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Это развёрнутый конспект лекций по курсу математической физики, ко-

тоpый я читал на pадиофизическом факультете ННГУ в 1990-1999 гг. Куpс
состоит из тpёх глав: ваpиационное исчисление, диффеpенциальные уpав-
нения математической физики (уpавнения в частных пpоизводных) и инте-
гpальные уpавнения. При его составлении я пытался сохранить тематику,
стиль и уровень строгости, традиционные для радиофизического факуль-
тета и сложившиеся при проф. Сигалове А.Г. и проф. Морозове С.Ф., кото-
рые долгие годы читали данный курс на факультете. Наибольшей ревизии
с моей стороны был подвергнут раздел \вариационное исчисление " , что
связано с бурным развитием теории экстремальных задач, происшедшим
в последние годы. В основу изложения данного раздела положен класси-
ческий вариационный подход Лагранжа и правило множителей Лагранжа
как универсальный способ снятия дополнительных ограничений, позволя-
ющие с единой позиции излагать как классические вариационные задачи,
так и современные задачи оптимального управления.
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Курс читается для студентов дневного отделения 2-го года обучения
в течение 2-х семестров (3-его и 4-ого) по 1-ой лекции и 1-му (0.5 - в 4-
ом семестре) практическому занятию в неделю. В 3-м семестре проводится
коллоквиум по вариационному исчислению, в 4-ом - экзамен по остальным
разделам курса. В 3-ем семестре проводится также зачёт по практике. Текст
лекций набран на LATEX-е в редакторе Scientific Word и свободно распро-
страняется в форматах PostScript (для GSView) и Pdf (для Acrobat Reader).
Я благодарен всем, указавшим на опечатки и неточности в данном тексте,
которых, возможно, осталось ещё немало. Следует отметить, что данный
конспект не может служить полноценной заменой личного конспекта сту-
дента, поскольку некоторые детали изложения в нем опущены. В то же
время он может быть полезен студентам при подготовке к экзаменам по
данному курсу, позволяя им восстановить недостающие или непонятые ими
разделы курса. В конце курса приведены списки вопросов к экзамену и кол-
локвиуму по вариационному исчислению, а также программа проведения
практических занятий по всему курсу.



Часть I

ВАРИАЦИОННОЕ
ИСЧИСЛЕНИЕ
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Глава 1

Основные понятия

1.1 Экстремальные задачи
Определение 1. Функционалом на множестве допустимых элементов D =
{d} называется любая вещественнозначная функция от d :

f : D → R

Примеры:

a) D = {1, 2, ..., 125} — множество студентов в аудитории;
f (d) = номер зачётной книжки студента d;

b) D = R, f (d) = cos d;

c) D = Rn, d = (d1, ..., dn) , f (d) = ‖d‖2 =

√
n∑

i=1

d2
i ;

d) D = C [a, b] , d ≡ y (·) — непрерывная функция от x ∈ [a, b],
f (d) = ‖d‖C[a,b] = max {|y (x)| , x ∈ [a, b]} — норма функции в данном
нормированном пространстве.

Определение 2. Пусть f — функционал на множестве допустимых
элементов D. Экстремальной задачей

f → max
D

называется задача отыскания элементов d∗ ∈ D (решений экстремальной
задачи), для которых

f (d∗) ≥ f (d) ∀d ∈ D.

Множество всех решений обозначается arg maxD f .1
В зависимости от свойств множества допустимых элементов экстремаль-

ные задачи могут называться по-разному.
Примеры:

1Заметим, что с теоретической точки зрения достаточно ограничиться рассмотрением
задачи на максимум, т.к. любая задача на минимум сводится к эквивалентной задаче на
максимум для функционала с противоположным знаком.

3
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• D — конечное или счётное множество — задача дискретного матема-
тического программирования;

• D ⊂ Rn — задача математического программирования (линейного,
нелинейного — в зависимости от соответствующего свойства функци-
онала);

• D — множество функций непрерывного аргумента — вариационная
задача (задача оптимального управления, задача динамического про-
граммирования — в зависимости от специфики постановки).

1.1.1 Четыре основных вопроса теории экстремальных
задач

f → max
D

(1.1)

• Существование решений задачи (1.1);

• Единственность решения;

• Необходимые условия экстремума:

{
d∗ ∈ arg max

D
f
}
→ {НУЭ} ;

• Достаточные условия экстремума:

{ДУЭ} →
{

d∗ ∈ arg max
D

f
}

1.1.2 Задача математического программирования (крат-
кая справка из курса математического анализа)

Задача математического программирования

f → max
D⊂Rn

(1.2)

изучается традиционно в курсах математического анализа. Напомним ос-
новные известные нам результаты.

• Существование решения.
Теорема (К.Вейерштрасс). Пусть D — компактное2 множество и f
— непрерывная функция на D. Тогда задача (1.2) имеет решение.

• Единственность.
Теорема. Если f — выпуклая функция на выпуклом множестве3 D,
то решение задачи (1.2) может быть только одно.

2Замкнутое ограниченное.
3Множество D в линейном пространстве называется выпуклым, если оно вместе с

каждыми своими двумя точками содержит и весь отрезок их соединяющий. Функция
f : D → R считается выпуклой, если ∀d1, d2 ∈ D и ∀α ∈ [0, 1]

f (αd1 + (1− α) d2) 6 αf (d1) + (1− α) f (d2) .
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• Необходимые условия экстремума.
Теорема 1. Пусть D — открытое множество, x∗ ∈ arg maxD f , и
существуют дифференциалы df (x∗), d2f (x∗) . Тогда

df (x∗) = 0 (теорема Ферма) ,

d2f (x∗) ≤ 0.

(второй дифференциал является неположительно определённой квад-
ратичной формой приращений dx независимых переменных).
Теорема 2 (Правило множителей Лагранжа). Пусть

D = {x ∈ Rn : g1 (x) = g2 (x) = · · · = gm (x) = 0} .

Если x∗ ∈ arg maxD f, и существуют дифференциалы df (x∗), dgk (x∗) , k =
1,m, то найдутся не все равные нулю числа λ∗0, λ

∗
1,..., λ

∗
m (множители

Лагранжа) такие, что для функции Лагранжа

L (x, λ) ≡ λ0f (x) + λ1g1 (x) + ... + λmgm (x)

выполнены условия

{ ∂L
∂xi

(x∗, λ∗) = 0, i = 1, n
∂L
∂λk

(x∗, λ∗) ≡ gk (x∗) = 0, k = 1,m

• Достаточные условия.
Теорема. Пусть D — открытое множество и в точке x∗ ∈ D

df (x∗) = 0,
d2f (x∗) < 0

(d2f (x∗) — отрицательно определенная квадратичная форма). Тогда
x∗ — точка локального максимума функции f на множестве D.

1.1.3 Вариационные задачи
f → max

D
(1.3)

Здесь D — в общем случае произвольное множество функций непрерывного
аргумента.

Существуют два основных приема исследования (получения необходи-
мых условий экстремума) подобных задач:

• Классический вариационный подход (Эйлер, Лагранж и др.) — сведе-
ние задачи с помощью искусственных приёмов к исследованию неко-
торых вспомогательных задач математического программирования.

• Современный функциональный подход (Гильберт, Нейман и др.) —
обобщение концепции производной на пространства бесконечной раз-
мерности (Гато, Фреше и др.) и формулирование необходимых условий
в терминах этих обобщений.
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1.1.4 Классический вариационный подход (метод Лагран-
жа)

Метод Лагранжа получения необходимых условий экстремума в вариаци-
онных задачах связан с построением т.н. допустимой варианты экстре-
мального элемента.

Пусть d∗ — решение экстремальной задачи (1.3). Рассмотрим произволь-
ное семейство {dε, ε ∈ Rn} (допустимую варианту элемента d∗), удовле-
творяющее условиям:

1. dε ∈ D ∀ε, |ε| < ε0, ε0 — некоторое положительное число;

2. d0 = d∗.

Рассмотрим функцию ϕ (ε) ≡ f (dε) . Это уже функция конечномерного
вектора ε ∈ Rk. Очевидно, что

{
d∗ ∈ arg max

D
f
}
⇒

{
0 ∈ arg max

|ε|<ε0

ϕ

}
⇒

{
dϕ (0) = 0
d2ϕ (0) ≤ 0

(действительно, ϕ (0) = f (d∗) ≥ f (dε) = ϕ (ε)). Выражая полученные усло-
вия в терминах функционала f, получаем необходимые условия экстремума
для исходной задачи (1.3).

Примечание. Если ε — скалярная величина, то первая производная

ϕ′ (0) ≡ lim
ε→0

ϕ (ε)− ϕ (0)
ε

= lim
ε→0

f (dε)− f (d∗)
ε

≡ δf

называется первой вариацией функционала f на допустимой варианте {dε, ε ∈
R}, вторая производная ϕ′′ (0) ≡ δ2f — второй вариацией и т.д. Ясно,
что вид вариации, а также сила соответствующих необходимых условий
экстремума (т.е. их потенциальные возможности по выделению возмож-
ных решений задачи из множества допустимых элементов) определяются
конструкцией допустимой варианты. Поэтому изобретение новой конструк-
ции варианты позволяет исследовать новые ранее неисследованные классы
вариационных задач. Из наиболее известных конструкций отметим клас-
сическую (Лагранж), игольчатую (Вейерштрасс), импульсную (Макшейн)
варианты.



Глава 2

Классические вариационные
задачи

2.1 Простейшая задача вариационного исчис-
ления (A)

f (d) ≡ J (y (·)) =

x1∫

x0

F (x, y (x) , y′ (x)) dx → max
D

,

D =
{

d ≡ y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] ,
y (x0) = y0, y (x1) = y1

}
.

Здесь x0, x1,y0, y1 — заданные величины, F (·, ·, ·) ∈ C3
(
R3

)
— заданная

функция (интегрант или лагранжиан функционала).
Примеры.

• Принцип Ферма: волна в неоднородной среде выбирает для своего распро-
странения тот путь между двумя точками среды, на который ей потребуется ми-
нимальное время — интеграл

T =
∫

dt =
∫

dAB

ds

v

принимает своё минимальное значение при его вычислении вдоль траектории рас-
пространения волны, соединяющей две заданные точки среды A и B, в сравнении
с его значениями на любых других кривых ÂB. В частном случае двумерной
среды (v = v (x, y))

T =

x1∫

x0

√
1 + (y′)2

v (x, y (x))
dx → min .

• Брахистохрона ( \Новая задача, к решению которой приглашаются
математики " . И.Бернулли, 1696)

7
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Найти уравнение дуги ÂB, по которой
бусинка скатывается под действием
силы тяжести за минимальное
время (трение отсутствует)

-

?

x

y

?g

A

B

U

x1

Подобной задачей занимался ещё Галилей. Ему принадлежит доказательство, что
при движении по дуге окружности время достижения меньше, чем при движении
по хорде. Полное решение задачи дали (помимо самого И.Бернулли) Лейбниц,
Я.Бернулли и \один аноним из Англии " (И.Ньютон). Интересно отметить, что все
решения были различны и породили впоследствии направления в вариационном
исчислении.

Для вариационной постановки задачи найдем скорость бусинки при прохождении
горизонта h. Из закона сохранения механической энергии имеем

mv2

2
= mgh = mgy ⇒ v =

√
2gy,

T =

x1∫

0

√
1 + (y′)2
√

2gy
dx → min . (2.1)

2.1.1 Вывод необходимых условий экстремума в задаче
(A) классическим вариационным методом

Пусть y∗ (·) — решение задачи (A), η (·) — произвольная функция класса
C2 [x0, x1], для которой η (x0) = η (x1) = 0. Построим классическую вари-
анту экстремального элемента y∗ (·):

yε (x) ≡ y∗ (x) + εη (x) , ε ∈ R.

Очевидно, что yε (·) ∈ D ∀ε и y0 (·) = y∗ (·), поэтому данная варианта
является допустимой.

Пусть

ϕ (ε) ≡ J (yε) =
x1∫
x0

F (x, yε (x) , y′ε (x)) dx =

=
x1∫
x0

F (x, y∗ (x) + εη (x) , y∗′ (x) + εη′ (x)) dx.

Необходимые условия экстремума первого и второго порядков имеют вид

δJ ≡ ϕ′ (0) = 0, δ2J ≡ ϕ′′ (0) ≤ 0.

Вычислим указанные производные функции ϕ. Дифференцируя интеграл1

1Дифференцирование по параметру под знаком интеграла в данном случае допустимо
— см. свойства интеграла Римана. Во всех полученных выражениях значения всех част-
ных производных функции F берутся в текущей точке (x, y∗ (x) + εη (x) , y∗′ (x) + εη′ (x)).
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по параметру ε, имеем

ϕ′ (ε) =
x1∫
x0

(
∂F
∂y η + ∂F

∂y′ η
′
)

dx,

ϕ′′ (ε) =
x1∫
x0

(
∂2F
∂y2 η2 + 2 ∂2F

∂y∂y′ ηη′ + ∂2F
∂y′2 η′2

)
dx.

(2.2)

Далее,
x1∫
x0

∂F
∂y′ η

′dx = ∂F
∂y′ η|x1

x0︸︷︷︸
0

−
x1∫
x0

η d
dx

∂F
∂y′ dx =

= −
x1∫
x0

η d
dx

∂F
∂y′ dx,

x1∫
x0

2 ∂2F
∂y∂y′ ηη′ dx =

x1∫
x0

∂2F
∂y∂y′

d
dxη2 dx =

= ∂2F
∂y∂y′ η

2
∣∣x1

x0︸ ︷︷ ︸
0

−
x1∫
x0

η2 d
dx

∂2F
∂y∂y′ dx =

= −
x1∫
x0

η2 d
dx

∂2F
∂y∂y′ dx

Подставляя данные выражения в (2.2) и полагая ε = 0, получаем необ-
ходимые условия экстремума в виде следующих двух интегральных соот-
ношений2: для любой функции η (·) ∈ C2 [x0, x1] с нулевыми граничными
условиями η (x0) = η (x1) = 0 справедливы равенства

ϕ′ (0) =

x1∫

x0

(
∂F

∂y
− d

dx

∂F

∂y′

)
η dx = 0, (2.3)

ϕ′′ (0) =

x1∫

x0

[(
∂2F

∂y2
− d

dx

∂2F

∂y∂y′

)
η2 +

∂2F

∂y′2
(η′)2

]
dx ≤ 0. (2.4)

Для получения из этих интегральных условий более простых, диффе-
ренциальных, докажем сперва следующие два вспомогательные утвержде-
ния.

Лемма 1. (Основная лемма вариационного исчисления — Лемма Лагран-
жа)

Пусть ψ (x) — непрерывная функция на замкнутом отрезке [x0, x1] ,
и для любой пробной функции η (·) ∈ C2 [x0, x1] , которая удовлетворяет
граничным условиям η (x0) = η (x1) = 0, имеет место равенство

x1∫

x0

ψ (x) η (x) dx = 0.

2Отметим, что здесь и далее все содержащие интегрант F выражения вычисляются в
текущих точках

�
x, y∗ (x) , y∗

′
(x)
�
, например,

∂F

∂y
≡ ∂F

∂y

�
x, y∗ (x) , y∗

′
(x)
�

и т.д.



10 ЧАСТЬ I. ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

Тогда

ψ (x) = 0 ∀x ∈ [x0, x1] .

Доказательство.Допустим, что ψ (ξ) > 0 в некоторой точке ξ ∈ [x0, x1].
Пусть точка ξ ∈ (x0, x1)3. Тогда вследствие непрерывности функции ψ (·)
существует окрестность точки ξ, для определённости ∆ ≡ (ξ − δ, ξ + δ),
δ > 0 , в которой везде ψ (x) > 0 . Рассмотрим пробную функцию η (·)
следующего вида

η (x) =
{

0, x 6∈ ∆
(x− ξ + δ)4 (x− ξ − δ)4 , x ∈ ∆

.

Очевидно, что

x1∫

x0

ψ (x) η (x) dx =

ξ+δ∫

ξ−δ

ψ (x) η (x) dx > 0.

Но это противоречит условию леммы. Следовательно исходное предполо-
жение неверно и ψ (x) = 0 ∀x ∈ [x0, x1] . Лемма доказана.

Лемма 2. Пусть A (x) , B (x) — непрерывные на замкнутом отрезке
[x0, x1] функции, и для любой пробной функции η (·) ∈ C2 [x0, x1] с η (x0) =
η (x1) = 0 справедливо неравенство

x1∫

x0

(
A (x) η2 (x) + B (x) η′2 (x)

)
dx ≤ 0.

Тогда

B (x) ≤ 0 ∀x ∈ [x0, x1]

(без доказательства).
Замечание. В данных леммах можно было считать η (·) ∈ Cn [x0, x1],

1 ≤ n ≤ ∞. Докажите это.
Применяя доказанные леммы к (2.3),(2.4), получаем следующее утвер-

ждение.
Теорема (необходимые условия экстремума в задаче (A)).
Если y∗ (·) — решение задачи (A), то для всех x ∈ [x0, x1]

∂F

∂y
(x, y∗ (x) , y∗′ (x))− d

dx

∂F

∂y′
(x, y∗ (x) , y∗′ (x)) = 0 (2.5)

(уравнение Эйлера) и

∂2F

∂y′2
(x, y∗ (x) , y∗′ (x)) ≤ 0

(условие Лежандра).

3Случай граничных точек следует рассмотреть отдельно.
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Определения.

1. Всякое решение y (·) ∈ C2 [x0, x1] уравнения Эйлера (2.5)

∂F

∂y
− d

dx

∂F

∂y′
= 0

называется экстремалью (этого уравнения, а также функционала J
и лагранжиана F ).

2. Добавляя к уравнению Эйлера граничные условия для экстремали,
получаем т.н. краевую задачу Эйлера

{
∂F
∂y − d

dx
∂F
∂y′ = 0,

y (x0) = y0, y (x1) = y1.

Замечание. Уравнение Эйлера представляет собой квазилинейное (т.е.
линейное по старшей производной) обыкновенное дифференциальное урав-
нение второго порядка. Действительно, взяв входящую в левую часть пол-
ную производную d

dx , получаем уравнение в развёрнутом виде

∂F

∂y
− ∂2F

∂y′∂x
− ∂2F

∂y′∂y
y′ − ∂2F

∂y′2
y′′ = 0.

Как известно из курса обыкновенных дифференциальных уравнений, общее
решение уравнения второго порядка содержит две произвольные постоян-
ные: y (x) = Φ (x, C1, C2). Для их определения у нас есть два граничных
условия: {

Φ(x0, C1, C2) = y0

Φ(x1, C1, C2) = y1
.

