𝑘𝐻 ≈ 𝑒𝑘𝐻

2

После подстановки в формулы для эллипсов получим

𝑎𝜉 = 𝑎𝜂 = 𝑎𝑒𝑘𝑧, 𝑧 < 0

Траектории представляют собой окружности, радиус которых быстро спадает с
глубиной.

Займёмся численным экспериментом. Оценка такая: мы находимся в море,
амплитуда волны 𝑎 равна 5 метрам. Это очень серьёзные волны. Давайте считать,
что длина волны 𝜆 = 10 метров, а мы опустились на глубину 10 метров. Какая

4Задание к экзамену: оценить время расплывания пакета (рис. 42) из второй производной

𝜕2𝜔

𝜕𝑘2
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будет амплитуда колебаний частиц? Если посчитать, то будет один сантиметр.
Вот так быстро спадает. Наверху шторм, а на глубине фактически стоит штиль.

Рис. 44. Траектории частиц в чисто бегущей волне

Рис. 45. Траектории частиц в частично стоячей волне (𝑅 = 0.24)

Рис. 46. Траектории частиц в частично стоячей волне (𝑅 = 0.38)
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2.14. Гравитационно-капиллярные волны
Ранее мы не учитывали поверхностное напряжение.

𝑅1

𝑅2

Рис. 47. Два главных радиуса кривизны

Есть два главных радиуса кривизны, и возникает избыточное давление:

𝛿𝑝𝑠 = 𝛼

(︂
1

𝑅1
+

1

𝑅2

)︂
= 𝛼

1

𝑅
= −𝛼∇

(︃
∇𝜉√︀

1 + (∇𝜉)2

)︃

Если ∇𝜉 ∼ 𝑎
𝜆 ≪ 1, то 𝛿𝑝𝑠 = −𝛼∆𝜉.

Задача свелась к предыдущей. Граничное условие на дне – непротекание, а на
поверхности за счет сил поверхностного натяжения граничное условие изменится:

𝜌
𝜕𝜙

𝜕𝑡
+ 𝜌𝑔𝜉 + 𝑝0 + 𝛿𝑝𝑠 = 0, 𝑧 = 0

От 𝑝0 мы избавляемся аналогично предыдущей задаче, и в итоге получаем
граничное условие:

𝜕𝜙

𝜕𝑡
+ 𝑔𝜉 + 𝛼∆𝜉 = 0

⃒⃒
⃒⃒
𝑧=0

Продифференцируем граничное условие по времени, учитывая, что

𝑣(𝑧) =
𝜕𝜉

𝜕𝑡
=
𝜕𝜙

𝜕𝑧
.

Будем считать, что волна бежит по оси 𝑥, и тогда ∆𝜉 = 𝜕2𝜉
⧸︀
𝜕𝑥2 , отсюда

𝜕

𝜕𝑡
∆𝜉 =

𝜕3𝜙

𝜕𝑥2𝜕𝑧
.

В результате получаем граничное условие:

𝜕2𝜙

𝜕𝑡2
+ 𝑔

𝜕𝜙

𝜕𝑧
− 𝛼

𝜌

𝜕3𝜙

𝜕𝑥2𝜕𝑧
= 0

Как и раньше, внутри слоя воды мы имеем для потенциала уравнение Лапласа.
Решаем уравнение Лапласа, учитываем граничные условия на дне, и получаем
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решение для потенциала

𝜙 = A ch 𝑘(𝑧 + H ) · exp(𝑖𝑘𝑥− 𝑖𝜔𝑡).

Теперь подставляем это решение в последнее уравнение, и получаем дисперсион-
ное уравнение:

𝜔2 = (𝑔𝑘 + 𝛾𝑘3) th 𝑘𝐻, 𝛾 =
𝛼

𝜌
.

𝑘𝐻 ≫ 1 ⇒ 𝜔2 = 𝑔𝑘 + 𝛾𝑘3.

Когда же волны существенно капиллярны? Для ряби на воде, например. Понятно,
что для цунами этот эффект незначителен. Давайте найдём фазовую скорость:

𝑣2f =
𝜔2

𝑘2
=
𝑔

𝑘
+ 𝛾𝑘

Такая зависимость имеет минимум, как показано на графике:

𝑘*
𝑘

𝑣2𝑓

Рис. 48. График с минимумом, 𝜆0 = 1.7 см

Ищем, чему равен минимум: он равен 𝑘* =
√︀

𝑔
𝑘

𝑣gr =
d𝜔

d𝑘
⇒ 𝑣gr =

𝑣f

2

𝑘2* + 3𝑘2

𝑘2* + 𝑘2

При очень маленьких волновых векторах 𝑣gr = 𝑣f
2 (как на мелкой воде). При

больших 𝑘 групповая скорость 𝑣gr = 3
2𝑣f. Итак, у нас есть капиллярные и грави-

тационные волны. В одном случае групповая скорость меньше фазовой, в другом
– больше фазовой.

Резюме: гравитационные и гравитационно-капиллярные волны. Дис-
персионное уравнение:

𝜔2 = (𝑔𝑘 + 𝛾𝑘3) th 𝑘𝐻

Если 𝑘 ≫ 𝑘*, это капиллярные волны. Если 1
𝐻 ≪ 𝑘 ≪ 𝑘*, то это гравитацион-

ные короткие волны (дно ещё не чувствуется). Если же 𝑘 ≪ 1
𝐻 , то это длинные
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гравитационные волны.

Задача о устойчивости. Попробуем обсудить случай, когда у нас есть слои
жидкости, причем тяжелая жидкость сверху. Здесь мы возвращаемся к гидроста-
тике. Является ли такое состояние решением уравнения гидростатики? (вверху
тяжелея, внизу лёгкая). Гравитация параллельна градиенту плотности, это хоро-
шо. А является ли такое состояние устойчивым?

Нужно написать уравнение Лапласа, поставить граничные условия, написать
дисперсионное уравнение с учётом капиллярных сил. Считаем, что поверхность
достаточно недалеко.

Задача отличается от предыдущей лишь тем, что мы фактически перевернули
её вверх ногами. Тогда можно получить правильное уравнение дисперсии просто
сменой знака 𝑔:

𝜔 =
√︀
−𝑔𝑘 + 𝛾𝑘3

Тут возникают проблемы: отрицательные 𝜔2 при 𝑘 < 𝑘* =
√︀

𝑔
𝑘 . Если 𝑘 > 𝑘*

(мелкие возмущения), то всё нормально:

𝜔1,2 = ±
√︀
𝛾𝑘3 ⇒ 𝜉 = 𝑐1𝑒

𝑖𝜔1𝑡 + 𝑐2𝑒
𝑖𝜔2𝑡

А при мнимых 𝜔:
𝜉 = 𝑐1𝑒

−|𝜔|𝑡 + 𝑐2𝑒
|𝜔|𝑡

Итак, при малых возмущениях жидкость просто колеблется, а при больших
начинает течь.

Значит, решение устойчивое. Простой пример из жизни – это перевернутый
флакон духов. Бутылочку можно перевернуть вверх ногами, но духи не вытекут:
потому что горлышко узкое, и масштабы маленькие, а 𝑘 большое (подавлены
крупномасштабные возмущения).

Из жизненного опыта известно, что в таком случае духи надо потрясти: дей-
ствительно, согласно Эйнштейну, движение с ускорением эквивалентно увеличе-
нию силы тяжести:

𝑘*э =

√︂
𝑔 + 𝑎

𝑘
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2.15. Внутренние волны
Пусть у нас есть устойчивая стратификация жидкости: жидкость двухслойная,

с плотностями слоев 𝜌2 > 𝜌1.

𝑥

𝑧

𝑧0
𝜌2𝜌2

𝜌1𝜌1
𝑔⃗

Рис. 49. Внутренние гравитационные волны

Считаем, что до границы достаточно далеко. На границе есть некоторые воз-
мущения, которые в верхней и нижней полуплоскости описываются уравнениями

∆𝜙1 = 0, ∆𝜙2 = 0

По прежнему у нас потенциал описывается уравнением Лапласа. Считая, что
на плюс-минус бесконечности потенциал обращается в ноль, а возмущение носит
волновой характер 𝑒𝑖(𝑘𝑥−𝜔𝑡), для потенциала имеем

𝜙1 = 𝐴𝑒−𝑘𝑧𝑒𝑖(𝑘𝑥−𝜔𝑡)

𝜙2 = 𝐵𝑒𝑘𝑧𝑒𝑖(𝑘𝑥−𝜔𝑡)

Наша задача – найти дисперсионное уравнение. Займёмся константами. Мы по-
прежнему считаем, что колебания относительно малы, т.е. амплитуда колебаний
много меньше длины волны.

Из кинематического граничного условия, нормальная компонента скорости на
границе раздела слоев непрерывна:

𝑣𝑧 = (≈)
𝜕𝜉

𝜕𝑡
=
𝜕𝜙1

𝜕𝑧
=
𝜕𝜙2

𝜕𝑧

Отсюда сразу следует 𝐵 = −𝐴.
Мы должны поставить второе граничное условие. Используем нестационарное

уравнение Бернулли:

𝑝1 = −𝜌1𝑔𝜉 − 𝜌1
𝜕𝜙1

𝜕𝑡
, 𝑝2 = −𝜌2𝑔𝜉 − 𝜌2

𝜕𝜙2

𝜕𝑡

Здесь мы пренебрегли слагаемым 𝑣2 в силу малости колебаний. Граничные усло-
вия – давления на поверхности одинаковы:

𝑘𝑔(𝜌2 − 𝜌1) = 𝜔2(𝜌2 + 𝜌1)
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Мы избавились от 𝜉 и в итоге получаем дисперсионное уравнение:

𝜔 =

√︂
𝑔𝑘
𝜌2 − 𝜌1
𝜌2 + 𝜌1

u

√︃
𝑔𝑘

∆𝜌

𝜌

Предельный случай: 𝜌1 → 0 даёт переход к случаю гравитационных волн на глубо-
кой воде. В океане Δ𝜌

𝜌 ∼ 10−2. Таким образом, при одинаковых пространственных
масштабах частота внутренних волн существенно меньше, чем у поверхностных.

Мертвая вода. В 1893 г. знаменитый норвежский полярник Фритьоф Нансен,
совершавший плавание по арктическим водам, столкнулся со странным явлением.
Вот что записал он в отчете: «Мы почти не двигались с места . . . и будто та-
щили всю воду за собой. Что мы ни делали, – круто поворачивали, лавировали,
описывали полный круг и пр., – все напрасно. Лишь только машина перестава-
ла работать, судно тотчас же останавливалось, точно схваченное чем-то за
корму».

Встречается явление лишь там, где слой пресной или сильно распресненной
воды лежит поверх соленой морской воды. Впрочем, чтобы «попасться», как по-
палось судно Нансена, нужно еще одно совпадение: толщина верхнего пресного
слоя должна примерно равняться толщине судна. Тогда на малом ходу его винт
будет расходовать почти всю свою энергию не на движение вперед, а на создание
внутренних волн на границе двух слоев воды – корабль почти замирает на месте,
при этом сами волны с корабля незаметны.