Эта нелинейная алгебраическая система имеет в достаточно общем случае
единственное решение C∗1 , C∗2 , следовательно, при этом краевая задача Эй-
лера позволяет предельно сузить множество подозреваемых на экстремум
функций до одного единственного элемента y∗ (x) = Φ (x,C∗1 , C∗2 ). Отме-
тим, что подобное свойство необходимых условий экстремума называется
их полнотой.

2.1.2 Первые интегралы уравнения Эйлера
Имеется несколько достаточно общих случаев, когда удаётся легко понизить
порядок уравнения Эйлера. Вот они:

• F ≡ F (x, y)

Так как при этом F ′y′ ≡ 0, то уравнение Эйлера имеет вид

∂F

∂y
(x, y) = 0.

Это не дифференциальное, а алгебраическое уравнение. Множество
решений подобных уравнений обычно слишком бедно4, чтобы можно

4Общее решение не содержит произвольных постоянных.
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было рассчитывать на нахождение в нём функции с графиком, прохо-
дящим через две заданные точки на плоскости. Следовательно, крае-
вая задача Эйлера (а с ней и вариационная задача) в данном случае,
как правило, решений не имеет.

• F ≡ F (x, y′)

Здесь мы имеем F ′y ≡ 0, следовательно, уравнение Эйлера имеет фор-
му

d

dx

∂F

∂y′
(x, y) = 0.

После интегрирования получаем его первый интеграл

∂F

∂y′
(x, y) = C1,

где C1 — произвольная постоянная. Этот первый интеграл (по тради-
ции и в соответствии с тем значением, которое он имеет в механике)
называется интегралом импульса.

• F ≡ F (y, y′)

Докажем, что в этом случае мы имеем следующий интеграл энергии:

F − y′F
′
y′ = C2.

В самом деле, если y (x) — экстремаль, то вычисляя на ней полную
производную функции F − y′F

′
y′ , получаем

d
dx

(
F − y′F

′
y′

)
= F

′
yy′ + F

′
y′y

′′ − y′′F
′
y′ − y′F

′′
y′yy′ − y′F

′′
y′y′y

′′ =

= y′
(
F
′
y − F

′′
y′yy′ − F

′′
y′y′y

′′
)

= y′
(

F
′
y −

d

dx
F
′
y′

)

︸ ︷︷ ︸
≡0

≡ 0.

• F ≡ M (x, y) + y′N (x, y) — случай линейного (по отношению к произ-
водной y′) интегранта.
Здесь мы имеем

∂F
∂y − d

dx
∂F
∂y′ ≡ ∂M

∂y + y′ ∂N
∂y − y′ ∂N

∂y − ∂N
∂x ≡

≡ ∂M
∂y (x, y)− ∂N

∂x (x, y) = 0,

и, следовательно, уравнение Эйлера, как и в первом случае, вырож-
дается в алгебраическое уравнение. Рассмотрим следующие два логи-
чески возможные варианта:

1)
M

′
y −N

′
x ≡ 0. (2.6)

Здесь уравнение Эйлера фактически имеет вид

0 ≡ 0,

и поэтому любая функция y (·) ∈ C2 [x0, x1] является его экстре-
малью. Более того, для любой такой функции, удовлетворяющей
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ещё и граничным условиям, функционал имеет одно и то же зна-
чение. Действительно, условие (2.6) является достаточным для
того, чтобы дифференциальная форма Mdx+Ndy была полным
дифференциалом некоторой функции двух переменных Φ(x, y):
dΦ(x, y) ≡ Mdx + Ndy. Поэтому величина функционала не за-
висит от пробной функции, а определяется лишь ее граничными
значениями:

J (y (·)) =
x1∫
x0

(Φ (x, y (x)))′ dx = Φ (x, y (x))|x1
x0

=

= Φ (x1, y1)− Φ(x0, y0) .

Мы можем, следовательно, сказать, что любая такая функция
является решением вариационной задачи (или, что последняя яв-
ляется вырожденной).

1.
M

′
y −N

′
x 6≡ 0.

В этом случае уравнение Эйлера не вырождается в тривиальное,
однако, множество экстремалей является маломощным. Следова-
тельно, вариационная задача, как правило, решений не имеет.

Пример (брахистохрона — см. (2.1)).
Для интегранта

F ≡
√

1 + (y′)2

y

уравнение Эйлера имеет интеграл энергии

F − y′F
′
y′ =

1√
y

(
1 + (y′)2

) = Ĉ

(в оптике данный интеграл известен как закон Снеллиуса5 : cos α
v = const,

где α — угол скольжения траектории по отношению к горизонту). Следо-
вательно,

y
(
1 + (y′)2

)
= C.

Это — обыкновенное дифференциальное уравнение первого порядка, не раз-
решённое относительно производной. Для его интегрирования введём пара-
метр

y′ = ctg
t

2
.

Тогда
y = C

1+(y′)2 = C sin2 t
2 =

= C
2 (1− cos t) ,

5Именно на этом основано решение задачи о брахистохроне, которое дал Я.Бернулли.
Заметим, что он не вывел данное соотношение как следствие уравнения Эйлера, а на-
против, взял его за исходное, исходя из оптико-механической аналогии задачи.
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dx =
dy

y′
=

C

2
(1− cos t) dt.

В итоге мы получаем решение уравнения в параметрической форме:
{

x = C1 (t− sin t) + C2

y = C1 (1− cos t)

(циклоида6 ).
Для начальной точки x (0) = y (0) = 0, например, получаем следующее

семейство экстремалей {
x = C (t− sin t)
y = C (1− cos t) .

Условие Лежандра в данной задаче имеет вид

∂2F

∂y′2
(x, y, y′) ≡ 1

√
y

(
1 + (y′)2

)3/2
> 0

и выполнено на любой экстремали. Из него, впрочем, вытекает, что экстре-
мум может быть только минимумом.

2.2 Вариационная задача на классе векторных
функций (B)

Здесь множество допустимых функций7 имеет вид

D =
{

y (x) ≡ {y1 (x) , y2 (x) , ..., yn (x)} : y (·) ∈ C2 [x0, x1] ,
y (x0) = y0, y (x1) = y1

}
,

а функционал на нём —

J (y (·)) =

x1∫

x0

F (x,y (x) ,y′ (x)) dx → max,

где F (·, ·, ·) ∈ C3
(
R2n+1

)
.

2.2.1 Вывод необходимых условий экстремума в задаче
(B) вариационным методом

Пусть y∗ (·) — решение задачи, η (·) ≡ {η1 (·) , ..., ηn (·)} ∈ C2 [x0, x1] — произ-
вольная вектор-функция, удовлетворяющая граничным условиям η (x0) =
η (x1) = 0, ε = {ε1, ε2, ..., εn} — произвольный вектор в Rn.

6Траектория гнилого яблока, прилипшего к колесу кареты И.Бернулли, катящемуся
(о колесе) без проскальзывания по булыжной (?) мостовой Базеля ...

7Пространство C2 [x0, x1] по определению состоит из вектор-функций, компоненты
которых принадлежат C2 [x0, x1].
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Определим варианту экстремальной функции y∗ (·) следующим обра-
зом8:

yε (x) ≡ y∗ (x) + ε[η (x) ≡
≡ {y∗1 (x) + ε1η1 (x) , ..., y∗n (x) + εnηn (x)} .

Легко проверить9 допустимость данной варианты. Пусть

ϕ (ε) ≡ J (yε (·)) =

=
x1∫
x0

F (x, y∗1 (x) + ε1η1 (x) , ..., y∗n (x) + εnηn (x) , ...

, y∗
′

1 (x) + ε1η
′
1 (x) , ..., y∗

′
n (x) + εnη′n (x)

)
dx.

Необходимое условие в задаче

ϕ (ε) → max
|ε|<ε0

для подозреваемой точки ε = 0 имеет вид

∇ϕ (0) = 0.

Поэтому

∂ϕ

∂εk
(0) =

x1∫

x0

(
∂F

∂yk
− d

dx

∂F

∂y′k

)
ηk (x) dx = 0, k = 1, n.

Применяя лемму 1, выводим отсюда необходимое условие экстремума в
форме системы уравнений Эйлера:

∂F

∂yk
− d

dx

∂F

∂y′k
= 0, k = 1, n,

или в форме векторного уравнения Эйлера

∇yF − d

dx
∇y′F = 0. (2.7)

Стоит отметить, что в справедливости данных необходимых условий экс-
тремума можно было убедиться и проще, исходя из результатов получен-
ных для предыдущей вариационной задачи. В самом деле, фиксируя любые
n − 1 компоненты функции y∗ (·), мы приходим, по-существу, к задаче
нахождения последней n-ой компоненты, доставляющей экстремум функ-
ционалу. Но это уже задача класса (А) и следовательно, необходимым усло-
вием экстремума в ней является выполнение уравнения Эйлера по данной
компоненте.

8Векторная операция [ фактически определяется выражением в фигурных скобках.
Наверное, эту операцию можно выразить через известные векторные операции. Попы-
тайтесь ...

9Проверьте!
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2.2.2 Интегралы векторного уравнения Эйлера
• Если функция F не зависит от переменной yk, уравнение Эйлера (2.7)

имеет интеграл импульса10

∂F

∂y′k
= Ck.

• Если функция F не зависит явно от переменной x, уравнение имеет
интеграл энергии

−H ≡ F − 〈
y′,∇y′F

〉
=

= F −
n∑

k=1

y
′
kF ′yk

= C.

Примеры.

• Принцип Гамильтона.

Пусть состояние механической системы в момент времени t однознач-
но определяется заданием k величин q1,q2,..., qk — обобщёнными коор-
динатами системы с k степенями свободы.

Принцип наименьшего действия: на заданном интервале времени
t ∈ [t0, t1] механическая система эволюционирует вдоль экстремалей
функционала действия

S=

t1∫

t0

L (t,q (t) , q̇ (t)) dt,

где L (t,q, q̇) — лагранжиан (функция Лагранжа) системы, q̇ (t) ≡
d
dtq (t) .

Из сформулированного принципа наименьшего действия11 вытекают
следующие уравнения движения механической системы

∂ L
∂qi

− d

dt

∂ L
∂q̇i

= 0, i = 1, k

(уравнения Лагранжа — основные уравнения классической механи-
ки).

1. Движение свободной материальной точки.
Принимая во внимание изотропность и однородность простран-
ства и однородность времени, имеем здесь q ≡ r, q̇ ≡ v, L≡L

(
v2

)
.

Следовательно, уравнения Лагранжа дают

∂ L
∂vi

= const ⇒ v =
−−−→
const

— первый закон Ньютона.
10Точнее, закон сохранения соответствующей k-ой компоненты импульса.
11Основной постулат теоретической физики.
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2. Замкнутая система из N материальных точек.
Здесь q ≡{r1, r2, ..., rN}, q̇ ≡{v1,v2, ...,vN},

L=
N∑

i=1

mi |vi|2
2

−U(r1, ..., rN ) ,

где U — потенциальная энергия взаимодействия точек между
собой. Уравнения Лагранжа имеют вид

mi
dvi

dt
= −∇ri

U

— второй закон Ньютона.

• Траектории волн в неоднородной среде (приближение геометрической
оптики).

Согласно принципу Ферма \траектория волны " 12 r = r (τ) , τ ∈ [τ0, τ1]
в трёхмерной неоднородной среде доставляет минимум функционалу
времени распространения

T =
∫
dAB

ds
c(r) =

τ1∫
τ0

|ṙ(τ)|
c(r(τ)) dτ =

=
τ1∫
τ0

√
ẋ2(τ)+ẏ2(τ)+ż2(τ)

c(x(τ),y(τ),z(τ)) dτ,

где c (r) — скорость волны в точке r . Выписывая соответствующие
уравнения Эйлера для данного функционала, получаем следующие
основные уравнения геометрической оптики — лучевые уравнения





n
′
x |ṙ (τ)| − d

dτ n ẋ
|ṙ(τ)| = 0,

n
′
y |ṙ (τ)| − d

dτ n ẏ
|ṙ(τ)| = 0,

n
′
z |ṙ (τ)| − d

dτ n ż
|ṙ(τ)| = 0,

(2.8)

где n (r) ≡ c0/c (r) — показатель преломления.

1. Однородная среда n (r) ≡ n0.
В этом случае из (2.8) получаем





ẋ
|ṙ(τ)| = c̃1,

ẏ
|ṙ(τ)| = c̃2,

ż
|ṙ(τ)| = c̃3,

поэтому, решая данную систему как алгебраическую относитель-
но производных, получаем после интегрирования

ẋ = c1, ẏ = c2, ż = c3 ⇒
x (τ) = c1τ + d1, y (τ) = c2τ + d2, z (τ) = c3τ + d3

— прямая в пространстве.
12Не будем уточнять, что это такое — см. физические курсы.
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2. Стратифицированная среда n (r) ≡ n (z).
Здесь мы имеем прежде всего

{
n ẋ
|ṙ(τ)| = c̃1,

n ẏ
|ṙ(τ)| = c̃2,

поэтому величины ẋ и ẏ пропорциональны и вся траектория ле-
жит в вертикальной плоскости αx + βy + γ = 0. Без потери общ-
ности можно считать её плоскостью y = 0. Возьмём теперь в
качестве параметра τ ≡ x. Функционал времени запишется тогда
в виде

T =

x1∫

x0

n (z (x))
√

1 + (z′ (x))2 dx.

Поскольку лагранжиан данного функционала не зависит явно от
x, уравнение Эйлера имеет интеграл энергии

n
√

1 + z′2 − z′n
z
′

√
1 + z′2

= c1.

Следовательно, уравнение траектории —

n (z) = c1

√
1 + z′2, (2.9)

или — в геометрических терминах —

n (z) cos θ = c1,

где θ — угол между траекторией луча и осью x (угол скольжения
луча) — закон преломления (Снеллиуса).
В ряде случаев уравнение (2.9) удаётся проинтегрировать в эле-
ментарных функциях.
(a) Для линейного профиля c (z) ≡ az + b уравнение

(az + b)
√

1 + z′2 = c2

может быть проинтегрировано с помощью подстановки z′ =
tg t и имеет решение

{
z (t) = − b

a + c3 cos t,
x (t) = −c3 sin t + c4

— дуга окружности
(
z + b

a

)2
+ (x− c4)

2 = c2
3.

(b) В случае n2 (z) ≡ az + b уравнение

az + b = c2
1

(
1 + z

′2
)

может быть проинтегрировано методом разделения перемен-
ных и имеет интеграл

az + b = c2
1 + a2 (c2 ± c1x)2

— дуги квадратичных парабол.
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(c) При n (z) ≡ az + b уравнение

az + b = c1

√
1 + z′2

интегрируется подстановкой z′ = sh t :
{

z = c1 ch t−b
a

x = c1
a t + c2

— дуга цепной линии

z =
1
a

(
c1 ch

(
a (x− c2)

c1

)
− b

)
.

2.3 Вариационная задача на классе функций
со старшими производными (C)

Здесь множество допустимых функций описывается следующим образом

D =





y (x) : x ∈ [x0, x1] , y (·) ∈ C2k [x0, x1] ,
y (x0) = y0, y′ (x0) = y

′
0, ..., y(k−1) (x0) = y

(k−1)
0 ,

y (x1) = y1, y′ (x1) = y
′
1, ..., y(k−1) (x1) = y

(k−1)
1 ,





где x0, x1, y0, y
′
0, ..., y

(k−1)
0 , y1, y

′
1, ..., y

(k−1)
1 — заданные величины, а функци-

онал имеет вид

J (y (·)) =

x1∫

x0

F
(
x, y (x) , y′ (x) , ..., y(k) (x)

)
dx → max

D
,

где F (·, ·, ..., ·) ∈ Ck+1
(
Rk+2

)
.

2.3.1 Вывод необходимых условий экстремума в задаче
(C) вариационным методом

Пусть y∗ (·) ∈ D — решение задачи (C), η (·) ∈ C2k [x0, x1] — произвольная
функция, удовлетворяющая граничным условиям

{
η (x0) = 0, η′ (x0) = 0, ..., η(k−1) (x0) = 0 ,
η (x1) = 0, η′ (x1) = 0, ..., η(k−1) (x1) = 0.

Определим допустимую варианту экстремального элемента y∗ (·) выра-
жением

yε (x) = y∗ (x) + εη (x) , ε ∈ R.

Пусть
ϕ (ε) = J (yε (·)) =

=
x1∫
x0

F
(
x, yε (x) , y′ε (x) , ..., y

(k)
ε (x)

)
dx.
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Для первой вариации функционала тогда получаем

δJ = ϕ′ (0) =

=
x1∫
x0

(
∂F
∂y η + ∂F

∂y′ η
′ + ... + ∂F

∂y(k) η
(k)

)
dx,

где все частные производные вычислены на y∗ (·):

∂F

∂y(l)
(x) ≡ ∂F

∂y(l)

(
x, y∗ (x) , y∗′ (x) , ..., y∗(k) (x)

)
, ...

Преобразуем выражение для первой вариации. Интегрируя по частям и
учитывая граничные условия для пробной функции η (x), получаем

x1∫
x0

∂F
∂y′ η

′ dx = η ∂F
∂y′

∣∣∣
x1

x0

−
x1∫
x0

η d
dx

∂F
∂y′ dx = −

x1∫
x0

η d
dx

∂F
∂y′ dx,

x1∫
x0

∂F
∂y′′ η

′′ dx = η′ ∂F
∂y′′

∣∣∣
x1

x0

−
x1∫
x0

η′ d
dx

∂F
∂y′′ dx =

= −η d
dx

∂F
∂y′′

∣∣∣
x1

x0

+
x1∫
x0

η d2

dx2
∂F
∂y′′ dx =

x1∫
x0

η d2

dx2
∂F
∂y′′ dx,

, ...,
x1∫
x0

∂F
∂y(k) η

(k) dx = (−1)k
x1∫
x0

η dk

dxk
∂F

∂y(k) dx.

Поэтому

δJ =

x1∫

x0

(
∂F

∂y
− d

dx

∂F

∂y′
+ ... + (−1)k dk

dxk

∂F

∂y(k)

)
η dx = 0.

Применяя обобщение основной леммы вариационного исчисления (см.
замечание к ней), получаем отсюда следующее уравнение (Эйлера-) Пуас-
сона

∂F
∂y − d

dx
∂F
∂y′ + ... + (−1)k dk

dxk
∂F

∂y(k) =

=
k∑

l=0

(−1)l dl

dxl
∂F

∂y(l) = 0

— необходимое условие экстремума в задаче (С).

2.4 Вариационная задача на классе векторных
функций со старшими производными (B&C)

Если класс допустимых функций состоит из функций векторного типа:

D =





y (x) : x ∈ [x0, x1] , y (·) ∈ C2k [x0, x1] ,
y (x0) = y0, y′ (x0) = y

′
0, ..., y(k−1) (x0) = y(k−1)

0 ,

y (x1) = y1, y′ (x1) = y
′
1, ..., y(k−1) (x1) = y(k−1)

1 ,




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где y0,y
′
0, ...,y

(k−1)
0 ,y1,y

′
1, ...,y

(k−1)
1 — заданные векторы с n компонентами,

и функционал на D имеет вид

J (y (·)) =

x1∫

x0

F
(
x,y (x) ,y′ (x) , ...,y(k) (x)

)
dx → max

D
,

то необходимым условием экстремума будет являться следующая система
уравнений (Эйлера-) Пуассона

k∑

l=0

(−1)l dl

dxl

∂F

∂y
(l)
i

= 0, i = 1, n

(докажите это!).

2.5 Вариационная задача на классе функций с
двумя независимыми переменными (E)

Здесь множество допустимых функций

D =
{
z (x, y) : (x, y) ∈ Ω, z (·, ·) ∈ C2 (Ω) , z (x, y)|∂Ω = α (x, y)

}
,

где Ω — заданное подмножество R2 с гладкой границей ∂Ω, α (·, ·) — за-
данная непрерывная функция на ∂Ω. Функционал задан в виде двойного
интеграла

J (z (·, ·)) =
∫∫

Ω

F
(
x, y, z (x, y) , z′x (x, y) , z′y (x, y)

)
dxdy → max

D
,

где F (x, y, z, p, q) ∈ C2
(
R5

)
.

2.5.1 Вывод необходимых условий экстремума в задаче
(E) вариационным методом

Пусть z∗ (·, ·) — решение задачи (E), η (x, y) ∈ C2 (Ω) — произвольная (проб-
ная) функция, удовлетворяющая граничному условию η (x, y)|∂Ω = 0. Ва-
рианта zε (x, y) ≡ z∗ (x, y)+εη (x, y), ε ∈ R, очевидно, является допустимой.
Положим

ϕ (ε) =
∫∫

Ω

F
(
x, y, zε (x, y) , z′εx (x, y) , z′εy (x, y)

)
dxdy.

Для первой вариации функционала получаем

δJ = ϕ′ (0) =
=

∫∫
Ω

(
F ′zη + F ′pη

′
x + F ′qη

′
y

)
dxdy = 0. (2.10)

Применяя формулу Грина
∫

∂Ω+

(P dx + Qdy) =
∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy
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для P ≡ 0, Q ≡ F ′pη и учитывая, что на границе функция η ≡ 0, получаем
∫∫
Ω

∂
∂x

(
F ′pη

)
dxdy =

∫∫
Ω

F ′pη
′
x dxdy+

+
∫∫
Ω

η ∂
∂xF ′p dxdy =

∮

∂Ω+

F ′pη dy = 0.

Следовательно, ∫∫

Ω

F ′pη
′
x dxdy = −

∫∫

Ω

η
∂

∂x
F ′p dxdy

и, соответственно,
∫∫

Ω

F ′qη
′
y dxdy = −

∫∫

Ω

η
∂

∂y
F ′q dxdy.

После подстановки этих формул в (2.10) получаем следующее выраже-
ние для первой вариации:

δJ =
∫∫

Ω

(
F ′z −

∂

∂x
F ′p −

∂

∂y
F ′q

)
η dxdy = 0.

Используя соответствующее обобщение леммы 1, выводим отсюда необ-
ходимое условие экстремума для задачи (E) в виде краевой задачи для
уравнения (Эйлера-) Остроградского13:

{
F ′z − ∂

∂xF ′p − ∂
∂y F ′q = 0

z|∂Ω = α (x, y) .

Пример (свободные колебания натянутого отрезка упругой струны).
Пусть u (t, x) — отклонение в момент времени t точки x струны (0 ≤ x ≤ l) от

положения равновесия, u (0, t) = u (l, t) = 0. Для кинетической энергии движения и
для потенциальной энергии упругих сил имеем соответственно

E = 1
2

l∫
0

ρ(x)u′2t dx,

U = 1
2

l∫
0

k (x) u′2x dx,

где ρ(x) — плотность распределения массы струны, k(x) — параметр, характеризующий
упругие свойства струны.

Действительно, рассмотрим малый элемент струны длиной dx. Его масса dm =
ρdx, а кинетическая энергия dE = 1

2ρu′2t . В линейном приближении дополнительная
потенциальная энергия натяжения пропорциональна относительному удлинению (поче-
му не квадрату?) длины элемента:

dU = k
dl − dx

dx
= k

(√
1 + u′2x − 1

)
dx

dx
' 1

2
ku′2x .

13Заметим, что здесь ∂
∂x

- \полная частная " производная по переменной x, то есть
при дифференцировании по ней следует учесть все варианты вхождения переменной в
дифференцируемое выражение.



ГЛАВА 2. КЛАССИЧЕСКИЕ ЗАДАЧИ 23

По принципу Гамильтона уравнения движения струны представляют собой уравне-
ния Остроградского для функционала действия

S =
t1∫
t0

L dt =
t1∫
t0

(E − U) dt =

= 1
2

t1∫
t0

l∫
0

(
ρ (x) (u′t)

2 − k (x) (u′x)2
)

dxdt.

Следовательно,
∂
∂t (ρ (x) u′t) + ∂

∂x (−k (x) u′x) =
= ρ (x) ∂2u

∂t2 − ∂
∂x (k (x)u′x) = 0.

Уравнение

ρ (x) ∂2u
∂t2 = ∂

∂x

(
k (x) ∂u

∂x

)

называется волновым уравнением. Это — одно из основных уравнений математической
физики. В частном случае, когда ρ (x) = ρ0 = const, k (x) = k0 = const, оно
принимает свой простейший вид

∂2u
∂t2 = a2 ∂2u

∂x2 ,

где a2 ≡ k0
ρ0

. Общее решение последнего уравнения

u (t, x) = f (x− at) + g (x + at) ,

где f (·) , g (·) ∈ C2 (R) — произвольные функции (профили волн). Таким образом,
параметр a выступает как групповая скорость распространения волн в струне.

2.5.2 Обобщения задачи (E)
• Случай векторных функции и аргумента z (x).

В этом случае необходимые условия экстремума имеют форму систе-
мы уравнений (Эйлера-) Остроградского:

F ′zj
−

n∑

i=1

∂

∂xi
F ′∂zj

∂xi

= 0, j = 1,m.

• Случай функционала со старшими частными производными.

Пусть, например, функционал имеет вид
∫∫

Ω

F
(
x, y, z, z′x, z′y, z′′xx, z′′xy, z′′yy

)
dxdy.

Тогда необходимые условия экстремума можно получить в виде сле-
дующего уравнения Эйлера-Пуассона-Остроградского

F ′z − ∂
∂xF ′z′x −

∂
∂y F ′z′y + ∂2

∂x2 F ′z′′xx
+

+ ∂2

∂x∂y F ′z′′xy
+ ∂2

∂y2 F ′z′′yy
= 0.

Аналогично выводятся необходимые условия экстремума и для более
общих задач подобных типов.
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2.6 Изопериметрическая задача (F)
В своей простейшей постановке изопериметрическая14 задача имеет вид

J (y (·)) =

x1∫

x0

F (x, y (x) , y′ (x)) dx → max
D

,

где

D =





y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] , y (x0) = y0, y (x1) = y1,

g (y (·)) ≡
x1∫
x0

G (x, y (x) , y′ (x)) dx = l = const,





F (·, ·, ·) , G (·, ·, ·) ∈ C3
(
R3

)
— заданные функции.

Пример (задача Дидоны): найти кривую заданной длины, окружаю-
щую область максимальной площади — в простейшей постановке





x1∫
x0

ydx → max,

y (x0) = y0, y (x1) = y1,
x1∫
x0

√
1 + y′2dx = l.

Согласно легенде, Дидоне (825 г. до н.э.) — спасающейся от преследований
со стороны своего брата финикийской царевне — было предложено взять
себе столько земли на североафриканском побережье, сколько она сможет
\окружить " бычьей шкурой. Находчивая царевна разрезала шкуру на ре-
мешки и оградила полученным шнуром значительную часть побережья, где
и основала крепость Карфаген.

Сделаем грубую оценку возможностей Дидоны. Из геометрии нам известно
т.н. изопериметрическое неравенство : для любой плоской замкнутой кри-
вой

S ≤ L2

4π
,

где L — периметр кривой, S — площадь внутренней области. Отметим, что
знак равенства достигается для окружности. Если площадь шкуры ∼2 м2,
ширина шнура ∼2мм, то его длина ∼ 2

2·10−3 '103м. Отсюда в силу изо-

периметрического неравенства S ≤ 106

4π м2 ∼105м2 =10 га, что вполне
сопоставимо с размерами Карфагена.

2.6.1 Вывод необходимых условий экстремума в изопе-
риметрической задаче (F)

Пусть y∗ (·) ∈ D — решение задачи, η (·) ≡ {η1 (·) , η2 (·)} ∈ C2 [x0, x1] —
произвольная (пробная) функция, удовлетворяющая граничным условиям
η (x0) = η (x1) = 0. Положим15

yε (x) ≡ y∗ (x) + 〈ε, η (x)〉 ≡
≡ y∗ (x) + ε1η1 (x) + ε2η2 (x) .

14От слова \периметр " .
15Угловыми скобками обозначено скалярное произведение векторов.
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При произвольном векторе ε ∈ R2 функция yε (x) не принадлежит множе-
ству допустимых функций D, так как она не удовлетворяет, вообще говоря,
изопериметрическому условию g (y (·)) = l = const . Пусть

E ≡ {ε = (ε1, ε2) : ψ (ε1, ε2) = l} ,

где

ψ (ε1, ε2) ≡
x1∫

x0

G (x, yε (x) , y′ε (x)) dx.

Для функции

ϕ (ε1, ε2) ≡
x1∫

x0

F (x, yε (x) , y′ε (x)) dx

рассмотрим следующую задачу математического программирования

{
ϕ (ε1, ε2) → max

E

}
⇔

{
ϕ (ε1, ε2) → max

ψ (ε1, ε2) = l

}
. (2.11)

Если y∗ (·) — решение задачи (F), то вектор (0, 0) является решением задачи
(2.11) (докажите!). Поэтому по правилу Лагранжа (см. раздел 1.1.2) для
функции

L (ε1, ε2, λ0, λ1) ≡ λ0ϕ (ε1, ε2) + λ1 (ψ (ε1, ε2)− l) ,

где (λ0)
2 + (λ1)

2
> 0, имеем в точке (0, 0)

{ ∂L
∂ε1

= ∂L
∂ε2

= 0,
∂L
∂λ1

= ψ (0, 0)− l = 0.

Но

∂L
∂ε1,2

=
x1∫
x2

[
λ0

(
F ′y − d

dxF ′y′
)

+ λ1

(
G′y − d

dxG′y′
)]

η1,2 (x) dx =

=
x1∫
x2

(
L′y − d

dxL′y′
)
η1,2 (x) dx = 0,

где
L (x, y, y′) ≡ λ0F (x, y, y′) + λ1G (x, y, y′)

— функция Лагранжа для изопериметрической задачи (F).
Применяя основную лемму вариационого исчисления, получаем необхо-

димые условия экстремума в следующей форме





L′y − d
dxL′y′ = 0,

y (x0) = y0, y (x1) = y1,
x1∫
x0

G (x, y (x) , y′ (x)) dx = l,

(λ0)
2 + (λ1)

2
> 0.

(2.12)
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Замечания

• Общее решение уравнения Лагранжа L′y − d
dxL′y′ = 0 второго порядка

имеет вид y = Φ (x,C1, C2) . Для определения четырёх неизвестных
постоянных C1, C2, λ0, λ1 имеем четыре условия: два граничных, изо-
периметрическое и условие нетривиальности вектора (λ0, λ1) . Следо-
вательно, набор (2.12) является полным.

• Так как вектор (λ0, λ1) определяется с точностью до произвольного
множителя, то можно ограничиться рассмотрением следующих двух
случаев:

1. вырожденный случай λ0 = 0, λ1 = 1; здесь L ≡ G, поэтому воз-
можные решения краевой задачи являются экстремалями функ-
ционала g (y (·)) и не зависят от функционала J (y (·)); подобные
решения вариационной задачи возникают обычно в тех случаях,
когда множество допустимых элементов вырождено (содержит
\мало " элементов);

2. невырожденный случай λ0 = 1, λ1 = λ =?.

• Вследствие симметрии лагранжиана L по отношению к функциям F
и G, экстремали одинаковы в следующих двух задачах

{
J (y (·)) → max,

g (y (·)) = l

} {
g (y (·)) → max,

J (y (·)) = l1

}
.

Подобные задачи называются двойственными по отношению друг к
другу. Например, двойственными являются задача о поиске кривой
заданной длины, ограничивающей фигуру максимальной площади, и
задача определения фигуры заданной площади с минимальной длиной
границы (в обоих случаях искомая кривая — окружность).

Пример (решение задачи Дидоны) .
Для лагранжиана

L = λ0y + λ1

√
1 + (y′)2

уравнение Лагранжа имеет интеграл энергии

L− y′L′y′ = λ0y − λ1√
1 + (y′)2

= C1.

Рассмотрим возможные варианты:

1. λ0 = 0, λ1 = 1

y′ = C ⇒ y = y0 + (y1 − y0)
(

x−x0
x1−x0

)
⇒

l =
√

(x− x0)
2 + (y1 − y0)

2;

Заметим, что в данном случае множество допустимых элементов со-
стоит из одной единственной линейной функции, что связано со слиш-
ком жёстким изопериметрическим условием. На этой единственной
функции, естественно, и реализуется экстремум.
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2. λ0 = 1, λ1 = λ

y = C1 − λ√
1 + (y′)2

.

С помощью подстановки y′ = tg t находим решение в параметрической
форме {

y = C1 − λ cos t
x = C2 + λ sin t

,

или — в неявной форме —

(x− C2)
2 + (y − C1)

2 = λ2

— уравнение дуги окружности. Константы C1, C2, λ могут быть опре-
делены из граничных и изопериметрического условий. Заметим, что
последнее может быть выполнено лишь при условии l ∈ (lmin, lmax] ,
где постоянные lmin, lmax определяются из граничных условий (lmin =√

(x1 − x0)
2 + (y1 − y0)

2; lmax найдите самостоятельно). Следователь-
но, для l 6∈ [lmin, lmax] задача Дидоны решения не имеет16.

2.6.2 Обобщения задачи (F)

Пусть допустимые функции y (·) в функционале

J (y (·)) =

x1∫

x0

F (x,y (x) ,y′ (x)) dx → max
D

,

являются векторными, и имеется конечный набор изопериметрических усло-
вий:

D =





y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] , y (x0) = y0, y (x1) = y1,

gi (y (·)) ≡
x1∫
x0

Gi (x,y (x) ,y′ (x)) dx = li, i = 1, m.





Тогда необходимое условие экстремума в данной задаче будет иметь вид
системы





∇yL− d
dx∇y′L = 0,

y (x0) = y0, y (x1) = y1,
x1∫
x0

G (x,y (x) ,y′ (x)) dx = l,

(λ0)
2 + (λ1)

2 + ... + (λm)2 > 0.

где функция Лагранжа L ≡ λ0F + 〈λ,G〉 ≡ λ0F +
m∑

i=1

λiGi.

16Для того чтобы задача Дидоны имела решение при любом l ≥ lmin следует перей-
ти к параметрическому описанию функции. И в этом случае её решениями будут дуги
окружностей.
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Отсюда, переходя от скалярной функции к векторной (повышая размер-
ность функции), можно также получить необходимое условие в изоперимет-
рической задаче со старшими производными: следует для соответствующей
функции Лагранжа выписать уравнение Лагранжа-Пуассона

L′y −
d

dx
L′y′ +

d2

dx2
L′y′′ − . . . = 0.

2.7 Задача Лагранжа (G)
В данной задаче функционал

J (y (·)) =

x1∫

x0

F (x,y (x) ,y′ (x)) dx → max
D

,

а множество допустимых элементов

D =
{

y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] , y (x0) = y0,y (x1) = y1,

ϕ (x,y (x) ,y′ (x)) = 0 ∀x ∈ [x0, x1]

}
,

F (·, ·, ·) ∈ C2
(
R2n+1

)
, ϕ (·, ·, ·) ∈ C2

(
R2n+1

)
.

Ограничение
ϕ (x,y (x) ,y′ (x)) = 0 ∀x ∈ [x0, x1]

называется фазовым (дифференциальной связью). В механике фазовое огра-
ничение называется голономным, если функция ϕ (x,y,y′) не зависит от
y′, и неголономным во всех других случаях.

Теорема. Пусть y∗ (·) — решение задачи (G). Тогда существуют посто-
янная λ0 и вектор-функция λ (·) ∈ C1 [x0, x1], не равные одновременнно
нулю ( |λ0| + max

x∈[x0,x1]
|λ (x)| > 0), такие, что функция y∗ (x) удовлетворяет

уравнению Лагранжа

∇yL− d

dx
∇y′L = 0, (2.13)

где

L (x,y,y′) ≡ λ0F (x,y,y′) + 〈λ (x) , ϕ (x,y,y′)〉 =

= λ0F (x,y,y′) +
m∑

k=1

λk (x) ϕk (x,y,y′)

— лагранжиан задачи.
(без доказательства).
Пример(геодезические линии на поверхности).
Пусть

ϕ (x, y, z) = 0

— уравнение регулярной (∇ϕ 6= 0 во всех точках) поверхности в R3. Рас-
смотрим задачу определения кривой минимальной длины, лежащей на этой
поверхности и соединяющей две её заданные точки:





J (r (·)) =
t1∫
t0

|ṙ (t)| dt → min,

r (t0) = r0, r (t1) = r1,
ϕ (r (t)) = 0 ∀t ∈ [t0, t1] .
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Это типичная задача Лагранжа (с голономным ограничением). Соответ-
ствующий лагранжиан

L = λ0 |ṙ (t)|+ λ1 (t)ϕ (r (t)) =
= λ0

√
ẋ2 + ẏ2 + ż2 + λ1 (t) ϕ (x (t) , y (t) , z (t)) ,

где r (t) ≡ x (t) i+y (t) j+z (t)k — радиус-вектор кривой. Уравнение Лагран-
жа имеет вид

∇rL− d
dt∇ṙL =

= λ1 (t)∇ϕ− λ0
d
dt

ṙ(t)
|ṙ(t)| = 0.

Вырожденный случай λ0 = 0 здесь невозможен вследствие условия ре-
гулярности поверхности. Поэтому λ0 = 1. Переходя к натуральному пара-
метру кривой t = s, где s — длина кривой от начальной точки до текущей,
для которого |ṙ (t)| ≡ 1, получаем уравнение геодезических линий

r̈ (t) = λ1 (t)∇ϕ. (2.14)

Рассмотрим в качестве примера сферическую поверхность

ϕ (r (t)) = |r (t)|2 −R2 = x2 + y2 + z2 −R2 = 0.