Наметим теперь вывод дисперсионного уравнения для в внутренних волн в
стратифицированной и жидкости и переход к частоте Брента-Вяйсяля:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑔⃗

𝜕𝜌

𝜕𝑡
+ div 𝜌𝑣⃗ = 0

Уравнение гидростатики:
d𝑝0
d𝑧

= −𝑔𝜌0(𝑧)

𝜕𝑣⃗

𝜕𝑡
= −∇𝑝0 + ∇𝑝1

𝜌0 + 𝜌′
+ 𝑔⃗

Несжимаемость даст
d𝜌

d𝑡
= 0 ⇒ div 𝑣⃗ = 0

Нетривиальность в следующем: не хватает одного уравнения: переменных 5,

67



Механика сплошных сред С. Н. Гурбатов

уравнений скалярных 4. Вспомним полную производную:

𝜕𝜌

𝜕𝑡
+ div 𝜌𝑣⃗ = 0,

𝜕𝜌

𝜕𝑡
+ (𝑣⃗∇)𝜌 = 0

Перепишем уравнение для возмущений 𝜌 = 𝜌0 + 𝜌′:

𝜕𝜌′

𝜕𝑡
+ (𝑣⃗∇)[𝜌0 + 𝜌′] = 0

Пренебрежём 𝑣⃗∇𝜌′, тогда получим ещё уравнение

𝜕𝜌′

𝜕𝑡
+ 𝑣𝑧

d𝜌0
d𝑧

= 0

Последнее уравнение перепишем с использованием частоты Брента-Вяйсаля
𝑁 2 = −𝑔 d𝜌0d𝑧

1
𝜌0

:

𝜕𝜌′

𝜕𝑡
− 𝑣𝑧

𝑁 2

𝑔
𝑝0 = 0

Таким образом у нас появилась частота Брента-Вяйсяля, которая ранее возникала
при качественном рассмотрении рассмотрении вопроса об устойчивости стратифи-
цированной жидкости. Обычно еще делается предположение о малости стратифи-
кации. Это так называемое приближение Буссинеска. Мы не будем приводить эти
выкладки.

Без всякого вывода рассмотрим один частный случай: экспоненциальная ат-
мосфера, где 𝜌0(𝑧) = 𝜌0𝑒

− 𝑧
𝐻 , и 𝑁 2 = 𝑔𝐻.

𝑣𝑧 = 𝐴 exp{−𝑖𝜔𝑡+ 𝑖𝑘𝑥𝑥+ 𝑖𝑘𝑧𝑧}

Здесь 𝐻 – эффективная высота атмосферы. Дисперсионное уравнение здесь будет

𝜔2 = 𝑁 2 · 𝑘
2
𝑥

𝑘2
или 𝜔 = 𝑁 sin 𝜃, где sin 𝜃 =

𝑘𝑥
𝑘
.

1) Волны существуют только с частотой 𝜔 < 𝑁 .
2) Зависимость направления от частоты. Если 𝜔 → 𝑁 , то волновой вектор на-
правлен горизонтально. Если же 𝜔 ≪ 𝑁 , напротив, вертикально.
3) 𝑣f ⊥ 𝑣⃗𝑔𝑟:

𝑣⃗f

𝑣⃗gr

Рис. 50.
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3. Движение вязкой несжимаемой жидкости

Мы уже столкнулись с рядом парадоксов: парадокс Даламбера – на тело в
потоке идеальной жидкости не действует сила. Из жизненного опыта хорошо из-
вестно, что это не так. Второй недостаток теории идеальной жидкости – невоз-
можность образования вихрей.

Наконец, для идеальной жидкости у нас было граничное условие непротека-
ния: отсутствовала нормальная компонента скорости. Но это вступает в противо-
речие с опытным фактом: на поверхности неподвижного тела равен нулю модуль
скорости. Это происходит из-за наличия сил молекулярного сцепления между
жидкостью и твердым телом. Следствием этого является следующий «парадокс»:
на лопастях крутящегося вентилятора собирается пыль.

3.1. Уравнения гидродинамики вязкой жидкости
Займёмся получением уравнений, которые учитывали бы вязкость и разре-

шали вышеперечисленные парадоксы. Для этого мы можем использовать закон
сохранения массы (уравнение неразрывности), так как мы его получили без до-
полнительного предположения об отсутствии вязкости:

𝜕𝜌

𝜕𝑡
+ div 𝜌𝑣⃗ = 0

Для идеальной жидкости мы смогли получить уравнение Эйлера:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝑔⃗

Для вязкой жидкости его вывести уже не получится. Мы будем конструировать
уравнение с помощью экспериментальной задачи.

Экспериментальная задача. Пусть у нас есть две пластины. Нижняя беско-
нечная пластина (плоскость) неподвижна, а верхняя пластина площади 𝑆 нахо-
дится на высоте ℎ над нижней. К верхней пластине мы прикладываем силу 𝐹 , и
она двигается с постоянной скоростью 𝑣.

Из опытов известно: чтобы пластинка двигалась с постоянной скоростью, нуж-
но выполнение равенства

𝐹

𝑆
= 𝜂

𝑉0
ℎ

здесь 𝜂 – это динамический коэффициент вязкости. Для жидкости он убыва-
ет с ростом температуры, а для газов медленно растёт. Принято также вводить
вязкость на единицу массы – так называемую кинематическую вязкость.

𝜈 =
𝜂

𝜌
.
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Вещество при 20∘ 𝜂, г·см
с 𝜈, см2

с

вода 0.010 0.010
воздух 1.8 · 10−4 0.15
спирт 0.018 0.022
глицерин 8.5 6.8
ртуть 0.0156 0.0012

Из таблицы видно, что для движения воздуха вязкость оказывается более су-
щественной, чем для воды.

Конструирование уравнений Навье-Стокса. Попытаемся сконструировать
(но не вывести!) уравнения движения вязкой жидкости. За основу возьмём закон
сохранения импульса. Он фундаментален и верен и для вязкой жидкости, в отли-
чие, например, от закона сохранения энергии, который уже использовать нельзя:
вязкость есть внутреннее трение, значит есть диссипация.

𝜕

𝜕𝑡
𝜌𝑣𝑖 = −𝜕Π𝑖𝑘

𝜕𝑥𝑘
, где Π𝑖𝑘 = 𝑝𝛿𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘 − 𝜎𝑖𝑘

Добавили одно слагаемое – тензор вязких напряжений 𝜎𝑖𝑘. Попробуем его со-
брать на основе логичных предположений.

Во-первых, очевидно – если жидкость двигается или вращается как целое, то
внутреннего трения нет. Трение возникает только при относительном смещении
слоёв жидкости (значит, в тензор войдут производные скоростей по координатам,
то есть градиенты скорости).

Второе – мы не рассматриваем экстремальные движения, и считаем что зави-
симость (∼ 𝜂) линейна. Вязкие силы возникают на молекулярных масштабах и
все величины в гидродинамике медленно меняются на этих масштабах.

Наконец, жидкость будем считать изотропной. В таких предположениях мож-
но записать наиболее общий вид тензора вязких напряжений (это тензор 2-го
ранга):

𝜎𝑖𝑘 = 𝑎

(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

)︂
+ 𝑐

(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

− 𝜕𝑣𝑘
𝜕𝑥𝑖

)︂
+ 𝑏
∑︁ 𝜕𝑣𝑙

𝜕𝑥𝑙
𝛿𝑖𝑘 (2)

Рассмотрим случай вращения жидкости как целого:

𝑣⃗ = [Ω⃗ × 𝑟⃗ ] =

⃒⃒
⃒⃒
⃒⃒
𝑖⃗ 𝑗⃗ 𝑘⃗

Ω𝑥 Ω𝑦 Ω𝑧

𝑥 𝑦 𝑧

⃒⃒
⃒⃒
⃒⃒ ⇒

𝑣𝑥 = Ω𝑦𝑧 − Ω𝑧𝑦,

𝑣𝑦 = Ω𝑥𝑧 − Ω𝑧𝑥,

𝑣𝑧 = Ω𝑥𝑦 − Ω𝑦𝑥

(3)
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Прямая подстановка (3) в (2) даёт

𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

= 0,
∑︁ 𝜕𝑣𝑙

𝜕𝑥𝑙
𝛿𝑖𝑘 = 0

Так как при вращении жидкости как целого тензор вязких напряжений равен ну-
лю, а мы получили равенство нулю двух из трех слагаемых тензора, то очевидно,
третье тоже равно нулю. Так как в общем случае

𝜕𝑣𝑖
𝜕𝑥𝑘

− 𝜕𝑣𝑘
𝜕𝑥𝑖

̸= 0,

единственным вариантом остается положить в (2) константу 𝑐 = 0.
Посмотрим внимательнее на последнее слагаемое в (2). Оказывается, это не

что иное, как дивергенция:

∑︁ 𝜕𝑣𝑖
𝜕𝑥𝑘

𝛿𝑖𝑘 =
𝜕𝑣1
𝜕𝑥1

+
𝜕𝑣2
𝜕𝑥2

+
𝜕𝑣3
𝜕𝑥3

= div 𝑣⃗

это слагаемое существенно, только если жидкость сжимаема.
Переобозначим константы 𝑎 = 𝜂, 𝑏 = 𝜉. Тогда тензор вязких напряжений

перепишется как

𝜎𝑖𝑘 = 𝜂

(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

)︂
+ 𝜉

∑︁

𝑙

𝜕𝑣𝑙
𝜕𝑥𝑙

𝛿𝑖𝑘

После подстановки тензора, дифференцирования и перегруппировки слагае-
мых получим

𝜌

(︂
𝜕𝑣𝑖
𝜕𝑡

+ 𝑣𝑘
𝜕𝑣𝑖
𝜕𝑥𝑘

)︂
= − 𝜕𝑝

𝜕𝑥𝑖
+ 𝜂

𝜕2𝑣𝑖
𝜕𝑥2𝑘

+
(︁𝜂

3
+ 𝜉
)︁ 𝜕2𝑣𝑘
𝜕𝑥𝑖𝜕𝑥𝑘

Это и есть уравнение Навье Стокса5. Его можно также записать в векторной
форме:

𝜌

(︂
𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗

)︂
= −∇𝑝+ 𝜂∆𝑣⃗ +

(︁𝜂
3

+ 𝜉
)︁

grad div 𝑣⃗

Часто также употребляется форма записи через кинематическую вязкость 𝜈 =
𝜂/𝜌:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝜈∆𝑣⃗

5Уравнения Навье-Стокса – система дифференциальных уравнений в частных производных, описывающая
движение вязкой ньютоновской жидкости. Уравнения Навье-Стокса являются одними из важнейших в гидро-
динамике и применяются в математическом моделировании многих природных явлений и технических задач.
Названы по имени французского физика Анри Навье и британского математика Джорджа Стокса. В анализе ре-
шений уравнений заключается суть одной из семи «проблем тысячелетия», за решение которых Математический
институт Клэя назначил премию в 1 млн. долларов США. Необходимо доказать или опровергнуть существова-
ние глобального гладкого решения задачи Коши для трёхмерных уравнений Навье-Стокса. Нахождение общего
аналитического решения для пространственного или плоского потока осложняется тем, что оно нелинейное и
сильно зависит от начальных и граничных условий.
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Это уравнение записано для несжимаемой жидкости, когда дивергенция скорости
равна нулю.