Здесь ∇ϕ ≡ 2r, поэтому дифференцируя по t, получим

〈r (t) , r (t)〉 ≡ R2 ⇒ 〈ṙ (t) , r (t)〉 ≡ 0 ⇒
〈r̈ (t) , r (t)〉+ 〈ṙ (t) , ṙ (t)〉 ≡ 0 ⇒

1 + λ1 (t) 〈∇ϕ, r (t)〉 = 1 + λ1 (t) 2R2 = 0 ⇒
λ1 (t) ≡ − 1

2R2 .

Уравнение (2.14) тогда принимает вид

r̈ (t) +
1

R2
r (t) = 0.

Любое его решение, удовлетворяющее условию |r (t)| ≡ R, имеет вид

r (t) = R

(
e1 cos

t

R
+ e2 sin

t

R

)
,

где e1, e2 — произвольные взаимно ортогональные единичные векторы. Все
такие кривые являются окружностями большого диаметра на сфере. Сле-
довательно, геодезическими линиями на сфере являются дуги окружностей
большого диаметра17. Для любых двух точек сферы (исключение состав-
ляют диаметрально противоположные точки) существуют две такие дуги.
Меньшая из них и является кривой минимальной длины, соединяющей эти
точки. Для диаметрально противоположных точек геодезическими линия-
ми являются все дуги большого диаметра, проходящие через них.

17Следовательно, меридианы являются кратчайшими путями между лежащими на них
городами, а параллели нет.
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2.8 Задача Лагранжа в понтрягинской форме

Данную задачу следует рассматривать как специальную форму общей зада-
чи Лагранжа. Здесь независимой скалярной переменной служит t (время),
а компонентами вектор-функции y являются x1, x2, ..., xn,u1,u2, ..., um. Рас-
смотрим функционал

J (y (·)) ≡ J (x (·) ,u (·)) =

t1∫

t0

F (t,x (t) ,u (t)) dt → max
D

, (2.15)

где множество допустимых пар (x (·) ,u (·)) имеет вид

D =





(x (t) ,u (t)) : t ∈ [t0, t1] , x (·) ∈ C1 [t0, t1] , u (·) ∈ C [t0, t1] ,
x (t0) = x0, x (t1) = x1,

ẋ (t) = f (t,x (t) ,u (t)) ∀t ∈ [t0, t1] .





Компоненты x1, x2, ..., xn интерпретируются здесь как фазовые коорди-
наты управляемого объекта (т.е. параметры, определяющие его состояние),
u1,u2, ..., um — как управляющие параметры (т.е. параметры, значения кото-
рых мы можем выбирать непосредственнно с целью управления объектом),
x (·) — кактраектория управляемого объекта в фазовом пространстве, u (·)
— как управляющая функция (управление).

Уравнение
ẋ (t) = f (t,x (t) ,u (t)) , (2.16)

являющееся дифференциальной связью в данной вариационной задаче, на-
зывается уравнением движения18 управляемого объекта. Заметим, что вы-
брав управление u (·) и граничные состояния x0,x1 мы однозначно опреде-
ляем траекторию x (·) в силу уравнения (2.16), поэтому функционал J (y (·))
в действительности зависит только от управления u (·).

Запишем необходимые условия экстремума для задачи Лагранжа (2.15).
Соответствующая функция Лагранжа

L (t,x, ẋ,u) = λ0F (t,x,u) + 〈λ (t) ,−ẋ + f (t,x,u)〉 ,

поэтому мы получаем из (2.13) следующий набор необходимых условий экс-
тремума 




ẋ (t) = f (t,x (t) ,u (t)) ,
∇xL− d

dt∇ẋL = 0,
∇uL = 0,

или — в покоординатной форме —





ẋi = fi (t,x (t) ,u (t)) , i = 1, n,

λ̇k (t) = −
n∑

i=1

λi
∂fi

∂xk
− λ0

∂F
∂xk

, k = 1, n,

n∑
i=1

λi
∂fi

∂ul
+ λ0

∂F
∂ul

= 0, l = 1,m.

18Опять же в фазовом пространстве его состояний. Не путать с движением объекта в
физическом пространстве!
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С помощью функции Понтрягина

H (t,x, λ,u) ≡ λ0F (t,x,u) + 〈λ, f (t,x,u)〉

данные уравнения можно записать в более компактной и симметричной
форме 




ẋ (t) = ∇λH,

λ̇ (t) = −∇xH,
∇uH = 0.

Пример (Задача о мягкой посадке реактивного аппарата).
Пусть m — масса космического корабля (материальной точки), h — его

высота над поверхностью планеты, v — вертикальная скорость. Задача за-
ключается в посадке корабля на поверхность планеты h = 0 в течение за-
данного промежутка времени [0, t1] с нулевой скоростью v = 0 (мягкая по-
садка) и с минимальным расходом топлива (т.е. с максимальной конечной
массой m).

Для указанных фазовых координат системы имеем следующую систему
уравнений движения





d
dth = v,
d
dtm = −ku,
d
dt (mv) = −mg + u,
h (0) = h0, h (t1) = 0,
v (0) = v0, v (t1) = 0,
m (0) = m0,

где k — параметр реактивного двигателя. Функционал, подлежащий мини-
мизации, запишем в интегральной форме

J (u (·)) = m (t1) =
t1∫
0

ṁdt + m0 =

=
t1∫
0

(−ku) dt + m0.

Функция Понтрягина для этой задачи имеет вид

H = λ0ku + λ1v + λ2 (−ku) + λ3

(
−g +

u

m
(1 + kv)

)
,

а необходимые условия экстремума —




λ̇1 = −∂H
∂h = 0,

λ̇2 = −∂H
∂m = λ3

u
m2 (1 + kv)

λ̇3 = −∂H
∂v = −λ1 − k u

mλ3,

ḣ = ∂H
∂λ1

= v,

ṁ = ∂H
∂λ2

= −ku,

v̇ = ∂H
∂λ3

= −g + u
m (1 + kv) ,

h (0) = h0, h (t1) = 0,
v (0) = v0, v (t1) = 0,
m (0) = m0,
|λ0|+ max

t∈[0,t1]
|λ (t)| > 0.
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Элементарные соображения подсказывают, что данная система не должна иметь ре-
шения. В самом деле, легко придумать последовательность стратегий, осуществляющих
мягкую посадку и требующих для этого всё меньше и меньше топлива. Эти стратегии
заключаются в свободном падении ракеты до некоторой предельной высоты и последу-
ющем включении торможения. Так как сила торможения ничем не ограничивается, то и
предельная высота может быть сколь угодно малой. Соответствующий расход топлива,
как нетрудно подсчитать, может быть сколь угодно близок к некоторому предельно ма-
лому расходу, который получится при мгновенном включении бесконечной тормозящей
силы в момент касания поверхности планеты. Это означает, что оптимальное управле-
ние здесь реализуется лишь в классе обобщённых функций — δ-образное управление, а
в классе обычных функций оптимального управления нет.

Причина этого заключается в неаккуратной постановке задачи. Для того чтобы реше-
ние достигалось в классе обычных управлений следует ввести ограничения на величину
тяги u: |u| ≤ umax. Однако, в этом случае соответствующая вариационная задача уже
не принадлежит классу задач Лагранжа и не может быть решена предлагаемыми выше
методами.



Глава 3

Неклассические
вариационные задачи

3.1 Задача Понтрягина – оптимального управ-
ления (H)

Данную задачу можно рассматривать как непосредственное обобщение преды-
дущей задачи Лагранжа в понтрягинской форме:

J = J (u (·)) =

t1∫

t0

F (t,x (t) ,u (t)) dt → max
D

,

где1

D =





(x (t) ,u (t)) : t ∈ [t0, t1] , x (·) ∈ KC1 [t0, t1] , u (·) ∈ KC [t0, t1] ,
x (t0) = x0, x (t1) = x1,

ẋ (t) = f (t,x (t) ,u (t)) ∀t ∈ Tu,
u (t) ∈ U ∀t ∈ [t0, t1] .





Дополнительным по сравнению с задачей Лагранжа здесь является по-
следнее условие2 принадлежности значений управляющей функции задан-
ному множеству U⊂ Rm . Заметим, что в случае открытого множества U
это условие не является существенным с точки зрения вывода необходимых
условий экстремума, и сами эти необходимые условия имеют в точности тот
же вид, что и в задаче Лагранжа в понтрягинской форме.

Однако, если это множество не является открытым, то возникают про-
блемы уже при попытке построения допустимой варианты экстремальной
функции u∗ (·). В самом деле, классическая конструкция типа

uε (t) = u∗ (t) + εδu (t)

1KC1 [t0, t1] — множество кусочно-гладких на отрезке функций, KC [t0, t1] — множе-
ство кусочно-непрерывных функций; Tu — множество точек непрерывности управления
u (·).

2Подобное ограничение можно условно назвать понтрягинским.

33
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здесь уже непригодна, так как, вообще говоря, uε (t) 6∈ U . Поэтому для
исследования подобных задач приходится применять более сложные кон-
струкции допустимых вариант. Примером такой конструкции является им-
пульсная вариация

uε (t) =
{

u∗ (t) , t ∈ [t0, t1] \∆ε

v, t ∈ ∆ε
,

где ∆ε ≡ (τ, τ + ε), v — заданный (произвольный!) элемент множества U , τ
— заданная (произвольная!) точка интервала [t0, t1].

Случай не открытого (в особенности, замкнутого) множества U , как
оказалось, весьма часто встречается в практических задачах оптимально-
го управления, что связано с естественными требованиями ограниченности
возможностей технических устройств. Например, как уже было отмечено
выше, в рассмотренной задаче о мягкой посадке следует ограничить силу
тяги реактивного двигателя, что приводит к ограничению u ∈ [−umax, umax]
указанного типа. Данная задача при этом становится не только более есте-
ственно поставленной, но и приобретает решение — оптимальную стратегию
посадки.

Вариационные задачи подобного неклассического типа стали предме-
том активного изучения в 50-е годы в связи с развитием ракетной техники.
Особенно больших успехов в их изучении добилась группа советских мате-
матиков во главе с Л.С.Понтрягиным[7].

Теорема (принцип максимума3 Л.С.Понтрягина, 1958 г.)
Если (x∗ (·) ,u∗ (·)) — решение задачи (H), то существуют число λ0 и

сопряжённая функция λ (t) ≡ {λ1 (t) , λ2 (t) , ..., λn (t)}, не равные одновре-
менно нулю ( |λ0|+ maxt∈[t0,t1] ‖λ (t)‖ > 0) такие, что





ẋ∗ (t) = ∇λH (t,x∗ (t) , λ (t) ,u∗ (t)) , t ∈ [t0, t1] ,
λ̇ (t) = −∇xH (t,x∗ (t) , λ (t) ,u∗ (t)) , t ∈ [t0, t1] ,
H (t,x∗ (t) , λ (t) ,u∗ (t)) = max

u∈U
H (t,x∗ (t) , λ (t) ,u) ∀t ∈ Tu,

где

H (t,x, λ,u) ≡ λ0F (t,x,u) + 〈λ, f (t,x,u)〉
— функция Понтрягина.

Замечания.

1. В случае открытого множества U из условия принципа максимума
вытекает условие стационарности функции Потрягина по u в точке
u∗ (t):

∇uH (t,x∗ (t) , λ (t) ,u∗ (t)) = 0.

Следовательно, данные необходимые условия экстремума являются
более общими, чем необходимые условия из предыдущего раздела для
задачи Лагранжа в понтрягинской форме.

3В своём простейшем варианте. Общий случай см. в книге [7].
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2. Уравнения для множителей Лагранжа — сопряжённых функций λ (t)
—

λ̇ (t) = −∇xH

называются в теории оптимального управления сопряжёнными урав-
нениями, а условие

H (t,x∗ (t) , λ (t) ,u∗ (t)) = max
u∈U

H (t,x∗ (t) , λ (t) ,u)

называется принципом максимума Понтрягина.

Пример 1 (задача быстродействия).
Рассмотрим задачу о скорейшем переводе управляемой материальной

точки в начало координат с нулевой конечной скоростью при условии, что
сила, с которой можно воздействовать на точку, ограничена по модулю за-
данной величиной (см. рисунок).

Математическая постановка задачи такова:




ẍ (t) = u (t) , 0 ≤ t ≤ t1,
x (0) = x0, ẋ (0) = ẋ0,
x (t1) = 0, ẋ (t1) = 0,
|u (t)| ≤ 1,

(−t1) =

t1∫

0

(−1) dt → max .

Заметим, что интервал управления в данной задаче не фиксирован, как
это было во всех ранее рассматриваемых вариационных задачах. Тем не ме-
нее, принцип максимума справедлив и в этом случае. При этом можно до-
полнительно доказать нетривиальность не только полного набора множите-
лей Лагранжа, но и нетривиальность входящего в него набора сопряжённых
функций λ (t).

Для того чтобы применить к данной задаче принцип максимума, запи-
шем её в канонической форме. Введём фазовые координаты x1 ≡ x, x2 ≡ ẋ.
Тогда, используя функцию Понтрягина H (t,x, λ,u) = −λ0 + λ1x2 + λ2u,
получаем 




ẋ1 = ∂H
∂λ1

= x2,

ẋ2 = ∂H
∂λ2

= u,

λ̇1 = − ∂H
∂x1

= 0,

λ̇2 = − ∂H
∂x2

= −λ1,

x1 (0) = x0, x2 (0) = ẋ0,
x1 (t1) = 0, x2 (t1) = 0,

λ2 (t)u (t) = max
|u|≤1

λ2 (t)u.

Решением системы сопряжённых уравнений являются функции

λ1 (t) = C1, λ2 (t) = −C1t + C2,

где C1,2 — произвольные постоянные (не равные одновременно нулю — для
нетривиальности набора сопряжённых функций). Отсюда видно, что функ-
ция λ2 (t) может изменить свой знак на интервале управления не более
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одного раза. Далее, из принципа максимума получаем для оптимального
управления

u∗ (t) = sign λ2 (t) ,

следовательно, оно может принимать только свои граничные значения ±1
(релейно) и меняет их не более одного раза (число точек переключения
управления не более одной).

Найдём движения в фазовой плоскости, которые совершает система под
воздействием постоянного управления u∗ (t) ≡ 1:

{
ẋ1 = x2,
ẋ2 = 1.

Исключив t, получим dx1/dx2 = x2, или x1 = 1
2x2

2 +C — семейство парабол,
получающихся из параболы x1 = 1

2x2
2 параллельным переносом вдоль оси

x1. Сама эта парабола, точнее её ветвь, расположенная в нижней полуплос-
кости, играет особую роль в задаче: двигаясь по ней система может попасть
в начало координат, где реализуется цель управления.

Аналогично находятся движения под постоянным управлением u∗ (t) ≡
−1: {

ẋ1 = x2,
ẋ2 = −1.

Ими являются куски парабол x1 = − 1
2x2

2 + C. Двигаясь по верхней ветви
параболы, x1 = − 1

2x2
2 можно также реализовать цель управления. Эта ветвь

вместе с упомянутой выше ветвью параболы x1 = 1
2x2

2 образует т.н. линию
переключения оптимального управления.

Укажем для произвольного начального состояния x0, ẋ0 оптимальное
управление. В случае, когда соответствующая точка на фазовой плоскости
находится выше линии переключения или на её верхней ветви (область G1)
следует \включить " управление u = −1, иначе (в области G2) - u = 1.

Оптимальное движение в фазовой плоскости для начальной точки, рас-
положенной в области G1 происходит сперва по проходящей через эту точку
параболе семейства u = −1 до момента пересечения данной параболой ли-
нии переключения, а далее по линии переключения до начала координат.
Аналогично (с соответствующей заменой семейства парабол) выглядит оп-
тимальное движение для начальных точек расположенных в области G2.
Если же начальная точка уже находится на одной из ветвей линии пере-
ключения, то переключений делать не нужно.

Нетрудно проверить, что это — единственный способ осуществить цель
управления, удовлетворив всем необходимым условиям оптимальности. С
другой стороны, можно доказать существование оптимального управления
в данной задаче. Следовательно, задача полностью решена (см. рис.3.1).

Вводя функцию фазовых координат

ψ (x1, x2) ≡
{ −1, (x1, x2) ∈ G1

1, (x1, x2) ∈ G2

(синтезирующую функцию) можно осуществить автоматическое устрой-
ство, которое оптимально в указанном смысле управляет системой в любой
момент времени — синтез оптимальной системы:



ГЛАВА 3. НЕКЛАССИЧЕСКИЕ ЗАДАЧИ 37

{
ẋ1 = x2,
ẋ2 = ψ (x1, x2) .

В исходных координатах оптимально функционирующая система запи-
сывается в виде

ẍ = ψ (x, ẋ) .

Пример 2 (задача быстродействия для управляемой точки в среде с
вязким сопротивлением).

Данная задача отличается от предыдущей уравнением движения управ-
ляемого объекта:





ẍ (t) = −βẋ + u (t) , 0 ≤ t ≤ t1,
x (0) = x0, ẋ (0) = ẋ0,
x (t1) = 0, ẋ (t1) = 0,
|u (t)| ≤ 1,

t1 =

t1∫

0

dt → min .

Вводя фазовые координаты x1 ≡ x, x2 ≡ ẋ и используя функцию Понт-
рягина H (t,x, λ,u) = −λ0 + λ1x2 + λ2 (u− βx2), получаем набор условий
для определения оптимальной траектории:





ẋ1 = ∂H
∂λ1

= x2,

ẋ2 = ∂H
∂λ2

= −βx2 + u,

λ̇1 = − ∂H
∂x1

= 0,

λ̇2 = − ∂H
∂x2

= −λ1 + βλ2,

x1 (0) = x0, x2 (0) = ẋ0,
x1 (t1) = 0, x2 (t1) = 0,

λ2 (t)u (t) = max
|u|≤1

λ2 (t)u.

Решения сопряжённых уравнений имеют здесь вид

λ1 (t) = C,
λ2 (t) = C1e

βt + C
β .

При любом нетривиальном наборе констант C,C1 функция λ2 (t) на лю-
бом конечном отрезке времени принимает не более одного нулевого значе-
ния. Действительно, при C1 6= 0 она монотонна, а при C1 = 0 постоянна и
отлична от нуля. Поэтому оптимальное управление

u∗ (t) = sign λ2 (t) =
= sign

(
C1e

βt − C
β

)

принимает лишь значения ±1 (релейно) и имеет не более одной точки пе-
реключения на интервале управления.

Найдём движения, которые совершает система при постоянных значе-
ниях управляющей функции u∗ (t) = ±1.

При u∗ (t) ≡ 1 уравнения движения в фазовой плоскости имеют вид
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{
ẋ1 = x2,
ẋ2 = 1− βx2.

Помимо решения {
x1 = t

β + x0

x2 (t) = 1
β = ẋ0,

(соответствующая интегральная кривая — луч на горизонтальной прямой
x2 = 1

β в фазовой плоскости), эта система имеет ещё семейство интеграль-
ных кривых

x1 = − 1
β

[
x2 +

1
β

ln |1− βx2|
]

+ C.

Аналогично выглядят движения в фазовой плоскости, происходящие
под управлением u∗ (t) ≡ −1:

x2 = − 1
β

и

x1 = − 1
β

[
x2 − 1

β
ln |1 + βx2|

]
+ C.

Синтез оптимальных траекторий осуществлён на следующем рис.3.2.
Уравнение линии переключений

x1 = − 1
β

{
x2 + 1

β ln (1− βx2) , x2 < 0
x2 − 1

β ln (1 + βx2) , x2 > 0.

Пример 3 (решение задачи о мягкой посадке ракеты).
Вернёмся к рассмотренной в предыдущем разделе задаче о мягкой по-

садке космического аппарата на поверхность планеты




ḣ = v,
ṁ = −ku,
v̇ = −g + m−1u,
0 ≤ t ≤ 1

,

m (0) = m0, h (0) = h0, v (0) = v0,
h (1) = 0, v (1) = 0,

−m (1) =

1∫

0

ku dt−m0 → max,

накладывая естественные дополнительные ограничения на величину тяги4:
0 ≤ u ≤ u0.

Составив функцию Понтрягина

H = λ0ku + λ1v − λ2ku + λ3

(
um−1 − g

)
,

4А также (для упрощения задачи) пренебрегая в третьем уравнении изменением мас-
сы.
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Рис. 3.1: Оптимальные траектории в задаче о скорейшей остановке матери-
альной точки
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¾

u = −1

u = 1
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x2

-

6
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¾
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u = 1

x1

x2

-
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Рис. 3.2: Оптимальные траектории в случае вязкой среды
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получаем сопряжённые уравнения




λ̇1 = −∂H
∂h = 0,

λ̇2 = −∂H
∂m = λ3um−2,

λ̇3 = −∂H
∂v = −λ1.

Отсюда
λ1 (t) = −C1,

λ̇2 = (C1t + C3)u (t)m−1 (t) ,
λ3 (t) = C1t + C3.

Далее, из принципа максимума

(λ0ku− λ2ku + λ3u/m) → max
0≤u≤u0

получаем

u (t) =
{

0, ψ (t) < 0
u0, ψ (t) > 0 ,

где ψ (t) ≡ λ0k (1− λ2 (t)) + λ3 (t) /m (t).
Найдём движения управляемой системы, происходящие при постоянном

управлении u (t) = 0, 0 ≤ t ≤ τ . Имеем в этом случае следующие уравнения
движения системы 




ḣ = v,
ṁ = 0,
v̇ = −g,

откуда получаем для 0 ≤ t ≤ τ




m (t) = m0,
v (t) = −gt + v0,
h (t) = h0 + v0t− gt2/2.

Движения ракеты при u (t) ≡ u0, t ≥ τ описываются уравнениями




ḣ = v,
ṁ = −ku0,
v̇ = −g + m−1u0,

решения которых




m (t) = m (τ)− ku0 (t− τ) ,

v (t) = v (τ)− g (t− τ)− ln
(m(τ)−ku0(t−τ))

m(τ)

k ,

h (t) =
(
v (τ) + ln m(τ)

k

)
(t− τ)− g (t− τ)2 /2 + h (τ) + m(τ) ln m(τ)/e

k2u0
+

+ (m(τ)−ku0(t−τ))−(m(τ)−ku0(t−τ)) ln(m(τ)−ku0(t−τ))
k2u0

.

Исключая время

t− τ =
m (τ)−m

ku0
,

получим уравнение траектории в фазовой плоскости переменных (h, v) в
параметрической форме:





v = v (τ)− g(m(τ)−m)
ku0

− ln m
m(τ)

k ,

h =
(
v (τ) + ln m(τ)

k

)(
m(τ)−m

ku0

)
− g

2

(
m(τ)−m

ku0

)2

+ h (τ)+

+m(τ) ln m(τ)/e−m ln m/e
k2u0

, m ≤ m (τ)
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Из условия h (1) = v (1) = 0, m (1) ≥ 0 определяем те моменты переклю-
чения τ , при которых мягкая посадка возможна при максимальном тормо-
жении u0





v (τ) + ln m(τ)
k − g (1− τ)− ln(m(τ)−ku0(1−τ))

k = 0,(
v (τ) + ln m(τ)

k

)
(1− τ)− g (1− τ)2 /2 + h (τ) + m(τ) ln m(τ)/e

k2u0
+

+ (m(τ)−ku0(1−τ))−(m(τ)−ku0(1−τ)) ln(m(τ)−ku0(1−τ))
k2u0

= 0.
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Глава 4

Вариационные задачи со
свободными границами

В этом разделе мы вновь рассматриваем классические вариационные зада-
чи, однако, теперь уже не предполагаем, что допустимые функции опреде-
лены на фиксированных отрезках, а допускаем возможность варьирования
их областей определения. В этом случае значения функционала могут и
непосредственно зависеть от значений функции на границах области опре-
деления. Следовательно, мы приходим к следующему естественному обоб-
щению классического интегрального функционала

J (y (·)) =

x1∫

x0

F
(
x, y (x) , y

′
(x)

)
dx + f (x0, y (x0) , x1, y (x1)) → max

D

(функционал Больца). Здесь F (·, ·, ·) ∈ C3
(
R3

)
, f (·, ·, ·, ·) ∈ C3

(
R4

)
.

Рассмотрим несколько вариантов задач со свободными границами для
различных множеств допустимых функций D.

4.1 Задача (I1)
В данной задаче множество допустимых функций состоит из элементов сле-
дующего вида

D =
{
y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] , y (x0) = y0

}
,

где x0, x1, y0 — заданные числа. Значение функций в точке x1 никак не
ограничивается, что соответствует множеству кривых, изображённых на
рисунке 4.1

Для получения необходимых условий экстремума построим допусти-
мую варианту экстремального элемента y∗ (·). Пусть η (·) — произвольная
функция класса C2 [x0, x1], удовлетворяющая условию η (x0) = 0. Положим
yε (x) = y∗ (x) + εη (x), x ∈ [x0, x1] , ε ∈ R. Пусть

ϕ (ε) ≡ J (yε (·)) =

x1∫

x0

F
(
x, yε (x) , y

′
ε (x)

)
dx + f (yε (x1)) .

43
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Рис. 4.1: Пучок допустимых кривых в задаче I1

Вычисляя производную ϕ′ (ε) и учитывая граничные свойства функции
η (·), находим первую вариацию функционала

δJ ≡ ϕ′ (0) =
x1∫
x0

(
∂F
∂y η + ∂F

∂y′ η
′
)

dx + ∂f
∂y1

η (x1) =

= ∂F
∂y′ η |x1

x0
+ ∂f

∂y1
η (x1) +

x1∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx =

=
x1∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx +

(
∂f
∂y1

+ ∂F
∂y′

)
η (x1) = 0.

(4.1)

Здесь η (·) — произвольная функция, удовлетворяющая вышеперечислен-
ным требованиям. В частности, если η (x1) = 0, то

x1∫

x0

(
∂F

∂y
− d

dx

∂F

∂y′

)
η dx = 0,

и тогда по основной лемме вариационного исчисления для функции y∗ (·)
выполняется условие

∂F

∂y
− d

dx

∂F

∂y′
= 0 ∀x ∈ [x0, x1]

— уравнение Эйлера. С другой стороны, из (4.1) имеем тогда
(

∂f

∂y1
+

∂F

∂y′

)
η (x1) = 0

при произвольном граничном значении η (x1). Следовательно,

∂f

∂y1
(y (x1)) +

∂F

∂y′
(x1, y (x1) , y′ (x1)) = 0

— условие трансверсальности1 .
1Transversus - \поперек лежащий, идущий " .
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Таким образом, необходимым условием экстремума в данной задаче вы-
ступает краевая задача для уравнения Эйлера следующего вида





∂F
∂y − d

dx
∂F
∂y′ = 0,

y|x=x0
= y0,

∂f
∂y1

+ ∂F
∂y′

∣∣∣
x=x1

= 0,

в которой условие трансверсальности играет роль недостающего граничного
условия (естественное граничное условие) .

Пример. Вариант задачи о брахистохроне (см. раздел 2.1): найти кри-
вую наискорейшего спуска колечка из начального положения x0 = y0 = 0
на вертикальную прямую x = x1.

Решение. Экстремалями функционала
x1∫

0

√
1 + y′2 dx√

y
,

удовлетворяющими левому граничному условию, являются циклоиды
{

x = C (t− sin t)
y = C (1− cos t) .

Постоянную C определяем из условия трансверсальности на правом кон-
це

F ′y′
∣∣
x=x1

=
y′√

y (1 + y′2)

∣∣∣∣∣
x=x1

= 0,

которое в данном случае принимает вид условия ортогональности циклоиды
к прямой x = x1 в точке пересечения: y′ (x1) = 0. Следовательно, точка
пересечения соответствует вершине циклоиды, т.е. значению параметра t =
π. Отсюда x1 = Cπ, и уравнение единственной циклоиды, на которой может
достигаться экстремум, имеет вид

{
x = x1

π (t− sin t)
y = x1

π (1− cos t) .

Замечаниe. Естественных граничных условий — условий трансверсаль-
ности всегда \возникает " столько, сколько необходимо для полноты необ-
ходимых условий экстремума.

Например, в задаче со второй производной

J (y (·)) =
x1∫
x0

F
(
x, y (x) , y

′
(x) , y′′ (x)

)
dx + f (y (x1)) → max

D
,

D =
{

y (x) : x ∈ [x0, x1] , y (·) ∈ C4 [x0, x1] ,
y (x0) = y0, y′ (x0) = y′0

}

первая вариация функционала имеет вид

δJ ≡ ϕ′ (0) =
x1∫
x0

(
∂F
∂y − d

dx
∂F
∂y′ + d2

dx2
∂F
∂y′′

)
η dx+

+
(

∂f
∂y1

+ ∂F
∂y′ − d

dx
∂F
∂y′′

)
η (x1) + ∂F

∂y′′ η
′ (x1) .
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Вместо двух недостающих условий на правом конце интервала получаем
здесь два условия трансверсальности2 :





∂f
∂y1

+ ∂F
∂y′ − d

dx
∂F
∂y′′

∣∣∣
x=x1

= 0,

∂F
∂y′′

∣∣∣
x=x1

= 0.

Пример. Рассмотрим задачу о стационарном прогибе упругой нагру-
женной балки, жёстко \заделанной " на левом конце3. Полная потенциаль-
ная энергия системы складывается из энергии упругих сил4 и потенциаль-
ной энергии поля силы тяжести:

U =
1
2

l∫

0

k (u′′xx)2 dx + mgu (l) ,

где m — масса груза на правом конце балки (массой самой балки прене-
брегаем), g — ускорение силы тяжести, k — постоянная, характеризующая
упругие свойства материала, из которого изготовлена балка, u (x) — откло-
нение точки x балки в вертикальной плоскости от положения равновесия
u = 0.

Минимизируя этот функционал на множестве функций из C4 [0, l], удо-
влетворяющих граничным условиям жёсткого закрепления u (0) = u′ (0) =
0, получаем краевую задачу





d2

dx2 (ku′′xx) = 0,
u (0) = u′ (0) = 0,
u′′xx (l) = 0,
mg − ku′′′ (l) = 0,

решением которой является функция

u (x) =
mg

6k
x2 (x− 3l) .

В частности, максимальный прогиб балки на её конце u (l) = −mg
3k l3

быстро нарастает с удлинением балки5.

4.2 Задача (I2)
В этой задаче множество допустимых функций состоит из элементов сле-
дующего вида

D =
{

y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] ,
y (x0) = y0, x1 ∈ (a, b)

}
,

2Сперва берём произвольную пробную функцию η (x), удовлетворяющую дополни-
тельным граничным условиям

η (x1) = η′ (x1) = 0,

и выводим уравнение Пуассона. Затем получаем условия трансверсальности, учитывая
произвольность значений η (x1), η′ (x1) в выражении для вариации функционала.

3Это означает, что балка не смещена в точке выхода из стены и выходит из неё под
прямым углом.

4См. теорию упругости.
5Тем, кто уцелел, прыгая в воду с самодельных мостков, это хорошо известно ...
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Рис. 4.2: Пучок допустимых кривых в задаче I2

где x0, y0, x0 < a < b — заданные числа. Таким образом, интервал опре-
деления функции и её значение в правой граничной точке x1 не заданы
однозначно, а лишь удовлетворяют указанным ограничениям, что соответ-
ствует множеству кривых, изображённых на рис. 4.2

Пусть y∗ (·) : [x0, x
∗
1] → R — решение данной задачи6. Пусть далее η (·) ∈

C2 [x0, b), η (x0) = 0. Положим

yε (x) = y∗ (x) + εη (x) , x ∈ [x0, x
∗
1 + ε] , |ε| < ε0, ε0 > 0.

Легко проверить допустимость данной варианты экстремального элемента.
Пусть

ϕ (ε) ≡ J (yε (·)) =
x∗1+ε∫
x0

F
(
x, yε (x) , y

′
ε (x)

)
dx + f (x∗1 + ε, yε (x∗1 + ε)) ≡

≡ J1 (ε) + J2 (ε) .

Найдём производные этих функций. Имеем

d
dεJ1 (ε) = d

dε

x∗1+ε∫
x0

F
(
x, yε (x) , y

′
ε (x)

)
dx =

= F
(
x∗1 + ε, yε (x∗1 + ε) , y

′
ε (x∗1 + ε)

)
+

x∗1+ε∫
x0

(
∂F
∂y η + ∂F

∂y′ η
′
)

dx =

=
x∗1+ε∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx +

(
F + ∂F

∂y′ η
)

x=x∗1+ε
,

d

dε
J2 (ε) =

(
∂f

∂x1
+

∂f

∂y1
(y′ + η + εη′)

)

x=x∗1+ε

.

В итоге первая вариация функционала принимает вид

δJ ≡ ϕ′ (0) = J ′1 (0) + J ′2 (0) =
(
F + ∂f

∂x1
+ ∂f

∂y1
y′

)
x=x∗1

+

+η
(

∂F
∂y′ + ∂f

∂y1

)
x=x∗1

+
x∗1∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx = 0.

(4.2)

6Заметим, что в данном случае в понятие решения входит не только сама функция,
но и её интервал определения

�
x0, x∗1

�
.
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Рис. 4.3: Пучок допустимых кривых в задаче I3

Выбрав η (x) ≡ 0, получим отсюда первое условие трансверсальности
(

F +
∂f

∂x1
+

∂f

∂y1
y′

)

x=x∗1

= 0.

Далее, взяв произвольную функцию η (·), для которой η (x∗1) = 0, получим
из (4.2) с помощью основной леммы вариационного исчисления уравнение
Эйлера

∂F

∂y
− d

dx

∂F

∂y′
= 0, x ∈ [x0, x

∗
1] .

Наконец, полагая η (x∗1) 6= 0, имеем из (4.2) второе условие трансверсально-
сти (

∂F

∂y′
+

∂f

∂y1

)

x=x∗1

= 0.

4.3 Задача (I3)

Пусть множество допустимых функций состоит из элементов следующего
вида

D =
{

y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] ,
y (x0) = y0, x1 ∈ (a, b) , y (x1) = g (x1)

}
,

где x0, y0, x0 < a < b — заданные числа, g (x) — заданная функция. По
сравнению с предыдущей задачей правый конец графика экстремали обла-
дает меньшей свободой: теперь он должен скользить по заданной кривой
{(x, g (x)) , x ∈ (a, b)} в плоскости (x, y) (см. рис. 4.3).

Пусть y∗ (·) : [x0, x
∗
1] → R — решение7 задачи (I3). Пусть далее η (·) ∈

C2 [x0, b), η (x0) = 0, η (x∗1) 6= 0. Рассмотрим функцию

ωη (ε) ≡ g (x∗1 + ε)− y∗ (x∗1 + ε)
η (x∗1 + ε)

, |ε| ≤ ε0,

7См. предыдущую сноску.
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где ε0 — достаточно малое положительное число. Легко видеть, что

ωη (0) = 0,

ω′η (ε)
∣∣
ε=0

= (g′−y′)η−η′(g−y)

η2

∣∣∣∣
ε=0

=

= g′(x∗1)−y∗′(x∗1)

η(x∗1)
= ω′η (0) .

Положим

yε (x) = y∗ (x) + ωη (ε) η (x) , x ∈ [x0, x
∗
1 + ε] , |ε| ≤ ε0. (4.3)

Нетрудно проверить, что данная варианта является допустимой. Пусть, как
всегда8,

ϕ (ε) ≡ J (yε (·)) =

=

x1+ε∫

x0

F (x, yε, y
′
ε) dx

︸ ︷︷ ︸
J1(ε)

+ f (x1 + ε, yε (x1 + ε))︸ ︷︷ ︸
J2(ε)

.

Найдём производную этой функции. Имеем последовательно

dJ1
dε = F |x1+ε +

x1+ε∫
x0

(
∂F
∂y

dyε

dε + ∂F
∂y′

dy′ε
dε

)
dx =

= F |x1+ε +
x1+ε∫
x0

(
∂F
∂y ηω′η + ∂F

∂y′ η
′ω′η

)
dx =

= F |x1
+ ηω′η

∂F
∂y′

∣∣∣
x1+ε

x0

+ ω′η (ε)
x1+ε∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx,

dJ1
dε (0) =

[
F + (g′ − y′) ∂F

∂y′

]
x=x1

+

+ω′η (0)
x1∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx,

dJ2
dε = ∂f

∂x1
+ ∂f

∂y1

dyε(x1+ε)
dε ⇒

dJ2
dε (0) =

[
∂f
∂x1

+ ∂f
∂y1

(
y′ + ηω′η + η′ωη

)]
ε=0

=

=
[

∂f
∂x1

+ ∂f
∂y1

g′
]

x=x1

.

В итоге получаем следующее выражение для первой вариации функци-
онала

δJ =
[
F + (g′ − y′) ∂F

∂y′ + ∂f
∂x1

+ ∂f
∂y1

g′
]

x=x1

+

+ω′η (0)
x1∫
x0

(
∂F
∂y − d

dx
∂F
∂y′

)
η dx = 0.