Размерность кинематического коэффициента вязкости, как нетрудно видеть
из уравнения Навье-Стокса,

[𝜈] =
𝐿2

𝑇

Диссипация в несжимаемой вязкой жидкости. Для несжимаемой вязкой
жидкости div 𝑣⃗ = 0, а значит, тензор вязких напряжений упростится:

𝜎𝑖𝑘 = 𝜂

(︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

)︂

При этом диссипация энергии, по определению

𝐸𝑘 =
𝜌

2

∫︁
𝑣2 d𝑉

Из этих формул и уравнения Навье-Стокса можно показать (доказательство мож-
но посмотреть в Ландау, т.6 «Гидродинамика», стр. 76), что

𝜕𝐸𝑘

𝜕𝑡
=
𝜌

2

∫︁
2
𝜕𝑣𝑖
𝜕𝑡
𝑣𝑖 d𝑉 = −𝜂

2

∫︁ (︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

)︂2

d𝑉 .

То есть, действительно, вязкие члены описывают диссипацию энергии.

Определение коэффициентов в уравнении Навье-Стокса. Как опреде-
лять коэффициенты 𝜂, 𝜉, которые мы ввели при конструировании тензора вязких
напряжений? Мы конструировали уравнения, не выводя их строго, и поэтому по-
теряли возможность получить аналитические выражения для коэффициентов, и
их надо как-то определять экспериментально.

Можно взять круглый диск (касающийся жидкости) на нити, закрутить и
определить добротность осциллятора с затуханием. Можно бросить шарик в со-
суд. Или прокачивать жидкость через трубу, и скорость вытекания будет опреде-
ленным образом зависеть от вязкости.

Рассмотрим задачу, в которой попытаемся найти силу, действующую на тело,
поверхность которого задана (𝑆). Также пусть есть некая замкнутая вокруг тела
поверхность 𝑆 ′.

Запишем закон сохранения импульса и тензор плотности потока импульса:

𝜕

𝜕𝑡
𝜌𝑣𝑖 = −𝜕Π𝑖𝑘

𝜕𝑥𝑘
, Π𝑖𝑘 = 𝑝𝛿𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘 − 𝜎𝑖𝑘.
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𝑆′ 𝑆

Рис. 51.

Рассмотрим стационарный случай, тогда из ЗСИ

𝜕

𝜕𝑡
= 0 ⇒ 𝜕Π𝑖𝑘

𝜕𝑥𝑘
= 0.

Проинтегрируем выражение для тензора по внутреннему объёму (заключенному
между 𝑆 и 𝑆 ′) и применим теорему Гаусса:

∫︁

𝑆

Π𝑖𝑘𝑛𝑘 d𝑆 +

∫︁

𝑆′

Π𝑖𝑘𝑛𝑘 d𝑆 = 0

Из полученного выражения следует, что силу, действующую на тело можно найти,
измеряя давление и скорости на внешнем контуре. Иногда это проще, если тело
имеет сложную форму.

На поверхности тела, если жидкость идеальная, то равна нулю нормальная
компонента: для вязкой же жидкости равен нулю модуль скорости, поэтому 𝑣𝑘|𝑆 =
0, и тогда

Π𝑖𝑘

⃒⃒
𝑆

= 𝑝𝛿𝑖𝑘 − 𝜎𝑖𝑘.

Тогда

𝐹𝑖 = −
∫︁

𝑆

Π𝑖𝑘𝑛𝑘 d𝑆 = −
∫︁

𝑆

𝑝𝑛𝑖 d𝑆 +

∫︁
𝜎𝑖𝑘𝑛𝑘 d𝑆

⏟  ⏞  
𝐹 ′
𝑖

.

У нас есть две силы: первая – обычное давление, вторая – вязкая сила на единицу
поверхности:

𝐹 ′
𝑖 =

∫︁

𝑆

𝑓𝑖 d𝑆 , 𝑓𝑖 = 𝜎𝑖𝑘𝑛𝑘.

Отметим парадокс: скорость на поверхности тела равна нулю, откуда же возника-
ет сила? Дело в том, что из равенства нулю скорости не следует равенство нулю
градиента скорости.

Замечание о граничных условиях. В случае вязкой жидкости на поверхно-
сти твердого неподвижного тела модуль скорости на поверхности равна нулю (в
случае идеальной жидкости была равна нулю нормальная компонента скорости).

𝑣⃗ = (𝑣𝑥(𝑦), 0, 0)

73



Механика сплошных сред С. Н. Гурбатов

𝑥

𝑧

Рис. 52.

При рассмотрении гидродинамики слоя жидкости на верхней границе жидкости

𝑓𝑖 = 𝜎𝑖𝑘𝑛𝑘 = 𝜂
𝜕𝑣𝑥
𝜕𝑦

= 0.

3.2. Течение Куэтта
Рассмотрим плоское течение между двумя пластинками. Будем считать, что

верхняя пластинка двигается с постоянной скоростью, и, следовательно, поле те-
чения не зависит от времени. Требуется найти силу 𝐹 , которую надо приложить
к пластинке, которая уравновешивала бы силу трения пластинки о жидкость.

𝑥

𝑦

𝑧

𝑣⃗

ℎℎ
𝑔⃗

Рис. 53.

Запишем уравнение Навье-Стокса:

𝜌

(︂
𝜕𝑣𝑖
𝜕𝑡

+ 𝑣𝑘
𝜕𝑣𝑖
𝜕𝑥𝑘

)︂
= − 𝜕𝑝

𝜕𝑥𝑖
+ 𝜂

𝜕2𝑣𝑖
𝜕𝑥2𝑘

+ 𝑓𝑖

Начнём упрощать:

𝜕

𝜕𝑡
= 0, 𝑣⃗ = (𝑣𝑥(𝑦), 0, 0), 𝑝 = 𝑝(𝑦)

В этих предположениях

−𝜕𝑝
𝜕𝑦

= −𝑔, 𝑝 = 𝑝0 + 𝜌0𝑔𝑦.
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Здесь мы считали что внешняя сила это сила тяжести, и соответственно, здесь 𝑔
– ускорение свободного падения. Запишем уравнение в проекции на ось 𝑦:

𝜂
𝜕2𝑣𝑥
𝜕𝑦2

=
𝜕𝑝

𝜕𝑦
= 0

И здесь граничные условия

𝑣𝑥(0) = 0, 𝑣𝑦(𝐻) = 𝑉0

Будем искать решение в виде 𝑣𝑥(𝑦) = 𝑐𝑦, тогда

𝑐𝐻 = 𝑉0 ⇒ 𝑐 =
𝑉0
𝐻

В конечном итоге, важно знать силу, действующую на площадку. Мы хотели
найти именно её.

𝑓𝑖 = 𝜎𝑖𝑘𝑛𝑘

В нашем случае 𝑛𝑘 ≡ 𝑛𝑦 = −1, в таком случае

𝑓𝑦 = −𝜂𝜕𝑣𝑥
𝜕𝑦

= −𝜂𝑉0
𝐻

Умножив её на площадь, получим первую экспериментальную формулу, которую
мы получили в разделе 3.1 𝐹

𝑆 = 𝜂𝑉0

ℎ . Вывод был нестрогим, и мы сразу ввели
константу 𝜂. Более строго следовало ввести произвольную константу и определить
из эксперимента, что она совпадает с 𝜂.

3.3. Течение Пуазейля
Рассмотрим течение жидкости в трубе: Будем рассматривать стационарное

𝑝2

𝑧
𝑅

𝑝1

Рис. 54. Постановка задачи

течение 𝑣 = 𝑣(𝑟) с граничным условием 𝑣(𝑅) = 0, соответствующим тому, что на
поверхности трубы у нас скорость равняется нулю.
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Запишем уравнение Навье-Стокса в векторной форме:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝜈∆𝑣⃗

В левой части стоит ускорение. У нас частички все двигаются по прямой с посто-
янной скоростью, значит, скорость и градиент будут сонаправлены и скалярное
произведение (𝑣⃗∇) = 0. Значит, вся левая часть обращается в нуль.

Считаем, что внешних сил никаких нет, тогда получаем уравнение (при этом
подставим 𝜈 = 𝜂

𝜌):
𝜕𝑝

𝜕𝑧
= 𝜂

[︂
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑣

𝜕𝑟

]︂

Отсюда первое тривиальное заключение: левая и правая часть уравнения должны
быть равны константе

𝜕𝑝

𝜕𝑧
= 𝑐1

Тогда

𝜂
1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑣

𝜕𝑟
= 𝑐1 ⇒ 𝜂𝑟

𝜕𝑣

𝜕𝑟
= 𝑐1

𝑟2

2
+ 𝑐2

𝑣 =

(︂
d𝑝

d𝑧

)︂
𝑟2

4𝜂
+ 𝐴 ln(𝑟) +𝐵

Из физической реализуемости (скорость в центре трубы должна быть конечной)
𝐴 = 0, а из условия

𝑣(𝑅) = 0 ⇒ 𝑣(𝑟) =

(︂
d𝑝

d𝑧

)︂
1

4𝜂

(︀
𝑟2 −𝑅2

)︀

Если вода бежит вправо, то слева давление больше, и градиент скорости от-
рицательный. Тогда профиль скорости будет следующим:

𝑅

𝑧

𝑟

Рис. 55. Профиль скорости в задаче Пуазейля
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Сосчитаем поток:

𝑄 = 2𝜋

𝑅∫︁

0

𝑣(𝑟)𝑟 d𝑟 =
𝜋

8𝜂

(︂
𝜕𝑝

𝜕𝑧

)︂
·𝑅4

Там, где самая большая скорость (в центре), элемент площади при интегрирова-
нии очень мал. Поэтому получается такая зависимость.

Что будет, если в трубу вложить еще одну трубу таким образом, чтобы поток
бежал между трубами по цилиндрическому слою? Тогда исчезает нерегулярность
логарифма, и константа 𝐴 не исчезает. Придётся ставить два граничных условия,
на обеих трубах.

Интересно сделать предельных переход от такой задачи о вложенных трубах к
случаю, когда радиус внутренней трубы стремится к нулю. Это нужно проделать
очень аккуратно.

Последний комментарий по этой задаче – найдём силу:

𝑓𝑧 = 𝜂𝑖𝑘𝑛𝑘 = −𝜎𝑧𝑟 = −𝜂𝜕𝑣𝑟
𝜕𝑟

= −1

2

(︂
d𝑝

d𝑧

)︂
𝑅.

3.4. Нестационарное движение вязкой жидкости. Вязкие
волны

Постановка задачи такая: у нас гармонически колеблется пластинка, над
пластинкой размещена жидкость. Как она будет колебаться? Запишем урав-

𝑥

𝑧

𝑣𝑥 = 𝑣0 𝑒
−𝑖𝜔𝑡

Рис. 56. Задача

нение Навье-Стокса для несжимаемой жидкости (из соображений симметрии
𝑣⃗ = (𝑣𝑥(𝑧), 0, 0), очевидно):

div 𝑣⃗ = 0 ⇒ 𝜕𝑣𝑧
𝜕𝑧

= 0

𝜕𝑣𝑥
𝜕𝑡

= 𝜈
𝜕2𝑣𝑥
𝜕𝑧2
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𝑣𝑥

𝑧

Рис. 57. Профиль скорости при крайнем положении пластинки (когда пластинка
неподвижна)

Будем искать решение уравнения диффузии в виде

𝑣𝑥 = 𝐴𝑒𝑖𝜔𝑡+𝑖𝑘𝑧

Тогда

−𝑖𝜔 = 𝜈𝑘2 ⇒ 𝑘 = ±(1 + 𝑖)

√︂
𝜔

2𝜈

Можно ввести величину скин-слоя:

𝛿 =

√︂
2𝜈

𝜔

При этом корни дисперсионного уравнения будут записываться как

𝑘 = ±(1 + 𝑖)
1

𝛿

Тогда решение будет в виде

𝑣𝑥 = (𝐴𝑒𝑖𝑘1𝑧 +𝐵𝑒𝑖𝑘2𝑧)𝑒𝑖𝜔𝑡

Считая, что на бесконечности ничего нет, получим

𝑣𝑥 = 𝑣0𝑒
− 𝑧

𝛿 exp
[︁
−𝑖𝑧
𝑑

+ 𝑖𝜔𝑡
]︁

Поскольку среда вязкая, возмущения передаются наверх, но затухают на харак-
терном масштабе толщины скин-слоя. Второй сомножитель описывает запазды-
вание.

Задача для самостоятельного решения. Можно подумать о поведении
профиля скорости при разных положениях пластинки. Для случая, когда скорость
пластинки максимальна – профиль скорости приведен на рис. 57. Подумайте над
случаем, когда пластинка в крайнем правом положении (скорость пластинки в
этом положении равна нулю).
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𝛿

const

𝐻

𝑓

Рис. 58. f(H)

Чтобы двигать пластину, нужно приложить силу:

𝑓 = 𝑚𝑎, 𝑎 = 𝑣0𝜔

Качественно представим себе, как зависит сила от толщины слоя жидкости 𝐻.
Нужно поставить граничное условие на поверхности: свободная граница – 𝜕𝑣𝑥

𝜕𝑧 = 0.
Если мы наливаем очень тонкий слой, то жидкость движется целиком (из

жизненного опыта). Если толщина меньше скин-слоя 𝛿, то движение происходит
без запаздывания, и 𝑓 ∼ 𝐻. Если наливать еще больше воды, то будет двигаться
слой порядка 𝛿. Тогда сила выйдет на константу.

Также можно представить себе аналогичную задачу, когда верхняя граница
не свободна, а неподвижна. По-прежнему, когда 𝐻 ≫ 𝛿, сила будет константой.
Гораздо интереснее, когда слой становится тоньше.

Также подумайте, как будет выглядеть зависимость силы от частоты 𝑓(𝜔).

3.5. Принцип подобия. Формула Стокса
В приведенных выше примерах движения вязкой жидкости у нас не было

необходимости учитывать нелинейные члены в уравнение Навье-Стокса. При изу-
чении идеальной жидкости рассматривались движения по сложным траектори-
ям.Запишем еще раз уравнение Навье-Стокса для несжимаемой жидкости.

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗,∇ )𝑣⃗ +

∇𝑝
𝜌

= 𝜈∆𝑣⃗ + 𝑔𝑛⃗, div 𝑣⃗ = 0, 𝜈 =
𝜂

𝜌
(4)

Для численного решения необходимо привести к безразмерному виду уравнения.
Давайте попытаемся обезразмерить эти уравнения. Введём

𝑣⃗ ′ =
𝑣⃗

𝑣0
, 𝑟′ =

𝑟

𝑙
, 𝑡′ = 𝑡

𝑣0
𝑟

79



Механика сплошных сред С. Н. Гурбатов

Последняя замена вызвана тем, что в течении нет выделенного масштаба времени.
Из замен получаем

∇′ =
∇
𝑙
, 𝑝′ =

𝑝

𝜌𝑣20
Тогда

𝜕𝑣⃗ ′

𝜕𝑡′
+ (𝑣⃗ ′,∇′ )𝑣⃗ ′ + 𝑝′ =

1

Re
∆′𝑣⃗ ′ +

1

Fr
𝑛⃗

Здесь появились два числа: Рейнольдса и Фруда

Re =
𝑣0𝑙

𝜈
, Fr =

𝑣20
𝑔𝑙

Рассмотрим идеальную жидкость в отсутствие силы тяжести. Правая часть
уравнения (4) для идеальной жидкости равна нулю. Значит, если мы возьмём
тела разных размеров (подобные), то получим подобные течения.

В общем случае, течения будут подобны, если у нас одинаковые числа Рей-
нольдса и Фруда. Смысл числа Фруда прост: отношение кинетической энергии
жидкости к потенциальной (энергии гравитационных сил). Если число Фруда ве-
лико, то можно не учитывать силу тяжести.

При одинаковых числах Рейнольдса, все течения, возникающие при обтека-
нии геометрически подобных тел, будут выглядеть одинаково, и описываться
одной и той же безразмерной функцией. Это и есть принцип подобия, получен-
ный Рейнольдсом в 1883 году.

Другая трактовка – при одинаковых числах Рейнольдса уравнения обтекания
геометрически подобных тел в безразмерных координатах выглядят одинаково.
Кстати, ранее мы нигде не учли возможность того, что плотность будет не по-
стоянна, что соответствует отсутствию звуковых волн. Значит, наша формула не
работает для сверхзвуковых движений.

Стационарные движения. В случае стационарных движений

𝑣⃗ = 𝑣⃗*
(︁𝑟
𝑙
, Re

)︁
, 𝑝 = 𝜌𝑣20𝑝*

(︁𝑟
𝑙
,Re

)︁
, 𝐹 = 𝜌𝑣20𝑙

2𝐹*(Re) (5)

Нестационарные движения. Давайте теперь рассмотрим нестационарные пе-
риодические движения с периодом 𝑇 . При приведении к безразмерному виду ра-
нее не учитывался собственный характерный временной масштаб. Поэтому теперь
нужно ввести безразмерное время как

𝑡′ =
𝑡

𝑇
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Тогда после обезразмеривания получится новое уравнение, куда выйдет так на-
зываемое число Струхаля (1884, Рэлей):

Sh =
𝑣0𝑇

𝑙

1

Sh

𝜕𝑣⃗ ′

𝜕𝑡′
+ (𝑣⃗ ′,∇′ )𝑣⃗ ′ + 𝑝′ =

1

Re
∆′𝑣⃗ ′ +

1

Fr
𝑛⃗

Если число Струхаля много больше 1, то можно пренебрегать нестационарностью,
то есть мы можем решать стационарную задачу о движении тела, считая скорость
тела постоянной, а потом считать скорость медленной функцией времени 𝑉 (𝑡).

Физический смысл числа Рейнольдса. Число Рейнольдса показывает от-
носительное влияние нелинейных эффектов. Если Re мало, то можно пренебречь
в уравнении движения вязкой жидкости всем, кроме давления. Если же Re вели-
ко, можно ли пренебречь вязким слагаемое при 1/Re? Оказывается, не всегда6: в
нашем случае при больших градиентах в общем случае пренебрегать слагаемым
при 1/Re уже нельзя, но в ряде случаев можно пренебречь вдали от тела.

3.5.1 Формула Стокса

Вернёмся к формуле (5):

𝐹 = 𝜌𝑣20𝑙
2𝐹*(Re), Re =

𝑣0𝑙

𝜈

Попробуем найти силу, действующую на маленькое тело, двигающееся в жидко-
сти. При этом учтем экспериментальный факт, что при малых скоростях сила
трения пропорциональна скорости.

Хотим подобрать функцию 𝐹*(Re). Очевидно, для линейности нужно

𝐹 ∼ 𝜌𝑣20𝑙
2

Re
= 𝜂𝑣0𝑙.

Если более строго решать задачу об обтекании шара радиуса 𝑅

∇𝑝 = 𝜂∆𝑣⃗, div 𝑣⃗ = 0, 𝑣|𝑟=𝑅 = 0, 𝑓𝑖 = 𝜎𝑥𝑘𝑛𝑘 = 𝜂

(︂
𝜕𝑣𝑥
𝜕𝑛𝑘

+
𝜕𝑣𝑥
𝜕𝑥

)︂
𝑛𝑘,

то можно получить формулу Стокса7

𝐹 = 6𝜋𝜂𝑅𝑣0.

6Например, можно вспомнить динамику быстро-медленных движений из теории колебаний. Там, конечно,
был малый коэффициент при старшей производной, но откидывать его было нельзя.

7Расчеты достаточно велики и здесь не приводятся.
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Что будет, если увеличить скорость? Оказывается, появится поправка

𝐹 = 6𝜋𝜂𝑅𝑣0

(︂
1 +

3

16
Re

)︂
.

Значит, формула Стокса справедлива, если Re = 2𝑅𝑣0
𝜈 ≪ 1.

Задача об установившемся движении капли в воздухе. На каплю дей-
ствуют три силы: Стокса, Архимеда и тяжести: 𝐹𝑣 = 𝐹𝑔 − 𝐹𝐴. Применив второй
закон Ньютона, найдем установившуюся скорость:

4𝜋𝑅3

3
(𝜌𝑏 − 𝑟ℎ𝑜𝑎) = 6𝜋𝜂𝑅𝑣0 ⇒ 𝑣0 =

2

9

𝑅2𝑔

𝑣

(︂
𝜌𝑎
𝜌𝑏

− 1

)︂
.

Соответствующее число Рейнольдса

Re =
2𝑣0𝑅

𝜈
=

4

9

𝑅3𝑔

𝜈2

(︂
𝜌𝑎 − 𝜌𝑏
𝜌𝑏

)︂
, Re* =

1

2
.

Для капли воды в воздухе

𝜌𝑏
𝜌𝑎

= 770, 𝜈 = 0.133
cm2

c
.

Формула Стокса справедлива для капелек дождя, у которых 𝑅 < 0.037 см, 𝑣0 < 18
см/с. Фактически, это капли тумана.

Получилась грустная ситуация: пытаемся решить задачу и найти силу, с ко-
торой среда действует на двигающееся тело. В идеальной жидкости все было
блестяще, правда, сила оказалась равна нулю, то есть жидкость на тело совсем
не действовала. Когда же начали делать оценки для вязкой жидкости, оказалось,
что для тумана формулы работают, а для чего-то более сложного – нет.