(4.4)

Непосредственно положить в (4.4) η (x) ≡ 0 для получения следующего
условия трансверсальности

[
F + (g′ − y′)

∂F

∂y′
+

∂f

∂x1
+

∂f

∂y1
g′

]

x=x1

= 0 (4.5)

8Далее для упрощения записи символ ”∗” в обозначении решения задачи опускается.
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мы не имеем права, так как сама варианта (4.3) строилась в предположении
о нетривиальности пробной функции η (·) . Поэтому поступим следующим
образом. Предполагая известными координаты правого конца графика ре-
шения данной вариационной задачи, мы можем произвести сравнение этого
решения лишь с допустимыми функциями, удовлетворяющими точно таким
же граничным условиям. Решение соответствующей простейшей вариаци-
онной задачи с необходимостью удовлетворяет уравнению Эйлера

∂F

∂y
− d

dx

∂F

∂y′
= 0,

что означает выполнение данного уравнения и для решения задачи этого
раздела. Поэтому в выражении для вариации (4.4) интеграл в действитель-
ности равен нулю, откуда и получаем условие (4.5).

Пример. Для функционалов вида

J (y (·)) ≡
x1∫

x0

F1 (x, y (x))
√

1 + (y′ (x))2 dx

условие трансверсальности (4.5) записывается как условие ортогонально-
сти кривых y = y (x) и y = g (x) в точке пересечения:

g′y′|x=x1
= −1.

В частности, кратчайшее расстояние от заданной точки до заданной
кривой реализуется на выходящей из точки прямой, которая ортогональна
кривой в точке пересечения (F1 ≡ 1).

Задача9. Найти брахистохрону, соединяющую в вертикальной плоско-
сти заданную точку x0 = y0 = 0 с произвольной точкой прямой y = −x+1.

Замечание к задачам (I). Если свободным является не правый, а
левый конец кривой, то условие трансверсальности, очевидно, следует вы-
писывать именно для него. При этом условие трансверсальности на левом
конце кривой получается из соответствующего условия на правом конце
сменой знака во всех выражениях, в которые входит функция F :

F → −F,
∂F
∂y′ → − ∂F

∂y′

и т.д.
Например, в задаче (I3) со свободным левым концом условие трансвер-

сальности на этом конце имеет вид
[
−F − (g′ − y′)

∂F

∂y′
+

∂f

∂x0
+

∂f

∂y0
g′

]

x=x0

= 0.

9Для самостоятельного решения. Постановку задачи о брахистохроне см. в разделе
(2.1).

Ответ: циклоида с уравнением
(

x = 2
4−π

(t− sin t)

y = 2
4−π

(1− cos t)
.
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В общем случае условие трансверсальности для конца интервала x = xk,
k = 0, 1 в задаче (I3) можно, следовательно, записать так:

[
(−1)k+1

{
F + (g′ − y′)

∂F

∂y′

}
+

∂f

∂xk
+

∂f

∂yk
g′

]

x=xk

= 0.

Если свободны оба конца кривой, то на каждом следует выписать соот-
ветствующие условия трансверсальности.
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Глава 5

Достаточные условия
C1−локального экстремума

В данном разделе выводятся достаточные условия экстремума для простей-
шей задачи вариационного исчисления (задача (А) — см. раздел 2.1)

J (y (·)) =

x1∫

x0

F (x, y (x) , y′ (x)) dx → max
D

, (5.1)

D =
{

y (x) : x ∈ [x0, x1] , y (·) ∈ C2 [x0, x1] ,
y (x0) = y0, y (x1) = y1

}
.

Определение 1. Функционал J (y (·)) достигает на элементе y∗ (·) ∈ D
C1−локального максимума, если найдётся число ε > 0 такое, что

J (y∗ (·)) ≥ J (y (·))
для всякой y (·) ∈ D, для которой1

‖y∗ (·)− y (·)‖C1[x0,x1]
≤ ε.

Необходимым условием C1−локального экстремума является выполне-
ние для y∗ (·) краевой задачи Эйлера. Однако, на решении этой задачи2
экстремум может и не достигаться. Продемонстрируем это следующим при-
мером:

J (y (·)) =
3π/2∫
0

(
y2 − y′2

)
dx → max,

y (0) = y (3π/2) = 0.

Здесь единственным решением краевой задачи Эйлера

y′′ + y = 0, y (0) = y (3π/2) = 0

1‖f‖C1[x0,x1] ≡ max
x∈[x0,x1]

|f (x)|+ max
x∈[x0,x1]

|f ′ (x)| — норма в пространстве C1 [x0, x1].
2То есть, на экстремали, удовлетворяющей краевым условиям.
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является тривиальная функция y∗ (x) ≡ 0. На ней вдобавок выполнено необ-
ходимое условие Лежандра

∂2F

∂y′2
≡ −2 < 0,

из которого следует также, что возможный экстремум — максимум.
Однако, на допустимых функциях вида yε (x) ≡ ε sin

(
2
3x

)
, ε > 0, при-

надлежащих C1−окрестности радиуса 5
3ε функции y∗ (·), мы имеем

J (yε (·)) =
5
12

πε2 > 0 = J (y∗ (·)) ,

из чего вытекает, что на y∗ (·) локальный максимум не достигается. Таким
образом, выполнение краевой задачи Эйлера (даже вместе с условием Ле-
жандра) не является достаточным условием экстремума.

Рассмотрим приращение функционала в C1-окрестности экстремально-
го элемента. По формуле Тейлора

4J = J (y∗ + εη)− J (y∗) = εδJ +
ε2

2!
δ2J + o

(
ε2

)
, (5.2)

где η (·) — произвольная фиксированная функция класса C2 [x0, x1] с нуле-
выми граничными значениями.

Необходимыми условиями локального максимума являются

δJ = 0, δ2J ≤ 0 ∀η (·) .

Из разложения (5.2) видно, что в случае δJ = 0 достаточным условием ло-
кального максимума может служить условие отрицательности второй ва-
риации на произвольном нетривиальном приращении εη:

δ2J < 0 ∀η (·) 6≡ 0.

Выражение для второй вариации было получено в разделе 2.1:

δ2J =
x1∫
x0

Ω(x, η (x) , η′ (x)) dx =

=
x1∫
x0

[
P (x) η2 (x) + 2Q (x) η (x) η′ (x) + R (x) η′2 (x)

]
dx,

где
P (x) ≡ F ′′y2 (x, y∗ (x) , y∗′ (x)) ,

Q (x) ≡ F ′′yy′ (x, y∗ (x) , y∗′ (x)) ,

R (x) ≡ F ′′y′2 (x, y∗ (x) , y∗′ (x)) .

Введём ряд новых определений.
Определение 2. Вторичной экстремальной задачей (по отношению к

исходной задаче (5.1)) называется задача

x1∫
x0

Ω(x, η (x) , η′ (x)) dx → max
D0

,

D0 ≡
{
η (x) : x ∈ [x0, x1] , η (·) ∈ C1 [x0, x1] , η (x0) = η (x1) = 0

} (5.3)



ГЛАВА 5. ДОСТАТОЧНЫЕ УСЛОВИЯ ЭКСТРЕМУМА 55

Определение 3. Уравнение Эйлера для вторичной экстремальной за-
дачи (5.3)

Ω′η −
d

dx
Ω′η′ = 0 (5.4)

называется уравнением Якоби исходной задачи (5.1).
Определение 4. Точка x̄ ∈ (x0, x1] называется сопряжённой точке x0

на экстремали y∗ (·), если η (x̄) = 0, где η (x) — ненулевое решение уравне-
ния Якоби, удовлетворяющее условию η (x0) = 0.

Рассмотрим уравнение Якоби (5.4) более подробно. Имеем

Ω′η ≡ 2Pη + 2Qη′,
Ω′η′ ≡ 2Qη + 2Rη′.

Следовательно, для достаточно гладкой функции F (x, y, y′) уравнение
Якоби представляет собой однородное линейное дифференциальное урав-
нение второго порядка:

R (x) η′′ + S (x) η′ + T (x) η = 0,

где S (x) ≡ R′ (x) , T (x) ≡ Q′ (x)− P (x) .
Общее решение этого линейного уравнения второго порядка, как извест-

но, можно записать в виде линейной комбинации

η (x) = C1ϕ (x) + C2ψ (x) ,

где {ϕ,ψ} — произвольный линейно независимый набор его решений (фун-
даментальная система решений). Рассмотрим семейство решений уравнения
Якоби, обращающихся в ноль в начальной точке интервала x0:

η (x0) = C1ϕ (x0) + C2ψ (x0) = 0 ⇒ C2 = −C1
ϕ (x0)
ψ (x0)

⇒

η (x) = C1

(
ϕ (x)− ψ (x)

ϕ (x0)
ψ (x0)

)
≡ C1α (x) (5.5)

Если в некоторой точке x̄ какое-либо нетривиальное решение семейства
(5.5) обращается в ноль, то и все прочие решения семейства в данной точке
обращаются в ноль. Поэтому проверку обращения в ноль можно проводить
на произвольном решении, входящем в это семейство, скажем для опре-
делённости, на решении η0 (x), которое удовлетворяет условию η′0 (x0) = 1.

Определение 5. Экстремаль y∗ (·) удовлетворяет
условию Лежандра, если

R (x) ≡ F ′′y′2 (x, y∗ (x) , y∗′ (x)) ≤ 0 ∀x ∈ [x0, x1] ;

б) услиленному условию Лежандра, если

R (x) ≡ F ′′y′2 (x, y∗ (x) , y∗′ (x)) < 0 ∀x ∈ [x0, x1] ;

в) условию Якоби, если в интервале (x0, x1) экстремаль не имеет сопряжённых
точек;
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г) усиленному условию Якоби, если в полуинтервале (x0, x1] экстремаль не
имеет сопряжённых точек3.

Теорема 1 (аналитическая формулировка необходимых и достаточ-
ных условий экстремума).

Для того чтобы экстремаль y∗ (·) доставляла функционалу C1−локальный
экстремум

1) необходимо, чтобы она удовлетворяла условиям Лежандра и Якоби;

2) достаточно, чтобы она удовлетворяла усиленным условиям Лежандра и
Якоби.

Доказательство.Необходимость условия Лежандра4 установлена в раз-
деле 2.1. Покажем, что усиленные условия Лежандра и Якоби (в совокупно-
сти) обеспечивают отрицательность второй вариации функционала на лю-
бом нетривиальном приращении, что в силу сделанных выше замечаний и
доказывает теорему. Рассмотрим для произвольной ограниченной диффе-
ренцируемой функции w (x) интеграл

x1∫
x0

(
w′ (x) η2 + 2w (x) ηη′

)
dx =

x1∫
x0

(
wη2

)′
dx =

= wη2
∣∣x1

x0
= 0 ∀η (·) ∈ D0.

(5.6)

При выполнении усиленного условия Лежандра (R < 0) вторая вариа-
ция после добавления к ней левой части (5.6) может быть записана в виде

δ2J =
x1∫
x0

[
(P (x) + w′ (x)) η2 + 2 (Q (x) + w (x)) ηη′ + R (x) η′2

]
dx =

=
x1∫
x0

[
R

(
η′ + Q+w

R η
)2

+
(
P + w′ − (Q+w)2

R

)
η2

]
dx

Выберем функцию w (x) так, чтобы подынтегральная функция с точ-
ностью до множителя была полным квадратом. Достаточно положить для
этого

R (P + w′)− (Q + w)2 ≡ 0. (5.7)

Тогда

δ2J =

x1∫

x0

R

(
η′ +

Q + w

R
η

)2

dx.

Следовательно, знак второй вариации будет определяться только знаком
функции R (x), и потому вариация отрицательна на любом нетривиальном
приращении εη. Однако, для возможности указанного преобразования вари-
ации необходимо и достаточно, чтобы уравнение (5.7) имело ограниченное
решение. Заменой

3Заметим, что в этом случае уравнение Якоби имеет решение, которое не обращается
в ноль ни в одной точке отрезка [x0, x1].

4Доказательство необходимости условия Якоби опускаем (см., например, [3]).
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w = −Q−R
η′

η

оно приводится к уравнению Якоби (5.4) для функции η. Если уравнение
Якоби имеет ненулевое при x0 ≤ x ≤ x1 решение, то и (5.7) имеет огра-
ниченное решение. Но это именно так, если выполнено усиленное условие
Якоби.

Теорема доказана.
Достаточные условия экстремума можно сформулировать и иначе, при-

влекая понятие центрального поля экстремалей. А именно, семейство экс-
тремалей y (x, λ) образует центральное поле на отрезке x ∈ [x0, x̃], если
входящие в него экстремали на данном интервале не имеют иных точек
пересечения кроме точки (x0, y0).

Теорема 2 (геометрическая формулировка достаточных условий экс-
тремума).

Для того чтобы удовлетворяющая усиленному условию Лежандра экс-
тремаль y∗ (·) доставляла функционалу C1−локальный экстремум доста-
точно, чтобы её можно было включить в центральное поле экстремалей на
отрезке [x0, x1].

(без доказательства)

Примеры.

1. Вернёмся к рассмотренному в начале данного раздела примеру в несколь-
ко более широкой постановке:





J (y) =
x1∫
0

(
y2 − y′2

)
dx → max,

y (0) = y (x1) = 0.

Здесь x1 — произвольное, но фиксированное число. Из уравнения Эй-
лера, которое здесь имеет вид y′′+y = 0, находим семейство экстрема-
лей, удовлетворяющих левому граничному условию: y (x) = C1 sin x.
Так как F ′′y′2 ≡ −2 < 0, то для любой экстремали выполнено усиленное
условие Лежандра. Из уравнение Якоби η′′ + η = 0 находим функцию
η0 (x) ≡ sin x. Следовательно, ближайшей к x0 = 0 сопряжённой точ-
кой является точка x̄ = π.

Рассмотрим варианты возможных значений x1.

(a) Пусть x1 < π. Тогда единственной экстремалью, удовлетворяю-
щей обоим граничным условиям, является y∗ (x) ≡ 0. Для этой
экстремали выполнено усиленное условие Якоби, так как бли-
жайшая на ней сопряжённая точка π не попадает в полуинтервал
(0, x1]. Следовательно, на ней достигается C1-локальный экстре-
мум. Это следует также и из того, что данная экстремаль вклю-
чена в центральное поле экстремалей y (x, λ) = λ sin x.

(b) Пусть x1 = π. В этом случае экстремалей, удовлетворяющих обо-
им граничным условиям, бесконечно много: y∗ (x) = C sin x. Все
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они удовлетворяют условию Якоби (но не усиленному!). Значение
функционала на любой из них одинаково

J (C sin (x)) = C2

π∫

0

(
cos2 x− sin2 x

)
dx = 0.

Таким образом, вопрос о достижении на данных экстремалях C1-
локального экстремума остаётся открытым, и требуется дополни-
тельное исследование.

(c) Пусть x1 > π. В этом случае краевым условиям удовлетворяет
нулевая экстремаль y∗ (x) ≡ 0 (для x1 = kπ даже любая из пучка
C sinx). Однако, на ней не выполнено необходимое условие Яко-
би: в интервале (0, x1) есть сопряжённая точка π. Следовательно,
на данной экстремали локальный экстремум не достигается (ср.
с примером, разобранным в начале раздела, где x1 = 3π

2 ).

2. Покажем, что циклоида (см. раздел 2.1) действительно является бра-
хистохроной (по-крайней мере среди C1-близких кривых). Усиленное
условие Лагранжа в данной задаче выполняется для любой функции:

F ′′y′2 =
1

√
y (1 + y′2)3/2

> 0.

Сама же циклоида
{

x∗ (t) = C∗ (t− sin t)
y∗ (t) = C∗ (1− cos t) ,

приходящая в заданную точку, очевидно, может быть вложена в цен-
тральное поле экстремалей вида

{
x (t) = (1 + λ) C∗ (t− sin t)
y (t) = (1 + λ)C∗ (1− cos t) , |λ| < λ0.



Глава 6

Гамильтонов формализм

Рассмотрим опять простейшую задачу вариационного исчисления (2.1).
Вводя новую переменную (импульс) p ≡ F ′y′ (x, y, y′) и новую функцию

(Гамильтона)
H (x, y, p) = py′ − F (x, y, y′)

можно записать уравнение Эйлера (2.5) второго порядка в виде (канониче-
ской) гамильтоновой системы из двух уравнений первого порядка

{
dy
dx = ∂H

∂p
dp
dx = −∂H

∂y

(6.1)

Для доказательства этого выразим y′ из уравнения p = F ′y′ (x, y, y′) ло-
кально1 в виде y′ = φ (x, y, p) и запишем тождество

H (x, y, p) ≡ pφ (x, y, p)− F (x, y, φ (x, y, p)) .

Отсюда получаем для любого решения уравнения Эйлера (экстремали)

∂H

∂p
= φ (x, y, p) +

(
p
∂φ

∂p
− F ′y′

∂φ

∂p

)

︸ ︷︷ ︸
≡0

= y′,

∂H

∂y
=

(
p
∂φ

∂y
− F ′y′

∂φ

∂y

)

︸ ︷︷ ︸
≡0

− ∂F

∂y
= − d

dx
F ′y′ = −p′.

Заметим также, что

∂H

∂x
= p

∂φ

∂x
− ∂F

∂x
− F ′y′

∂φ

∂x
= −∂F

∂x
.

Интегралы уравнения Эйлера в новых переменных записываются осо-
бенно просто:

∂F

∂y
≡ −∂H

∂y
= 0 =⇒ p=const (закон сохранения импульса)

∂F

∂x
≡ −∂H

∂x
= 0 =⇒ H=const (закон сохранения энергии)

1Как известно из курса математического анализа, для этого достаточно, чтобы F
′′
y′2 6=

0.
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Рассмотрим действие

S (x, y) =

x∫

x0

F (x, y (x) , y′ (x)) dx

на экстремалях y = y (x) центрального поля y (x0) = y0 как функцию ко-
нечной точки графика экстремали (x, y = y (x)) .

Вычисление частных производных данной функции по x и y эквивалент-
но решению задач типа I3 с ограничением вида g (y (x1)) = y = const и I1,
соответственно. Следовательно, частные производные совпадают с первыми
вариациями функционала в указанных задачах

S′x = F + (g′ − y′) ∂F
∂y′ +

x1∫
x0

(
∂F

∂y
− d

dx

∂F

∂y′

)

︸ ︷︷ ︸
≡0

η dx = F − y′ ∂F
∂y′ = −H (x, y, p) ,

S′y =
x1∫
x0

(
∂F

∂y
− d

dx

∂F

∂y′

)

︸ ︷︷ ︸
≡0

η dx + ∂F
∂y′ = ∂F

∂y′ = p (при η (x1) = 1) .

Исключая из этих двух уравнений p, получаем следующее уравнение Гамильтона-
Якоби в частных производных для действия S (x, y) :

S′x + H
(
x, y, S′y

)
= 0.