В заключение этого раздела приведем пример использования малости силы
вязкого трения Гюставом Эйфелем при проектировании обсерватории в Ницце.
Обсерватория Ниццы (фр. Observatoire de Nice) расположена в Ницце, Франция.
Она занимает вершину холма Мон-Гро расположенного в 370 метрах над уровнем
моря.

Строительство обсерватории было начато в 1879 банкиром Рафаэлем Бишоф-
схаймом (фр. Raphaël Bischoffsheim). Комплекс обсерватории состоит из 18 строе-
ний, для создания тринадцати из которых архитектор Шарль Гарнье использовал
стиль боз-ар. Главное здание нуждалось в куполе диаметром 24 метра, что превы-
сило размеры купола Парижского Пантеона. Тогда среди архитекторов объявили
конкурс, результатом которого должен был стать проект махины весом 100 тонн,
и ей следовало совершать легкие и плавные повороты вокруг вертикальной оси.
Очевидно, что астрономический купол должен вращаться с частотой один оборот
в сутки.
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Победу присудили Гюставу Эйфелю с его неожиданным техническим решени-
ем: купол он водрузил на поплавок, который свободно плавал в кольцевом канале.
Поскольку из за малой частоты вращения и скорости малы, то во вращение этот
100 тонный купол приводил часовой механизм размером с напольные часы.

Рис. 58. Общий вид обсерватории Ниццы (1892) и главный купол обсерватории
(2012)

3.6. Пограничный слой. Формула Прандтля
Как уже говорилось ранее, относительное влияние нелинейных эффектов и

диссипации характеризуется числом Рейнольдса

Re =
𝑣0𝑙

𝜈
,

[(𝑣⃗∇ )𝑣⃗ ]

[𝜈∆𝑣⃗ ]
=

[︃
𝑣2

𝑙
𝜈
𝑙2

]︃
=

[︂
𝑣0𝑙

𝜈

]︂
∼ Re

При исследовании обтекания какого-либо тела вязкой жидкостью приходится
решать решения для уравнений Навье-Стокса, что в общем случае сложно. Мы
рассмотрели случай Re ≪ 1, когда основную роль играет вязкость. В тоже время
оценки показывают, что большинство реальных течений – это течения с большими
числами Рейнольдса. Казалось бы, что при

𝜈 → 0, Re → ∞

можно пренебречь вязкостью и использовать уравнения. гидродинамики идеаль-
ной жидкости. Однако все дело портят граничные условия на поверхности тела,
где 𝑣⃗ = 0 («прилипание»). В этой области переход от нулевой скорости к скорости
потока приводит к очень большим градиентам.

Чтобы все-таки перейти к значительно более простым уравнениям идеальной
жидкости, можно поступить следующим образом: ввести пограничный слой ℎ –
слой, где скорость меняется от нуля до скорости, соответствующей обтеканию
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тела идеальной жидкостью8.

Модельная задача. Рассмотрим задачу об обтекании полубесконечной тонкой
пластины потоком слабовязкой несжимаемой жидкости (Re ≫ 1). В идеальной
жидкости пластина бы не вносила искажений в поток, но в нашем случае на
пластине выполняется граничное условие 𝑣⃗ = 0, и пластина неизбежно вносит
искажения в поток в некотором слое толщиной ℎ(𝑥).

Запишем математическую постановку задачи и граничные условия:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗, ∇ )𝑣⃗ +

∇𝑝
𝜌

= 𝜈∆𝑣⃗, div 𝑣⃗ = 0

𝑣|𝑧=0, 𝑥>0 = 0, 𝑣𝑥|𝑥<0 = 𝑣0, 𝑣𝑥|𝑧→±∞, 𝑥>0 = 𝑣0

Оценим, как должна меняться толщина переходного (пограничного) слоя с по-
мощью теории размерностей. ℎ(𝑥) должна выражаться через 𝜈, 𝑣0, 𝑥. Из неслож-
ных соображений и жизненного опыта можно представить себе формулу каче-
ственно. Во-первых, чем больше вязкость, тем толще пограничный слой. Кроме
того, чем дальше по 𝑥, тем слой толще. И, наконец, чем больше скорость, тем
больше пограничный слой должен быть прижат к пластине. Тогда

ℎ(𝑥)
?∼ 𝜈𝑥

𝑣0
=
𝐿2

𝑇
· 𝐿 · 𝐿−1𝑇 ∼ 𝐿2

Значит, чтобы размерности совпали, нужно извлечь корень: тогда

ℎ(𝑥) ∼
(︂
𝜈𝑥

𝑣0

)︂ 1
2

=
𝑥√
Re
, где Re =

𝑣0𝑥

𝜈
≫ 1.

Здесь мы ввели локальное Рейнольдса, которое растет по мере удаления от на-
чала пластины. Теперь можно оценить силу, действующую на единицу площади
(плотность силы):

𝑓𝑖 = 𝜎𝑖𝑘𝑛𝑘, 𝜎𝑖𝑘 = 𝜂

[︂
𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

]︂

Выберем нормаль по 𝑧, и сосчитаем её:

𝑓𝑥 = 𝜂

(︂
𝜕𝑣𝑥
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑥

)︂

Мы решаем задачу в таких условиях, что ℎ ≪ 𝑥. Тогда несложно оценить, что
8Понятие пограничного слоя было впервые введено Людвигом Прандтлем в статье, представленной 12 ав-

густа 1904 года на третьем Международном конгрессе математиков в Гейдельберге. Введение ПС позволяет
существенно упростить моделирующие течение жидкости/газа уравнения путём разделения потока на две об-
ласти: тонкого вязкого пограничного слоя и области невязкого течения. Уравнения невязкого течения (уравне-
ния Эйлера) существенно проще моделирующих вязкое течение полных уравнений Навье-Стокса. Теплообмен
обтекаемого тела с потоком также происходит исключительно в пограничном слое, что опять же позволяет
упростить решение уравнений за пределами пограничного слоя.
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вторым слагаемым можно пренебречь, и тогда

𝑓𝑥 ≈ 𝜂
𝜕𝑣𝑥
𝜕𝑧

≈ 𝜂
𝑣0
ℎ(𝑥)

≈ 𝜌

(︂
𝜈𝑣30
𝑥

)︂ 1
2

Теперь можем сделать то, для чего был нужен весь наш вывод: найдем полную
силу, действующую на достаточно большую пластину9, длина которой 𝑙, а ширина
𝑏:

𝑓 = 𝜌
𝜈𝑣0
ℎ(𝑥)

= 𝜌

(︂
𝜈𝑣30
𝑥

)︂ 1
2

, 𝐹 = 2𝑏

𝐿∫︁

0

𝑓(𝑥) d𝑥 ∼ 𝜌𝑏𝐿
1
2𝑣

3
2
0 𝜈

1
2 , 𝜈 =

𝜂

𝜌
.

Теперь получим эту же формулу более строгим способом. Запишем систему
уравнений Навье-Стокса для стационарного течения несжимаемой жидкости в
векторном виде и в проекциях:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
+ 𝜈∆𝑣⃗, div 𝑣⃗ = 0, 𝜈 =

𝜂

𝜌
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣𝑦 = 0

𝑣𝑥
𝜕𝑣𝑥
𝜕𝑥

+ 𝑣𝑧
𝜕𝑣𝑥
𝜕𝑧

= −1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

(︂
𝜕2𝑣𝑥
𝜕𝑥2

+
𝜕2𝑣𝑥
𝜕𝑧2

)︂

𝑣𝑥
𝜕𝑣𝑧
𝜕𝑥

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑥

= −1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈

(︂
𝜕2𝑣𝑧
𝜕𝑥2

+
𝜕2𝑣𝑧
𝜕𝑧2

)︂

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑧
𝜕𝑧

= 0

Эти уравнения можно упростить, учтя, что слой вязкого движения достаточно
тонок. На основе этого можно сделать ряд предположений.

Во-первых, градиенты 𝜕
𝜕𝑥 много меньше градиентов 𝜕

𝜕𝑧 , так как

ℎ ∼ 𝑥√
Re
,

𝜕

𝜕𝑥
∼ 1

𝑥
,

𝜕

𝜕𝑧
∼ 1

ℎ
⇒ 𝜕

𝜕𝑥
≪ 𝜕

𝜕𝑧

Во-вторых, вертикальная компоненты скорости мала по сравнению с гори-
зонтальной:

𝑣𝑥 ∼ 𝑣0,
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑧
𝜕𝑧

= 0 ⇒ 𝑣0
𝑥

∼ 𝑣𝑧
ℎ

⇒ 𝑣𝑧 ≪ 𝑣𝑥

В-третьих, так как вязкость мала, то можно оценить и давление, пренебрегая
9Чтобы можно было применить решение для бесконечной пластины
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слагаемым с вязкостью:

𝜕𝑝

𝜕𝑥
∼ 𝑣2𝑥

𝑥
∼ 𝑣20

𝑥
,

𝜕𝑝

𝜕𝑧
∼ 𝑣𝑥

𝑣𝑧
𝑥

∼ 𝑣20ℎ

𝑥2
=

𝑣20
𝑥
√

Re
⇒ 𝜕𝑝

𝜕𝑧
≪ 𝜕𝑝

𝜕𝑥

Фактически мы получили, что 𝑝 = 𝑝(𝑥), то есть давление постоянно по толщине
пограничного слоя и равно давлению на верхней границе пограничного слоя. Эту
задачу можно решить, используя приближение идеальной жидкости.

Итак, мы нашли давление и можем перейти от трёх уравнений к двум. При
этом лапласиан можно упростить, так как 𝜕

𝜕𝑥 ≪ 𝜕
𝜕𝑧 , и в итоге получаем систему

уравнений Прандля:
⎧
⎪⎪⎨
⎪⎪⎩

𝑣𝑥
𝜕𝑣𝑥
𝜕𝑥

+ 𝑣𝑧
𝜕𝑣𝑥
𝜕𝑧

= 𝜈
𝜕2𝑣𝑥
𝜕𝑧2

,

(︂
−1

𝜌

𝜕𝑝

𝜕𝑥
= 0

)︂

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑧
𝜕𝑧

= 0

(6)

Следующим важным предположением, необходимым для решения задачи, яв-
ляется автомодельность профиля скорости, т.е.

𝑣𝑥(𝑥, 𝑧) = 𝑣0Φ

(︂
𝑧

ℎ(𝑥)

)︂

Эта формула отражает тот факт, что профиль в разных местах одинаковый, но
меняется его ширина.

Чтобы избавиться ещё от одного уравнения, введём функцию тока:

𝑣𝑥 =
𝜕Ψ

𝜕𝑧
, 𝑣𝑧 = −𝜕Ψ

𝜕𝑥

Следующая нетривиальная вещь. Чему должна быть равна функция тока?

Ψ = 𝑣0ℎ(𝑥)𝑓(𝜉), где 𝜉 =
𝑧

ℎ(𝑥)

𝑣𝑥 =
𝜕Ψ

𝜕𝑧
= 𝑣0𝑓(𝜉), 𝑣𝑧 = −𝜕Ψ

𝜕𝑥
=

= −𝑣0
𝜕ℎ

𝜕𝑥
𝑓 − 𝑣0ℎ

𝜕𝑓

𝜕𝜉

𝜕𝜉

𝜕𝑥
= −𝑣0

(︂
ℎ′(𝑥)𝑓 − ℎ𝑓 ′

𝑧ℎ′

ℎ2

)︂

Подставив 𝑣𝑥 и 𝑣𝑧 в уравнения (6), получим нелинейное уравнение в обычных про-
изводных третьего порядка, при этом граничные условия – зануление скоростей
на границах (0 и +∞):

1

2
𝑓𝑓 ′′ + 𝑓 ′′′ = 0, 𝑓(𝜉 = 0) = 𝑓 ′(𝜉 = 0) = 0, 𝑓 ′(∞) = 1 (7)
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Последнее граничное условие следует из 𝑣𝑧 = 𝑣0 на бесконечности.
Такое дифференциальное уравнение аналитически решить нельзя, но можно

воспользоваться численным решением (см. рис. (59)), которое дает

𝑓(𝜉) =
1

2
𝛼𝜉2 + . . . , где 𝛼 ≈ 0.332 ⇒ 𝑓 ′′(0) = 0.332

0 2 4 6

0

2

4

ξ

f

0 2 4 6

0

0.5

1

ξ

f
′

0 2 4 6

0

0.1

0.2

0.3

ξ

f
′′

Рис. 59. Численное решение уравнения (7)

Теперь можем найти силу, учтя, что мы взяли 𝑣𝑥 = 𝑣0𝑓
′(𝜉):

𝑓𝑥 = 𝜂
𝜕𝑣𝑥
𝜕𝑧

если все сосчитать, то получается следующая формула10

𝐹 = 1.33 𝜌𝑏𝐿
1
2 · 𝑣

3
2
0 · 𝜈 1

2

Таким образом, отличие от качественной формулы лишь в численном коэффи-
циенте, который к тому же близок к единице.

Обтекание реального тела. Пусть на некоторое тело набегает поток. Можем
ввести криволинейную систему координат таким образом, что 𝑥 идёт вдоль по-
верхности тела, а 𝑧 по нормали к ней. Тогда уравнения будут похожи:

𝑣𝑥
𝜕𝑣𝑥
𝜕𝑥

+ 𝑣𝑧
𝜕𝑣𝑥
𝜕𝑧

= 𝜈
𝜕2𝑣𝑥
𝜕𝑧2

− 1

𝜌

𝜕𝑝

𝜕𝑥
= 0

Метод решения следующий: сначала решаем задачу для идеальной жидкости,
и считаем решение вдали от тела верным. Далее решаем задачу о пограничном

10Формула получена Блазиусом в 1908 году. Пауль Рихард Генрих Блазиус (нем. Paul Richard Heinrich Blasius;
9 августа 1883, Берлин — 24 апреля 1970, Гамбург) — немецкий физик, работавший в области гидромеханики,
а также выдающийся педагог. С 1902 по 1906 год учился в Марбурге и в Гёттингене. Он был одним из первых
учеников Людвига Прандтля, проработав в Гёттингенском университете 6 лет. В 1912 году он сменил место ра-
боты на Инженерную школу в Гамбурге (сейчас — Университет прикладных наук), там получил профессорское
звание и преподавал до конца своей жизни.
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слое, при этом в уравнении появляется производная давления, которую можно
найти, например, из уравнения Бернулли.

пластина
цилиндр

ℎ

𝑥

𝑥

𝑣0

Рис. 60. 𝑣0(𝑥) для пластины и для цилиндра

Попробуем нарисовать качественную картинку (рис. (60)): у нас было ℎ(𝑥) =√︁
𝜈𝑥
𝑣0

, теперь будет

ℎ*(𝑥) =

√︂
𝜈𝑥

𝑣0(𝑥)

Когда скорость начинает убывать, то толщина пограничного слоя начинает
возрастать. В точке, где 𝜕𝑣𝑥

𝜕𝑧 = 0, происходит отрыв пограничного слоя. Из-за
неустойчивости тангенциального разрыва скорости за телом за телом при боль-
ших скоростях обтекания возникает сложное хаотическое движение жидкости,
которое принято называть турбулентностью. Если нарисовать картинку, то это
будет выглядеть так:

∂vx
∂z = 0

Рис. 61. Появление турбулентности
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3.7. Элементы теории турбулентности

3.7.1 Устойчивость стационарного течения жидкости

Вернемся к задаче об обтекании цилиндра медленным потоком. Для качествен-
ного описания потока реальной жидкости нам необходимо знать множество вещей:
например, какая увлекающая сила действует на цилиндр?

Такая сила показана на рис. 62 как функция величины числа Рейнольдса Re,
которая пропорциональна скорости 𝑣, если все остальное фиксировано. Фактиче-
ски, на рисунке отложен коэффициент увлечения 𝐶𝑑, который вводится как

𝐶𝑑 =
𝐹

1
2𝜌𝑣

2𝑑 𝑙
,

где 𝑑 – диаметр, 𝑙 – длина цилиндра, 𝜌 – плотность жидкости. 𝐶𝑑 – коэффициент
увлечения.

При малых числах Рейнольдса сила пропорциональна скорости:

1

2

3

1 101 102 103 104 105 106 107
0

С
та

ци
он

ар
ны

й
∂
v

∂
t
=

0

П
ер

ио
ди

че
ск

ий
ла

м
ин

ар
ны

й

Периодический
турбулентный

Re

C
d

Рис. 62. Режимы увлечения в зависимости от Re

а) Re = 10−2 б) Re = 20 в) Re = 100

Рис. 63. Обтекание цилиндра
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Приведем картину обтекания цилиндра при различных числах Рейнольдса
(см. рис. 64). Разница в режиме между потоками, изображенными на рис. 64а,
рис. 64б и рис. 64в очень велика. На рис. 64а и рис. 64б скорость постоянна, тогда
как на рис. 64в в скорость в любой точке изменяется со временем. При значениях
числа Рейнольдса больше 40 стационарное решение отсутствует; граница перехода
отмечена на рис. 62 пунктирной линией.

Для таких более высоких чисел поток изменяется со временем некоторым регу-
лярным периодическим образом: создаются вихри. Можно представить себе фи-
зическую причину возникновения этих вихрей. Мы знаем, что на поверхности
цилиндра скорость жидкости должна быть равна нулю, но при удалении от по-
верхности скорость быстро возрастает. Это большое местное изменение скорости
жидкости и создает вихри.

Когда скорость основного потока достаточно мала, у вихрей хватает времени,
чтобы продиффундировать из тонкого слоя вблизи поверхности твердого тела,
где они создаются, и «расплыться» на большую область. Эта физическая кар-
тина должна подготовить нас к следующему изменению природы потока, когда
скорость основного потока или число Re увеличивается еще больше:

Рис. 64. Обтекание цилиндра: Re = 104, Re = 106

Постановка задачи об устойчивости течения. Будем решать уравнение
Навье-Стокса для сжимаемой жидкости:

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ +

∇𝑝
𝜌

= 𝜈∆𝑣⃗, div 𝑣⃗ = 0

Пусть у нас есть некоторое стационарное решение 𝑣0(𝑟⃗ ), 𝑝0(𝑟⃗ ). Например, течение
Куэтта или Пуазейля. Займёмся исследованием устойчивости такого решения, для
малых отклонений линеаризуем

𝑣⃗ = 𝑣⃗0 + 𝑣⃗ ′, 𝑝 = 𝑝0 + 𝑝′
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Тогда после лианеризации и сокращения некоторых слагаемых получим

𝜕𝑣⃗ ′

𝜕𝑡
+ [(𝑣⃗0∇)𝑣⃗ ′ + (𝑣⃗ ′∇)𝑣⃗0] +

∇𝑝′
𝜌

= 𝜈∆𝑣⃗ ′, div 𝑣⃗ ′ = 0

Будем искать решение в виде

𝑣⃗ = 𝑣⃗𝑒−𝑖𝜔𝑡, 𝑝 = 𝑝𝑒−𝑖𝜔𝑡,

при этом производная по времени равна 𝑖𝜔 и линеаризованное уравнение сводится
к задаче на собственные значения, то есть нужно найти частоты, которые имеют
как действительную, так и мнимую часть.

𝜔 = 𝜔′ + 𝑖 · 𝜔′′ ⇒ 𝑒−𝑖𝜔𝑡 = 𝑒−𝑖𝜔′𝑡 · 𝑒𝜔′′𝑡

Это очень сложная задача отыскания собственных значений неоднородного урав-
нения в частных производных (𝑉0 = 𝑉0(𝑟)). Так в классическом учебнике [Ландау
Л.Д., Лифшиц Е.М. Теоретическая физика, т. 6. Гидродинамика] решение даже
для простейших ситуаций не приводится, и лишь говорится: нет сомнений, что при
малых числах Рейнольдса мнимая часть частоты отрицательна и, следовательно,
такое течение устойчиво.

Если у частоты будет положительная мнимая часть, то такие решения будут
нарастающими: это и есть неустойчивость.

3.7.2 Неустойчивость Кельвина-Гельмгольца

Также эту неустойчивость называют «неустойчивость тангенциального разры-
ва».

граница

𝑈⃗

𝑧

0

Рис. 65. Постановка задачи с разрывом

Запишем уравнения Эйлера (не будем учитывать вязкость):

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ +

∇𝑝
𝜌

= 0

91



Механика сплошных сред С. Н. Гурбатов

Введём условие разрыва (здесь скорость направлена по оси 𝑥):

𝑣⃗0 =

{︃
𝑈⃗ , 𝑧 > 0

0, 𝑧 < 0

Тогда получится два уравнения (после линеаризации, где мы выкинули второй
порядок малости):

𝜕𝑣⃗

𝜕𝑡
+ 𝑈

𝜕𝑣⃗

𝜕𝑥
= −1

𝜌
∇𝑝, div 𝑣⃗ = 0, 𝑧 > 0

𝜕𝑣⃗

𝜕𝑡
= −1

𝜌
∇𝑝, div 𝑣⃗ = 0, 𝑧 < 0

Возьмём дивергенцию от этих уравнений и учтём несжимаемость жидкости:

∆𝑝 = 0

Будем искать решение в виде бегущей волны 𝑝 = 𝑝*(𝑧)𝑒𝑖(𝑘𝑥−𝜔𝑡). Тогда из уравнения
Лапласа, с учетом того что на бесконечности давление обращается в ноль, имеем:

𝑝*(𝑧) =

{︃
𝑝𝑒−𝑘𝑧, 𝑧 > 0

𝑝𝑒𝑘𝑧, 𝑧 < 0

𝑣𝑧 будем искать в таком же виде 𝑣𝑧 = ̂︀𝑣𝑧𝑒𝑖(𝑘𝑥−𝜔𝑡):

̂︀𝑣*𝑧(−𝑖𝜔 + 𝑖𝑘𝑈) =
1

𝜌
𝑘𝑝*

Тогда

̂︀𝑝 = ̂︀𝑣𝑧𝜌
𝑖(𝑘𝑈 − 𝜔)

𝑘
Выразим все через смещение границы 𝜉:

𝑣𝑧 =
d𝜉

d𝑡
= 𝜉′𝑡 + 𝑈𝜉′𝑥, 𝜉 = ̂︀𝜉𝑒𝑖(𝑘𝑥−𝜔𝑡)

𝑣⃗𝑧 = 𝑖(𝑘𝑈 − 𝜔)̂︀𝜉, ̂︀𝑝 = −̂︀𝜉 𝜌(𝑘𝑈 − 𝜔)2

𝑘
, 𝑝 = ̂︀𝑝𝑒−𝑘𝑧

Аналогично получаем для нижней полуплоскости:

̂︀𝑝 = +̂︀𝜉 𝜌𝜔
2

𝑘
, 𝑝 = ̂︀𝑝𝑒𝑘𝑧
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Приравнивая давления в верхней и нижней полуплоскости, получим

(𝑘𝑈 − 𝜔)2 = −𝜔2 ⇒ 𝜔 =
𝑘𝑈

2
(1 ± 𝑖)

где 𝑈 – скорость верхнего потока, а 𝑘 задаёт период возмущений. Эта форму-
ла и определяет неустойчивость Кельвина-Гельмгольца: в решении присутствует
нарастающее слагаемое.