Часть II

ДИФФЕРЕНЦИАЛЬНЫЕ
УРАВНЕНИЯ

МАТЕМАТИЧЕСКОЙ
ФИЗИКИ

61





Глава 7

Вводные замечания

Соотношение
F

(
x, u, Du,D2u, . . . , Dmu

)
= 0, (7.1)

где F (·, · · · , ·) — заданная функция многих переменных, u = u (x) — неиз-
вестная функция n > 1 переменных x ≡ (x1, x2, . . . , xn) ∈ Ω ⊂ Rn, D, D2, . . . , Dm,m ≥
1 — операторы дифференцирования соответствующих порядков, называет-
ся уравнением в частных производных. Порядок старшей производной, вхо-
дящей в уравнение (7.1), называется порядком уравнения. Решением урав-
нения1 называется всякая функция u (x), которая в области Ω имеет все
необходимые производные и которая при подстановке в (7.1) обращает это
соотношение в тождество в области x ∈ Ω.

Если попытаться высказать некоторые общие суждения относительно
уравнений в частных производных, то можно отметить следующее:

• теория таких уравнений очень сложна2, даже если ограничиться толь-
ко линейными уравнениями; уже само понятие решения уравнения в
частных производных допускает различные толкования и подходы;

• редко, когда уравнения в частных производных удаётся решить \в об-
щем виде " ; при этом множество их решений обычно \велико " : если
общее решение алгебраического уравнения n-го порядка состоит из
n чисел, решение обыкновенного дифференциального уравнения n-го
порядка включает n произвольных постоянных, то решение уравнения
в частных производных n-го порядка может включать до n произволь-
ных функций3;

1Классическим. Помимо классических существуют также обширные классы т.н.
обобщённых решений уравнений в частных производных (см., например, [13]).

2\Отсюда следует, что уравнения в частных производных значительно сложнее обык-
новенных ... "

В.И.Арнольд (из выступлений ...)

3Ещё одна интересная цепочка: решение обыкновенного дифференциального уравне-
ния в ряде случаев сводится к решению алгебраического уравнения (характеристическо-
го); решение уравнения в частных производных — к решению обыкновенных дифферен-
циальных уравнений (уравнений характеристик)...
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• к уравнениям математической физики традиционно относят линей-
ные дифференциальные уравнения в частных производных второго
порядка; при более широком толковании данного термина к уравне-
ниям математической физики относят также некоторые классы инте-
гродифференциальных уравнений (уравнения переноса и др.).



Глава 8

Уравнения в частных
производных первого
порядка

8.1 Классификация уравнений
Общий вид уравнения в частных производных первого порядка для функ-
ции n > 1 переменных u (x), x ≡ (x1, . . . , xn)

F (x, u,∇u) ≡ F
(
x1, . . . , xn, u, u′x1, . . . , u

′
xn

)
= 0.

Линейное по производным уравнение
n∑

i=1

ai (x, u)
∂u

∂xi
= b (x, u)

называется квазилинейным, уравнение вида
n∑

i=1

ai (x)
∂u

∂xi
= b (x, u)

— полулинейным, наконец, действительно линейное уравнение
n∑

i=1

ai (x)
∂u

∂xi
= b (x)

— линейным.

8.2 Методы решения квазилинейных уравне-
ний первого порядка

Пусть коэффициенты квазилинейного уравнения
n∑

i=1

ai (x, u)
∂u

∂xi
= b (x, u) (8.1)
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— функции ai (x, u), b (x, u) — непрерывны по совокупности переменных в
некоторой открытой области, и в каждой её точке хотя бы одна из функций
ai (x, u) отлична от нуля:

∑n
i=1 a2

i (x, u) > 0.
Пусть a ≡ (a1, . . . , an), ‖a‖ ≡

√
a2
1 + . . . + a2

n, e ≡ a/ ‖a‖. Тогда произ-
водная по направлению вектора e

∂u

∂e
=

n∑

i=1

∂u

∂xi
ei =

1
‖a‖

n∑

i=1

∂u

∂xi
ai,

и потому уравнение (8.1) можно записать также в следующей форме

∂u

∂e
=

b

‖a‖ .

Пример. Рассмотрим уравнение

u′x + u′y = 0 (n = 2) .

Здесь a ≡ (1, 1), b ≡ 0, e ≡
(

1√
2
, 1√

2

)
. Вводя новые независимые переменные

t1 ≡ (x + y) /
√

2, t2 ≡ (x− y) /
√

2 и функцию v (t1, t2) ≡ u (x, y), запишем
уравнение в виде

∂u

∂e
=

∂v

∂t1
= 0,

что позволяет легко выписать его решение:

u = v = f (t2) = f (x− y) ,

где f (·) — произвольная функция класса C1 (R).
Определение. Если u (x) — решение уравнения (8.1), то поверхность с

уравнением u = u (x) в пространстве переменных (u,x) называется инте-
гральной поверхностью (8.1). Система уравнений

{
dxi

dτ = ai (x, u)
du
dτ = b (x, u)

(8.2)

называется характеристической системой для (8.1). Её решения — кривые
в пространстве переменных (u,x) — называются характеристиками (8.1).

Замечание. Систему обыкновенных дифференциальных уравнений (8.2)
можно также записать в следующей симметричной форме

dx1

a1
=

dx2

a2
= . . . =

dxn

an
=

du

b
.

Теорема.Любая интегральная поверхность (8.1) образована некоторым
семейством характеристик этого уравнения.

(без доказательства)
Пример. Для рассмотренного выше уравнения u′x + u′y = 0 характери-

стическая система имеет вид

dx

1
=

dy

1
=

du

0
.
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Характеристиками являются прямые

x− y = C1, u = C2.

Пусть f (·) ∈ C1 (R) — произвольная функция. Интегральная поверхность

u (x, y) = f (x− y)

образована семейством характеристик, проходящих через кривую u = f (t2)
в плоскости x + y = 0.
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Глава 9

Уравнения в частных
производных второго
порядка

Как следует из определения, общий вид уравнения в частных производных
второго порядка для функции u (x), x ∈ Ω ⊂ Rn, n > 1

F
(
x, u (x) , Du (x) , D2u (x)

)
= 0.

Здесь значки D, D2 условно обозначают произвольные дифференциаль-
ные операторы первого и второго порядков, соответственно.

Соответственно, общий вид уравнения второго порядка в частных про-
изводных с двумя независимыми переменными

F
(
x, y, u, u′x, u′y, u′′xx, u′′xy, u′′yy

)
= 0.

9.1 Каноническая форма записи квазилиней-
ного уравнения второго порядка с двумя
независимыми переменными

Квазилинейным уравнением второго порядка называется уравнение вида

A (x, y)u′′x2 + 2B (x, y) u′′xy + C (x, y)u′′y2 + f (x, y, u,∇u) = 0, (9.1)

где A (x, y), B (x, y), C (x, y) — непрерывные в области Ω ⊂ R2 функции,
причём в любой точке области хотя бы одна из них отлична от нуля:

A2 (x, y) + B2 (x, y) + C2 (x, y) > 0 ∀ (x, y) ∈ Ω.

Произведём обратимую замену переменных в уравнении (9.1)




ξ = ξ (x, y)
η = η (x, y) ,
v (ξ, η) = u (x, y)

, J ≡ D (ξ, η)
D (x, y)

6= 0 ∀ (x, y) ,

69



70 ЧАСТЬ II. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где ξ (·, ·) , η (·, ·) ∈ C2 (Ω) . После пересчёта производных и алгебраических
преобразований получаем следующее уравнение для функции v:

Ā (ξ, η) v′′ξ2 + 2B̄ (ξ, η) v′′ξη + C̄ (ξ, η) v′′η2 + g (ξ, η, v,∇v) = 0, (9.2)

где

Ā (ξ, η) ≡ A (x, y) (ξ′x)2 + 2B (x, y) ξ′xξ′y + C (x, y)
(
ξ′y

)2
,

B̄ (ξ, η) ≡ A (x, y) ξ′xη′x + B (x, y)
(
ξ′xη′y + η′xξ′y

)
+ C (x, y) ξ′yη′y,

C̄ (ξ, η) ≡ A (x, y) (η′x)2 + 2B (x, y) η′xη′y + C (x, y)
(
η′y

)2
.

Заметим также, что 4̄ = 4J2, где

4̄ ≡ −
∣∣∣∣

Ā B̄
B̄ C̄

∣∣∣∣ = B̄2 − ĀC̄,

∆ ≡ −
∣∣∣∣

A B
B C

∣∣∣∣ = B2 −AC.

Определение.Кривая в плоскости (x, y), описываемая уравнением ϕ (x, y) =
C, где ϕ (x, y) — решение характеристического уравнения

A (x, y)
(

∂ϕ

∂x

)2

+ 2B (x, y)
∂ϕ

∂x

∂ϕ

∂y
+ C (x, y)

(
∂ϕ

∂y

)2

= 0, (9.3)

причём ∇ϕ 6= 0 во всех точках кривой, называется характеристической
линией (характеристикой) уравнения (9.1).

Классификация типа квазилинейного уравнения в заданной точке обла-
сти (x0, y0) производится по знаку детерминанта 4 (x0, y0).

• Гиперболический случай:

4 ≡ B2 −AC > 0. (9.4)

Если в данной точке A = C = 0, то в силу условия (9.4) B 6= 0 (в дан-
ной точке и её окрестности). Поэтому после деления на коэффициент
B уравнение (9.1) примет вид

u′′xy = f1

(
x, y, u, u′x, u′y

)

— первая каноническая форма записи уравнения гиперболического ти-
па.

Если же один из коэффициентов при повторных производных, A, для
определённости, не равен нулю, то характеристическое уравнение (9.3)
можно преобразовать к виду

A
(
A (ϕ′x)2 + 2Bϕ′xϕ′y + C

(
ϕ′y

)2
)

=
(
Aϕ′x +

(
B +

√
B2 −AC

)
ϕ′y

) ·
· (Aϕ′x +

(
B −√B2 −AC

)
ϕ′y

)
= 0 ⇔

⇔
[ (

Aϕ′x +
(
B +

√
B2 −AC

)
ϕ′y

)
= 0(

Aϕ′x +
(
B −√B2 −AC

)
ϕ′y

)
= 0

.

Пусть ϕ1, ϕ2 — решения этих уравнений, соответственно (две характе-
ристики, проходящие через точку гиперболического типа). Их можно
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взять так, чтобы J ≡ D (ϕ1, ϕ2) /D (x, y) 6= 0.1 Возьмём в качестве
новых независимых переменных

ξ = ϕ1 (x, y) ,
η = ϕ2 (x, y) .

При подобном выборе имеем Ā = C̄ = 0. Далее, так как при этом

4̄ = B̄2 = 4J2 > 0,

то B̄ 6= 0 и после деления (9.2) на B̄, приводим это уравнение к первой
канонической форме

v′′ξη = g1 (ξ, η, v,∇v) .

Дополнительная замена переменных




ξ = α + β,
η = α− β,
w (α, β) ≡ v (ξ, η)

приводит последнее уравнение ко второй канонической форме записи
уравнения гиперболического типа

w′′α2 − w′′β2 = g2 (α, β, w,∇w) .

• Параболический случай:

4 = B2 −AC = 0. (9.5)

Если A = 0, то в силу (9.5) и B = 0, поэтому C 6= 0. После деления на
C уравнение приобретает вид

u′′y2 = f2

(
x, y, u, u′x, u′y

)

— каноническая форма записи уравнения параболического типа. До-
пустим, что A 6= 0, а соотношение (9.5) выполняется в некоторой
окрестности точки (x0, y0). Тогда в силу тождества

A
(
A (ϕ′x)2 + 2Bϕ′xϕ′y + C

(
ϕ′y

)2
)
≡ (

Aϕ′x + Bϕ′y
)2

характеристическое уравнение (9.3) равносильно уравнению

Aϕ′x + Bϕ′y = 0.

Пусть ϕ1 (x, y) — решение данного уравнения (единственная действи-
тельная характеристика, проходящая через точку (x0, y0)), ∇ϕ1 6= 0.

1Иными словами
ϕ′1x

ϕ′1y

= −B +
√4

A
6= −B −√4

A
=

ϕ′2x

ϕ′2y

,

что равносильно условию 4 6= 0. Геометрически это означает, что характеристики не
касаются друг друга в точке (x0, y0).
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Предполагая, что ϕ′1y 6= 0, возьмём в качестве новых независимых
переменных2 {

ξ = ϕ1 (x, y) ,
η = x

.

Тогда
Ā = 0,

B̄2 − ĀC̄ =
(
B2 −AC

)
J2 = 0 ⇒ B̄ = 0,

C̄ = A (η′x)2 = A 6= 0.

После деления (9.2) на C̄, приводим это уравнение к канонической
форме

v′′η2 = g3

(
ξ, η, v, v′ξ, v

′
η

)
.

• Эллиптический случай:

4 ≡ B2 −AC < 0. (9.6)

В этом случае вещественные характеристики отсутствуют. Из анали-
тической теории обыкновенных дифференциальных уравнений следу-
ет, что характеристическое уравнение (9.3) имеет пару комплексно
сопряжённых, аналитических в окрестности рассматриваемой точки
решений

ϕ1 (x, y) ≡ ξ (x, y) + iη (x, y) ,
ϕ2 (x, y) ≡ ξ (x, y)− iη (x, y) .

Подставляя первое решение в уравнение (9.3), получаем после тожде-
ственных преобразований

A (ξ′x + iη′x)2 + 2B (ξ′x + iη′x)
(
ξ′y + iη′y

)
+ C

(
ξ′y + iη′y

)2 =

=
[
A (ξ′x)2 + 2Bξ′xξ′y + C

(
ξ′y

)2
]
−

[
A (η′x)2 + 2Bη′xη′y + C

(
η′y

)2
]
+

+2i
[
Aξ′xη′x + B

(
ξ′xη′y + η′xξ′y

)
+ Cξ′yη′y

]
= 0.

Отсюда следует, что после выбора в качестве новых независимых пе-
ременных

ξ = ξ (x, y) ,
η = η (x, y)

мы получим

B̄ = 0, Ā = C̄,
B̄2 − ĀC̄ = −Ā2 =

(
B2 −AC

)
J2 6= 0 ⇒ Ā 6= 0,

а уравнение (9.2) после деления на Ā приведётся к канонической форме
записи уравнения эллиптического типа

v′′ξ2 + v′′η2 = g4

(
ξ, η, v, v′ξ, v

′
η

)

2Имеем при этом
D (ξ, η)

D (x, y)
= −ϕ′1y 6= 0.
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Замечания.

1. В силу равенства
B̄2 − ĀC̄ =

(
B2 −AC

)
J2

тип уравнения в данной точке не меняется при невырожденном пре-
образовании.

2. Если тип уравнения изменяется от точки к точке, то говорят, что урав-
нение в данной области имеет смешанный тип.

3. Нахождение характеристик может быть сведено к решению обыкно-
венных дифференциальных уравнений первого порядка. Именно, спра-
ведлива следующая
Лемма. Рассмотрим уравнения

A (z′x)2 + 2Bz′xz′y + C
(
z′y

)2 = 0, (9.7)

A (dy)2 − 2Bdxdy + C (dx)2 = 0. (9.8)

Функция z = ϕ (x, y) является решением уравнения (9.7) тогда и толь-
ко тогда, когда ϕ (x, y) = C — первый интеграл уравнения (9.8).

4. Классифицировать тип уравнения второго порядка с двумя незави-
симыми переменными в точке можно было и в соответствии с общей
схемой, изложенной далее. При этом уравнению (9.1) ставится в соот-
ветствие квадратичная форма

Q (λ1, λ2) ≡ A (x, y)λ2
1 + 2B (x, y) λ1λ2 + C (x, y)λ2

2,

которая невырожденным преобразованием приводится к каноническо-
му виду, не содержащему произведения λ1λ2:

Q̃ (µ1, µ2) = α1µ
2
1 + α2µ

2
2,

где αi ∈ {0,±1}. Если коэффициенты αi имеют разные знаки, то тип
уравнения в данной точке гиперболический; одинаковые знаки — эл-
липтический; наконец, если один из коэффициентов равен нулю, тип
уравнения параболический.

Пример. Рассмотрим следующее уравнение Трикоми, находящее важ-
ные применения в газовой динамике:

yu′′x2 + u′′y2 = 0.

Для этого уравнения имеем

A ≡ y, B ≡ 0, C ≡ 1,
4 = B2 −AC = −y.

Отсюда следует, что уравнение является гиперболическим (дозвуковой
режим истечения газов) в точках нижней полуплоскости y < 0 , параболи-
ческим на прямой y = 0 и эллиптическим (сверхзвуковой режим истечения
газов) в верхней полуплоскости3.

3Для соответствующей квадратичной формы имеем

Q (λ1, λ2) = yλ2
1 + λ2

2 =

8
<
:

�√
yλ1

�2
+ λ2

2, y > 0

−
�p

|y|λ1

�2
+ λ2

2, y < 0
.



74 ЧАСТЬ II. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Характеристическое уравнение для уравнения Трикоми —

y

(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

= 0,

а эквивалентное ему обыкновенное дифференциальное уравнение —

y (dy)2 + (dx)2 = 0.

В нижней полуплоскости решения последнего уравнения — характери-
стики уравнения Трикоми — имеют вид

[
x = 2

3 (−y)3/2 + C1,

x = − 2
3 (−y)3/2 + C2,

а само уравнение Трикоми после замен
{

ξ = x + 2
3

√
−y3,

η = x− 2
3

√
−y3

приводится к каноническому виду

v′′ξη =
v′η − v′ξ
6 (ξ − η)

.

В верхней полуплоскости решениями характеристического уравнения
являются функции ϕ1,2 (x, y) = 3

2x± i
√

y3. Заменой
{

ξ = 3
2x,

η = −
√

y3

сводим уравнение Трикоми к каноническому виду

v′′ξ2 + v′′η2 = − 1
3η

∂v

∂η
.

9.2 Классификация квазилинейных уравнений
второго порядка с n > 2 независимыми пе-
ременными

В самом общем виде подобные уравнения можно записать следующим об-
разом

n∑

i,j=1

Aij (x)
∂2u

∂xi∂xj
+ f (x, u,∇u) = 0.

Здесь x ≡ (x1, . . . , xn) ∈ Ω ⊂ Rn. Предполагается, что в каждой точ-
ке области Ω хотя бы один из коэффициентов при старших производных
отличен от нуля:

n∑

i,j=1

A2
ij (x) > 0 ∀x ∈ Ω.
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Для определения типа уравнения в заданной точке x0 ∈ Ω составим для
него квадратичную форму n переменных

Q (λ) ≡
n∑

i,j=1

Aij (x0)λiλj ≡
n∑

i,j=1

αijλiλj .