𝜉 = 𝑎 exp

[︂
𝑖𝑘

(︂
𝑈

2
𝑡− 𝑥

)︂
+
𝑘𝑈

2
𝑡

]︂
+ 𝑏 exp

[︂
𝑖𝑘

(︂
𝑈

2
𝑡− 𝑥

)︂
− 𝑘𝑈

2
𝑡

]︂

Рис. 66. Явление неустойчивости Кельвина-Гельмгольца в атмосфере

Это явление названо в честь британского физика лорда Кельвина (Уилья-
ма Томсона) и немецкого физика Германа фон Гельмгольца. Неустойчивость
Кельвина-Гельмгольца не только ограничивается волнами на водной поверхно-
стью под действием ветра или в виде волноподобных облаков, но и проявляется в
других природных явлениях, таких как полосы Сатурна, Красное пятно Юпитера
и корона Солнца. Вихри на знаменитой картине Ван Гога «Звездная ночь» тоже
считают неустойчивостью Кельвина – Гельмгольца.

Рис. 67. «Звездная ночь» Винсента Ван Гога
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3.7.3 Теория развитой турбулентности

Рис. 68. Рисунок турбулентности Леонардо-да-Винчи

Первым, кто нарисовал турбулентность, был Леонардо-да-Винчи (рис. 68).
Термин ввёл в науку Уильям Томсон (лорд Кельвин).

Активное изучение турбулентности началось в 19-м веке в связи с анализом
режимов течений жидкостей и газов. Позже, в 20-м веке, было обнаружено, что
переход от регулярного или ламинарного движения к хаотическому или турбу-
лентному присущ не только гидродинамическим течениям, но и иным средам и
полям (акустическим полям в твердых телах и газах, электромагнитным полям в
плазме и так далее). Известно и такое явление, как волновая турбулентность.

Турбулентные процессы любой природы попадают под следующее общефизи-
ческое определение [Физическая энциклопедия, 1998]: Турбулентность – слож-
ное, неупорядоченное во времени и пространстве поведение диссипативной среды
(или поля), детали которого не могут быть воспроизведены на больших интер-
валах времени при сколь угодно точном задании начальных и граничных условий.

Такая невоиспроизводимость есть следствие собственной сложной динамики
среды, определяемой неустойчивостью индивидуальных движений, и не связана
с неполнотой описания, флуктуациями или действием внешних шумов.

При превышении критического числа Re возникает турбулентность:

Re0 =
𝑣0𝐿0

𝜈
, Re0 ≫ Recrit

Существуют разные модели возникновения турбулентности при возрастании
Re:

1) Гипотеза Ландау - возникновение спектра несоизмеримых частот

2) Возникновение стохастичности в системе с малым числом степеней свободы
– аттрактор Лоренца
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Мы далее будем говорить о развитой турбулентности. В развитой турбулент-
ности зарождается цепочка вихрей. Более крупные вихри порождают мелкие. Ко-
гда локальное число Рейнольдса становится порядка 1, становится существенна
вязкость.

Рис. 69. Протекание потока сквозь решетку сопровождается возникновением тур-
булентности. Чем выше число Рейнольдса, тем ближе к решетке возникает тур-
булентность

Внешний масштаб турбулентности 𝐿0, внутренний 𝜆0. Вводится понятие инер-
ционного интервала:

𝜆0 ≪ 𝜆≪ 𝐿0

В инерционном интервале передача энергии от крупных масштабов к мелким идёт
только за счёт нелинейности и не зависит от коэффициента диссипации.

Вводится энергия на единицу массы в единицу времени. Из соображений раз-
мерности, считая, что поток энергии связан с крупными масштабами:

[𝜀] = 𝑉 2 1

𝑇
=
𝐿2

𝑇 2

1

𝑇
=
𝐿2

𝑇 3
⇒ 𝜀 ≈ 𝑣30

𝐿0

Считаем, что развитая турбулентность обладает такими свойствами: во первых,
она изотропна (не зависит от направления), во-вторых, статистически однородна
(не зависит от координаты).

Закон Колмогорова-Обухова: распределение скоростей по масштабам из сооб-
ражений теории размерностей:

𝑣𝜆 ∼ (𝜀𝜆)
1
3 , 𝑣𝜆 ≈ 𝑣0

(︂
𝜆

𝐿0

)︂ 1
3
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Отсюда можно получить поведение числа Рейнольдса:

Re𝜆 =
𝑣𝜆𝜆

𝑣
≈ (𝜀𝜆)

1
3𝜆

𝜈
⇒ Re𝜆 ≈ Re0

(︂
𝜆

𝐿0

)︂ 4
3

С уменьшением масштаба локальное число Рейнольдса уменьшается и когда
число Рейнольдса становится порядка единицы существенной становится вяз-
кость. На меньших профиль скорости гладкий. Найдём внутренний масштаб тур-
булентности:

Re𝜆0
≈ Re0

(︂
𝜆0
𝐿0

)︂ 4
3

≈ 1 ⇒ 𝜆0 =
𝐿0

Re
4
3
0

При численном моделировании турбулентности размер сетки должен быть по
крайне мере меньше внутреннего масштаба турбулентности. Если мы хотим опи-
сать турбулентное течение во всех масштабах, то имеем следующую оценку: число
уравнений, которые надо решать, чтобы рассмотреть турбулентное течение в кубе
c ребром длиной метр и числом Рейнольдса Re0 = 106

𝑁 ∼
(︂
𝐿0

𝜆0

)︂3

= Re
9
4
0 ≈ 1013

Это нереально, поэтому в теории турбулентности используются различные при-
ближения.

Гипотеза Колмогорова-Обухова: распределение скоростей по пространствен-
ным частотам в инерционном интервале зависит только от 𝜀 и 𝑘.

Из соображений размерности имеем знаменитый степенной закон
Колмогорова-Обухова для спектра турбулентности:

1

𝐿0
≪ 𝑘 ≪ 1

𝜆0
, [𝐸(𝑘)] ∼ 𝐿3

𝑇 2
, [𝜀] ∼ 𝐿2

𝑇 3
, 𝐸(𝑘) ∼ 𝜀

3
2𝑘−

5
3 .

В 2021 г. исполнилось 80 лет теории локально однородной и изотропной тур-
булентности, основы которой были заложены в 1941 г. Андреем Николаевичем
Колмогоровым, а также его учеником Александром Михайловичем Обуховым.
Развитие теории турбулентности за первые 20-25 лет изложены в энциклопеди-
ческом двухтомном труде «Статистическая гидромеханика», вышедшем первым
изданием в середине 1960-х гг., а вторым - в 1990-х гг. [22].
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Рис. 69. Спектры пульсаций продольной и поперечной компонент скорости. Три
выделенных интервала: 1 – энергосодержащий интервал, в котором форма спек-
тра зависит от механизма возбуждения турбулентности; 2 – инерционный интер-
вал, характеризующийся постоянным потоком энергии по спектру; 3 – интервал
вязкой диссипации энергии.

Эта теория, одна из самых красивых физических теорий, объясняет огромное
разнообразие природных процессов в атмосфере и океане, в астрофизике, технике
и т. д. В 1991 г. было организовано специальное заседание Королевского общества
в Лондоне, посвященное 50-летию теории [23], см. также книгу У. Фриша [24].

4. Сжимаемая жидкость. Звук

В этом разделе рассмотрим распространение звуковых волн малой амплиту-
ды в жидкостях и газах (но не в твердых телах). Возникновение звуковых волн
обусловлено сжимаемостью среды.

Будем рассматривать колебания малой амплитуды (линейная задача, справед-
лив принцип суперпозиции). Нужно провести линеаризацию уравнений гидроди-
намики идеальной жидкости. Для этого запишем систему уравнений для идеаль-
ной жидкости ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗∇)𝑣⃗ = −∇𝑝

𝜌
,

𝜕𝜌

𝜕𝑡
+ div 𝜌𝑣⃗ = 0,

𝑝 = 𝑝(𝜌)

и проведем линеаризацию:

𝑝 = 𝑝0 + 𝑝′, 𝜌 = 𝜌0 + 𝜌′, 𝑣′.

𝑝′

𝑝0
=
𝜌′

𝜌0
=
𝑣

𝑐
= 𝑀,
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где 𝑀 – акустическое число Маха. Начнем с первого уравнения – уравнения Эй-
лера. Разложение в ряд даёт

1 + 𝑥

1 + 𝑦
≈ 1 + 𝑥− 𝑦

Уравнение Эйлера при линеаризации даёт

𝜕𝑣⃗

𝜕𝑡
= −∇𝑝′

𝜌0

Линеаризация в уравнении непрерывности:

div 𝜌𝑣⃗ = div (𝜌0 + 𝜌′)𝑣⃗ = div 𝜌′𝑣⃗ + 𝜌0 div 𝑣⃗ ′

Пренебрегая малыми членами, получим

𝜕𝜌

𝜕𝑡
+ 𝜌0 div 𝑣⃗ = 0

Далее

𝑝0 + 𝑝′ = 𝑝(𝜌0 + 𝜌′) = 𝑝(𝜌0) +
𝜕𝑝

𝜕𝜌
𝜌′ ⇒ 𝑝′ =

𝜕𝑝

𝜕𝜌
𝜌′ = 𝑐2𝜌′.

Здесь из соображений размерности использован тот факт, что производная имеет
размерность квадрата скорости.

В итоге уравнения линейной акустики имеют следующий вид (уравнение Эй-
лера, уравнение непрерывности и последнее уравнение – состояния):

𝜕𝑣⃗ ′

𝜕𝑡
= −∇𝑝′

𝜌0

𝜕𝑝′

𝜕𝑡
+ 𝜌0𝑐

2 div 𝑣⃗ = 0

𝑝′ = 𝑐2𝜌′

Ищем потенциальные решения:

𝑣⃗ = grad𝜙 ⇒ 𝜕

𝜕𝑡
∇𝜙 = −∇𝑝′

𝜌0
,

Откуда получаем

𝑝′ = −𝜌0
𝜕𝜙

𝜕𝑡
.

Подставляем 𝑝′ в уравнение непрерывности и получаем

𝜕2𝜙

𝜕𝑡2
− 𝑐2∆𝜙 = 0,
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ни что иное, как волновое уравнение.

Замечание. Волновому уравнению удовлетворяет потенциал и каждая из трёх
компонент скорости, а также возмущения давления и плотности.

Рассмотрим уравнение для плоских волн:

𝜕2𝜙

𝜕𝑥2
− 1

𝑐2
𝜕2𝜙

𝜕𝑡2
= 0

Будем решать автоволновой заменой переменных 𝜉 = 𝑥− 𝑐𝑡, 𝜂 = 𝑥+ 𝑐𝑡:

𝜕2𝜙

𝜕𝑥2
=
𝜕2𝜙

𝜕𝜉2
=
𝜕2𝜙

𝜕𝜂2
,

𝜕2𝜙

𝜕𝑡2
= 𝑐2

𝜕2𝜙

𝜕𝜉2
= 𝑐2

𝜕2𝜙

𝜕𝜂2

𝜕2𝜙

𝜕𝜉𝜕𝜂
= 0

Получаем решение
𝜙 = 𝜙1(𝑥− 𝑐𝑡) + 𝜙2(𝑥+ 𝑐𝑡)

Среда у нас без дисперсии: задав возмущение, мы получим, что оно будет бежать
со скоростью 𝑐 без искажений. Вернёмся к формулам для скорости:

𝑣⃗ = grad𝜙 ⇒ 𝑣𝑥 =
𝜕𝜙

𝜕𝑥
= 𝜙′

1(𝑥− 𝑐𝑡), 𝑣𝑦 = 𝑣𝑧 = 0

Получили, что волна продольная, в отличие от электромагнитных.

𝑝′ = 𝜌0𝑐0𝜙
′(𝑥− 𝑐𝑡) = 𝜌0𝑐0𝑣

′
𝑥

Получаем, что возмущение давления повторяет возмущение скорости. У нас оста-
лось уравнение состояния:

𝑝′ = 𝑐2𝜌′

Значит, плотность тоже повторяет форму возмущения скорости. В итоге получаем
закон

𝑣

𝑐
=
𝜌′

𝜌0
=
𝑝′

𝑝0
= 𝑀

Напомним, что число 𝑀 – число Маха.

4.1. Монохроматические волны
Так как задачу мы решаем в линейном виде, то

𝜙 = Re
[︀
Φ0(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡

]︀
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Получаем уравнение Гельмгольца:

∆Φ0 + 𝑘20Φ0 = 0, 𝑘 =
𝜔

𝑐

Простейшее решение его – плоские волны:

Φ0 = 𝑒𝑖(𝑘⃗,𝑟⃗ )

Рассмотрим случай 𝑘⃗ = 𝑘⃗1 + 𝑖𝑘2. Это неоднородная плоская волна.

𝑘⃗2 = 𝑘⃗21 − 𝑘⃗22 + 2𝑖
(︁
𝑘⃗1, 𝑘⃗2

)︁

Тогда из условия 𝑘⃗2 = 𝑘20 получим два уравнения:

𝑘⃗21 − 𝑘⃗22 =
𝜔2
0

𝑐2
,
(︁
𝑘⃗1, 𝑘⃗2

)︁
= 0

Тогда решение можно записать в таком виде:

Φ0 = 𝑒𝑖(𝑘⃗1,𝑟⃗ )𝑒−(𝑘⃗2,𝑟⃗ )

Действительная и мнимая части волнового вектора ортогональны.
Монохроматические волны играют существенную роль в связи с тем, что вся-

кую волну можно представить в виде суперпозиции плоских монохроматических
волн с различными волновыми векторами частотами. Это ни что иное, как раз-
ложение в ряд (или интеграл) Фурье.11

4.2. Энергия и интенсивность звуковой волны

𝜕𝑣⃗ ′

𝜕𝑡
= −∇𝑝′

𝜌
,

𝜕𝑝′

𝜕𝑡
+ 𝜌0𝑐

2 div 𝑣⃗ = 0

Хотим получить некий закон сохранения из этих формул. Домножим первое
уравнение на 𝑣′𝜌 (далее штрихи опускаем):

𝜕

𝜕𝑡

(︂
𝜌
𝑣2

2
+

𝑝2

2𝜌0𝑐2

)︂
+ div 𝜌𝑣⃗ = 0

Откуда вводим

𝐸 = 𝜌
𝑣2

2
+

𝑝2

2𝜌0𝑐2
, 𝐽 = 𝜌𝑣⃗,

где 𝐸 – энергия, а 𝐽 – вектор Умова-Пойнтинга. Структура энергии представ-
11Жан Батист Жозеф Фурье (фр. Jean Baptiste Joseph Fourier; 21 марта 1768, Осер, Франция – 16 мая 1830,

Париж), французский математик и физик.
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ляет собой сумму: первое слагаемое – кинетическая энергия, второе слагаемое –
потенциальная энергия (энергия упругой деформации).

В введенных обозначениях получаем закон сохранения энергии звуковой вол-
ны в дифференциальной форме:

𝜕𝐸

𝜕𝑡
+ div 𝐽 = 0

Проинтегрировав по объему и используя теорему Остроградского-Гаусса, получим
закон сохранения в интегральной форме: изменение энергии в объеме связано с
потоком энергии через поверхность.

Среднее по времени значение энергии переносимое звуковой волной через еди-
ницу поверхности называют силой звука или интенсивностью звука.

Рассмотрим плоскую звуковую волну:

𝐸 =
𝜌0𝑣

2

2
+

𝑝2

𝜌0𝑐2
, 𝑣 =

𝑝

𝜌0𝑐

Дли интенсивности звука имеем

𝐽 =
𝑝2

𝜌0𝑐
= 𝜌𝑐0𝑣

2 = 𝑐𝐸.

В случае гармонического гармонического сигнала

𝑝 = 𝑝0 cos(𝜔𝑡− 𝑘𝑥), 𝑣 = 𝑣0 cos(𝜔𝑡− 𝑘𝑥).

Так как ⟨cos2(𝜔𝑡− 𝑘𝑥)⟩ = 1
2 , то

𝐽* =
𝑝20

2𝜌0𝑐
=
𝜌0𝑐𝑣

2
0

2
.

В акустике принято характеризовать уровень интенсивности звука (уровень
звукового давления) в децибелах:

d𝐵 = 10 ln
𝐽

𝐽* = 20 ln
𝑝*

𝑝0
.

В атмосферной акустике за величины 𝐽*, 𝑝* принимается порог слышимости. При
этом «стандартное» давление 𝑝* = 2 · 10−5 Па.
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Таблица 1. Уровень громкости типичных звуковых шумов
Уровень громкости,
фоны (дБ)

Звук

0 Порог слышимости
10 Шелест листьев
20 Шепот
30 Тиканье часов
40 Тихая комната
50 Тихая улица
60 Разговор
70 Шумная улица
75 Опасный для здоровья уровень
90 Пневматический молоток
100 Поезд метро
110 Громкая музыка
120 Болевой порог
130 Сирена
150 Старт ракеты
180 Смертельный уровень
200 Шумовое оружие

Рис. 69. Старт ракеты «Союз» со спутниками OneWeb
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Таблица 2. Интенсивность, звуковое давление и уровень звука в воздухе при ком-
натной температуре и нормальном давлении на уровне моря

Интенсивность, Вт
м2 Звуковое давление, Н

м2 Уровень звука, дБ

100 000 000 200 000 200
10 000 000 190
1 000 000 20 000 180

100 000 170
10 000 2 000 160
1 000 150

100 200 140
10 130
1 20 120
0.1 110
0.01 2 100
0.001 90
0.0001 0.2 80
0.00001 70
0.000001 0.2 60
0.0000001 50
0.00000001 0.002 40
0.000000001 30
0.0000000001 0.0002 20
0.00000000001 10
0.000000000001 0.0002 0

В настоящее время акустика представляет собой развитую область науки и
техники, результаты которой используются людьми самых разных профессий. О
том какой спектр охватывает акустика можно частично судить по оглавлению
к пособию «Акустика в задачах»12[4]. Данный задачник построен на материа-
ле курсов, читаемых студентам кафедр акустики Московского и Нижегородского
университетов, а также студентам отделения радиофизики физфака МГУ.

12Пособие Акустика в задачах. Учеб. рук-во. / Под ред. С.Н.Гурбатова и О.В.Руденко. М.: Наука,
1996, 2009. - 336 с. содержит следующие разделы:
1. Общие вопросы акустики
2. Волны в трубах волноводах и резонаторах
3. Акустика неоднородных сред
4. Излучение и рассеяние звука
5. Нелинейная акустика
6. Упругие волны в твердых телах
7. Статистическая акустика
8. Электроакустические системы
9. Обратные задачи теории дифракции
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Предметный указатель

Частота
Брента-Вяйсаля, 21

Число
Фруда, 80
Рейнольдса, 80
Струхаля, 81

Диполь
гидродинамический, 42

Движение
нестационарное невихревое, 23
стационарное, 22

безвихревое, 22
вихревое, 22

вихревое, 46
Формула

Прандтля, 83
Стокса, 81

Функция
аналитическая, 39
тока, 38

Гипотеза
Колмогорова-Обухова, 96

Колебания
малые нестационарные, 29

Мертвая вода, 67
Неустойчивость

Кельвина-Гельмгольца, 91
Обтекание

двух цилиндров, 25
кругового цилиндра, 43

Описание
Эйлера, 10
Лагранжа, 9

Парадокс Даламбера, 30
Потенциал

комплексный, 40
Принцип

подобия, 79
Присоединенная масса, 30
Производная

локальная, 11
субстанциональная, 11

Равновесие
гидростатическое, 20

Слой
пограничный, 83

Течение
Куэтта, 74
Пуазейля, 75
плоское, 39
потенциальное, 30
сопряжённое, 39
устойчивость, 89

Теорема
Томсона, 27

Теория
развитой турбулентности, 94
турбулентности, 89

Трубка Вентури, 24
Уравнение

Бернулли, 21
Эйлера, 13

форма Громэко-Лэмба, 21
Навье-Стокса, 71
Пуассона, 14
непрерывности, 11

Вытекание жидкости, 25
Вихри

точечные, 51
Волны

поверхностные
гравитационные, 56
гравитационно-капиллярные, 63
на глубокой воде, 61
на мелкой воде, 60

внутренние, 66
вязкие, 77

Задача
Прандтля, 25

Закон
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Архимеда, 19
Колмогорова-Обухова, 95

спектральный, 96
сохранения энергии, 14
сохранения импульса, 15
сохранения массы, 11

Звук, 97
Жидкость

сжимаемая, 97
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