Как доказывается в теории квадратичных форм, существует невырож-
денное линейное преобразование переменных

µ = =λ, det= 6= 0

такое, что в новых переменных µ форма имеет свой канонический вид:

Q̃ (µ) ≡ Q
(=−1µ

)
=

n∑

i=1

βiµ
2
i , (9.9)

где βi ∈ {0,±1}. По этой канонической форме и определяется тип уравнения
в точке x0.

• Эллиптический тип: все коэффициенты отличны от нуля и совпадают
по знаку: либо βi = 1 ∀i = 1, n, либо βi = −1∀i = 1, n.

Форма (9.9) в этом случае принимает один из видов

Q̃ (µ) =
n∑

i=1

µ2
i ,

Q̃ (µ) = −
n∑

i=1

µ2
i ,

а уравнение некоторым преобразованием переменных приводится к
виду

∂2v

∂ξ2
1

+
∂2v

∂ξ2
2

+ . . . +
∂2v

∂ξ2
n

+ g (ξ, v,∇v) = 0.

• Параболический тип: некоторые коэффициенты (не все!) равны нулю.
Пусть для определённости βj = 0 ∀j > k, где k ∈ 1, n− 1.

Квадратичная форма в этом случае приводится к виду

Q̃ (µ) = ±µ2
1 ± µ2

2 ± . . .± µ2
k,

где знаки могут чередоваться в любой последовательности, а уравне-
ние — к виду

±∂2v

∂ξ2
1

± ∂2v

∂ξ2
2

± . . .± ∂2v

∂ξ2
k

+ g (ξ, v,∇v) = 0.

Если форма Q̃ (µ) имеет одно из следующих представлений

Q̃ (µ) = µ2
1 + µ2

2 + . . . + µ2
k,

Q̃ (µ) = − (
µ2

1 + µ2
2 + . . . + µ2

k

)
,

то тип уравнения может быть уточнён как эллиптико-параболический,
в противном случае — как гиперболо-параболический.
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• Гиперболический тип: один из коэффициентов отличен от всех других
по знаку: пусть для определённости β1 = 1, β2 = β3 = . . . = βn = −1.

В данном случае
Q̃ (µ) = µ2

1 − µ2
2 − . . .− µ2

n,

∂2v

∂ξ2
1

− ∂2v

∂ξ2
2

− . . .− ∂2v

∂ξ2
n

+ g (ξ, v,∇v) = 0.

• Ультрагиперболический тип:n > 3 и существует k ∈ 2, n− 2 такое, что
k из коэффициентов βi равны 1, а все прочие равны −1. Пусть для
определенности µ1 = . . . = µk = 1. Тогда

Q̃ (µ) = µ2
1 + . . . + µ2

k − µ2
k+1 − . . .− µ2

n,

∂2v

∂ξ2
1

+ . . . +
∂2v

∂ξ2
k

− ∂2v

∂ξ2
k+1

− . . .− ∂2v

∂ξ2
n

+ g (ξ, v,∇v) = 0.



Глава 10

Корректность постановки
задач математической
физики

10.1 Задача математической физики
Под задачей математической физики в широком смысле понимают сово-
купность условий, однозначно определяющих эволюцию некоторого физи-
ческого процесса в заданной пространственной области.

Пусть состояние процесса задаётся функцией u (r,t), где r ∈ Ω ⊂ R3,
t ∈ [0, T ]. Задача математической физики в узком смысле это набор, со-
стоящий из

1. дифференциального уравнения (в частных производных), описываю-
щего механизм протекания процесса в области Ω;

2. начального условия, задающего исходное состояние процесса в момент
времени t = 0;

3. краевого (граничного) условия на ∂Ω, определяющего влияние окру-
жающей среды на протекание процесса.

10.2 Основные типы начально-краевых задач
• Задача Коши

Дифференциальное уравнение (обычно гиперболического или пара-
болического типов) решается во всём пространстве: Ω ≡ R3. Соот-
ветственно, граничное условие отсутствует, известно лишь начальное
состояние процесса.

• Краевая задача

Процесс стационарен, то есть не зависит от времени. Дифференциаль-
ное уравнение (обычно эллиптического типа) решается в некоторой
области пространства, на границе которой ставится краевое условие.

77
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• Смешанная (начально-краевая) задача.

Процесс нестационарен, известно его начальное состояние. Уравнение
(обычно гиперболического или параболического типов) решается в за-
данной области пространства, на границе которой ставится краевое
условие.

Определение. Задача математической физики считается корректно
поставленной в классе корректности K, если

а) она имеет решение u (r, t) ∈ K;
б) решение единственно в K;
в) решение непрерывно (в смысле метрики на множестве K) зависит от па-

раметров задачи (коэффициенты уравнения, начальные и граничные
условия, область решения и пр.)

В том случае, когда эволюция процесса описывается обыкновенными
дифференциальными уравнениями, ответы на вопросы корректности по-
становки задачи носят достаточно общий характер и вытекают из извест-
ных теорем существования, единственности и непрерывной зависимости ре-
шений подобных уравнений. В случае уравнений в частных производных
исследование данных вопросов значительно усложняется. Приведём один
классический пример Адамара, иллюстрирующий данное высказывание.

Пример. Рассмотрим следующую краевую задачу для уравнения Ла-
пласа в полуплоскости Ω ≡ {(x, y) : x > 0}




4u ≡ u′′x2 + u′′y2 = 0, (x, y) ∈ Ω
u (0, y) = 0, |y| < ∞
u′x (0, y) = 1

k sin ky, |y| < ∞.
(10.1)

Здесь k — натуральное число — параметр задачи.
Нетрудно проверить непосредственной подстановкой, что решением дан-

ной задачи (причем, единственным, что доказать уже труднее — см. раздел
11.3.2) является функция

uk (x, y) =
sh kx

k2
sin ky.

Рассмотрим также задачу



4u ≡ u′′x2 + u′′y2 = 0, (x, y) ∈ Ω
u (0, y) = 0, |y| < ∞
u′x (0, y) = 0, |y| < ∞,

(10.2)

единственным решением которой является тождественно равная нулю функ-
ция u0 (x, y) ≡ 0.

Задачу (10.1) можно рассматривать как малое \возмущение " задачи
(10.2). Действительно, для сколь угодно малого ε > 0 можно взять такое
достаточно большое k, что

max
y

∣∣∣∣
1
k

sin ky − 0
∣∣∣∣ < ε.
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Сравним теперь решения соответствующих задач. Если y 6= πm
k , m ∈ Z

и x 6= 0, то
|uk (x, y)− u0 (x, y)| = |uk (x, y)| →

k→∞
∞.

Таким образом, хотя краевые условия этих двух задач при k →∞ неога-
ниченно сближаются в равномерной метрике, сами решения сколь угодно
сильно в этой метрике различаются.

Следует отметить, что весьма широкий класс практических задач1 при
их \наивной " постановке приводит к некорректно поставленным задачам
математической физики. Этим объясняется тот большой интерес, который
вызывают методы решения некорректных задач (см., например, книги [23];
Некорректные задачи естествознания, М.: МГУ, 1987 и др.)

1Задачи обработки и интерпретации данных физических экспериментов, т.н. обрат-
ные задачи.
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Глава 11

Методы решения задач
математической физики

11.1 Методы решения задач для уравнений ги-
перболического типа

11.1.1 Физические задачи, приводящие к уравнениям
гиперболического типа

Прежде чем приступать к изучению методов решения задач для уравнений
гиперболического типа приведем примеры физических задач, в которых
подобные уравнения возникают. Как правило, это задачи колебательного,
волнового характера. Обычно они ставятся как задачи Коши или начально-
краевые задачи.

• Поперечные колебания отрезка струны — см. раздел 2.5.

• Продольные колебания отрезка упругого стержня

Пусть функция u (x, t) описывает смещение в момент времени t сечения одно-
родного упругого стержня относительно своего несмещённого положения x. Тогда
по теореме Лагранжа о конечных приращениях относительное удлинение малого
отрезка [x, x +4x] равно

[4x + u (x +4x, t)− u (x, t)]−4x

4x
= u′x (x + θ4x, t) ,

где θ ∈ [0, 1]. Переходя к пределу при 4x → 0, находим относительное удли-
нение бесконечно-малого кусочка стержня. По закону Гука натяжение стержня
в данном сечении будет по модулю равно |ESu′x (x, t)|, где S — площадь попе-
речного сечения стержня, E — модуль Юнга на единицу поперечного сечения.
Мысленно разделим стержень сечением x на две части. Нетрудно сообразить, что
проекция на ось x упругой силы, с которой правая часть стержня действует на
левую, равна ESu′x (x, t). Запишем теперь уравнение второго закона Ньютона
для малого отрезка стержня [x, x +4x] (в проекции на ось x)

ρS4xu′′t2 (x + θ14x, t) = ES (u′x (x +4x, t)− u′x (x, t)) ,

81
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где ρ — плотность массы. После деления обеих частей на4x и перехода к пределу
при 4x → 0 получаем следующее волновое уравнение для функции u (x, t):

u′′t2 = a2u′′x2 , a2 ≡ E

ρ

• Распространение звука в однородной упругой среде — выводится в курсе
механики сплошных сред.

• Распространение звука в океаническом волноводе

• Электрические колебания в телеграфной (длинной) линии

Длинной линией в широком понимании этого термина может быть названа лю-
бая электрическая схема, характерные размеры которой сопоставимы с длинами
распространяющихся в ней электромагнитных волн. Как и любые другие электро-
магнитные явления, процессы распространения волн в длинной линии могут быть
описаны уравнениями Максвелла. Уравнения Кирхгоффа, успешно описывающие
низкочастотные электрические схемы, к длинным линиям можно применять лишь
локально, то есть на малых их участках1.

Рассмотрим вариант длинной линии, представляющий собой однородный провод-
ник, вытянутый вдоль оси x над поверхностью земли нулевого потенциала. Будем
характеризовать его следующими погонными, т.е. приходящимися на единицу дли-
ны, электрическими параметрами: активным сопротивлением R, индуктивностью
L, ёмкостью относительно земли C и активной утечкой G.

Запишем уравнения Кирхгоффа для падения напряжения на участке линии от x
до x +4x и баланса тока в узле x +4x:

v (x)− v (x +4x) = i (x)R4x + L4x ∂i
∂t ,

i (x) = i (x +4x) + G4xv (x +4x) + C4x∂v
∂t .

После деления уравнений на 4x и перехода к пределу при 4x → 0, получаем
пару телеграфных уравнений первого порядка

{
v′x + Ri + Li′t = 0,
i′x + Gv + Cv′t = 0.

(11.1)

Дифференцируя первое уравнение по x, а второе по t, и исключая из уравнений
функцию i (x, t) и её производные, получаем уравнение гиперболического типа
для функции v (x, t):

v′′t2 = a2v′′x2 − 2µv′t − κv, (11.2)

где
a2 ≡ 1

LC ,
µ = 1

2

(
R
L + G

C

)
,

κ = GR
LC .

Точно такое же уравнение получается и для функции i. Уравнение (11.2) можно
свести к более простому заменой u (x, t) = exp (µt) v (x, t). А именно, после
подобной замены получаем

1Обсуждение данного вопроса см. в книге [19].
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u′′t2 = a2u′′x2 + b2u,

где

b ≡ 1
2

(
R

L
− G

C

)
.

Особенно простой вид это уравнение принимает при b = 0, то есть при RC =
LG:

u′′t2 = a2u′′x2 .

В этом случае телеграфная линия называется линией без искажений. Заметим,
что \улучшая " линию повышением изоляции, то есть уменьшением утечки G,
мы рискуем нарушить условие отсутствия искажений RC = LG. Выход — в
искусственном увеличении погонной индуктивности2 L.

Для получения граничного условия на конце телеграфной линии x = 0 следует
записать уравнение Кирхгоффа для сосредоточенного элемента, стоящего на этом
конце. Приведем некоторые варианты.

1. заземленный конец: v (0, t) = 0;

2. изолированный конец: i (0, t) = 0 ⇔ v′x (0, t) = 0;

3. активное сопротивление R0 на конце: −v (0, t) = R0i (0, t) ;

4. емкость C0 на конце: −C0v
′
t (0, t) = i (0, t) .

11.1.2 Метод бегущих волн
В основе данного метода решения разнообразных задач мате-
матической физики лежит представление общего решения про-
стейшего волнового уравнения в некотором специальном виде,
который допускает простое физическое истолкование в терми-
нах бегущих волн. После этого для решения конкретной задачи
остается лишь подобрать профили волн так, чтобы удовлетво-
рить всем оставшимся условиям задачи. Последнее обычно при-
водит к некоторым алгебраическим процедурам или решению
некоторых задач для обыкновенных дифференциальных урав-
нений, так как сами профили являются функциями одной пере-
менной.

Рассмотрим волновое уравнение

u′′t2 = a2u′′x2 .

Дифференциальные уравнения характеристик для него

a2 (dt)2 − (dx)2 = 0,

откуда получаем уравнения характеристических линий

x = ±at + c. (11.3)
2Исторически так и случилось. Только на телеграфных линиях компании \Bell System

" в 1949 году стояло около 20 млн. катушек индуктивной поддержки.
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Делая в соответствии с теоретическими рекомендациями замену пере-
менных вида 




ξ = x− at,
η = x + at,
v (ξ, η) = u (x, t)

,

приводим данное гиперболическое уравнение к первой канонической форме

∂2v

∂ξ∂η
= 0.

Поэтому
∂
∂ξ

∂v
∂η = 0 ⇒ ∂v

∂η = g1 (η) ⇒
v =

∫
g1 (η) dη = g (η) + f (ξ) ⇒

u (x, t) = f (x− at) + g (x + at) , (11.4)

где f (·) , g (·) ∈ C2
(
R1

)
. Полученное общее решение уравнения (11.4) имеет

простой физический смысл: это сумма волн, бегущих с постоянными скоро-
стями ±a вдоль оси x. Отметим, что форма волн не изменяется в процессе
эволюции (среда без дисперсии).

Рассмотрим ряд задач для простейшего волнового уравнения, или урав-
нений, сводимых к нему.

Решение задачи Коши для волнового уравнения методом бегущих
волн

Рассмотрим задачу о поперечных малых колебаниях неограниченной одно-
родной струны





u′′t2 = a2u′′x2 , −∞ < x < +∞, t > 0,
u (x, 0) = ϕ (x) , −∞ < x < +∞,
u′t (x, 0) = ψ (x) , −∞ < x < +∞.

(11.5)

Будем искать её решение в виде суммы бегущих волн с неизвестными
профилями

u (x, t) = f (x− at) + g (x + at) . (11.6)

Выберём профили волн так, чтобы удовлетворить начальным условиям:
{

u (x, 0) = f (x) + g (x) = ϕ (x) , −∞ < x < +∞
u′t (x, 0) = a (g′ (x)− f ′ (x)) = ψ (x) , −∞ < x < +∞.

После интегрирования второго тождества по x получаем

f (x) + g (x) = ϕ (x) ,

g (x)− f (x) = 1
a

∫
ψ (x) dx = 1

a

x∫
0

ψ (z) dz + C,

откуда сложением находим

g (x) = ϕ(x)
2 + 1

2a

x∫
0

ψ (z) dz + C
2 ,

f (x) = ϕ (x)− g (x) = ϕ(x)
2 − 1

2a

x∫
0

ψ (z) dz − C
2 .
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В итоге решение задачи Коши можно записать в виде следующей фор-
мулы Даламбера:

u (x, t) = f (x− at) + g (x + at) =

= ϕ(x−at)
2 − 1

2a

x−at∫
0

ψ (z) dz − C
2 +

+ϕ(x+at)
2 + 1

2a

x+at∫
0

ψ (z) dz + C
2 =

= ϕ(x−at)+ϕ(x+at)
2 + 1

2a

x+at∫
x−at

ψ (z) dz.

(11.7)

Выделим следующие частные случаи общей задачи Коши.

• Колебания вследствие начального отклонения от положения равнове-
сия: ψ (x) ≡ 0.

В этом случае формула (11.7) даёт

u (x, t) = ϕ(x−at)+ϕ(x+at)
2 =

= ϕ(x−at)
2 + ϕ(x+at)

2 .

Это решение можно интерпретировать следующим образом: началь-
ное отклонение ϕ (x) разбивается на две полуволны ϕ (x) /2, которые
бегут в противоположных направлениях оси x с одинаковыми ско-
ростями a. Профиль струны в каждый момент времени получается
суммированием текущих состояний этих бегущих волн.

• Колебания в отсутствие начального отклонения от положения равно-
весия вследствие начальной скорости (ударное возбуждение колеба-
ний): ϕ (x) ≡ 0.

При этом

u (x, t) = 1
2a

x+at∫
x−at

ψ (z) dz =

= E (x + at)− E (x− at) ,

где

E (x) ≡ 1
2a

x∫

x∗

ψ (z) dz,

x∗ — произвольная фиксированная точка3 оси. Следовательно, в дан-
ном случае профиль струны формируется волнами ±E (x), бегущими
в противоположных направлениях оси со скоростями, по модулю рав-
ными a.

Сделаем некоторые общие выводы из формулы Даламбера.

1. Для произвольных начальных условий ϕ (·) ∈ C2
(
R1

)
, ψ (·) ∈ C1

(
R1

)
классическое решение u (x, t) ∈ C2

(
R2

)
задачи Коши (11.5) существу-

ет.
3Обычно x∗ = 0; если соответствующий несобственный интеграл сходится, то удобно

также брать x∗ = −∞.



86 ЧАСТЬ II. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

2. Оно единственно и даётся формулой Даламбера (11.7).

3. Оно непрерывно в следующем смысле зависит от параметров задачи4:

∀ε > 0∀T > 0 ∃δ = δ (ε, T ) > 0 :
max

x
|ϕ− ϕ̃|+ max

x

∣∣∣ψ − ψ̃
∣∣∣ < δ ⇒ max

x,|t|≤T
|u− ũ| < ε.

4. Поскольку сама формула Даламбера имеет смысл для значительно бо-
лее широких классов функций ϕ, ψ, чем те, что указаны выше5, можно
говорить об обобщённых решениях задачи Коши. Именно, обобщённым
решением задачи (11.5), отвечающим произвольным начальным усло-
виям ϕ,ψ, для которых формула (11.7) имеет смысл, называется функ-
ция, определяемая данной формулой. При этом данная функция мо-
жет не иметь необходимых для подстановки в волновое уравнение про-
изводных, или эти производные следует определять как обобщённые
и т.д. и т.п.

5. Рассмотрим плоскость с декартовыми координатами (x, t) — фазовую
плоскость рассматриваемой задачи. Для произвольной точки (x0, t0),
лежащей в верхней полуплоскости, рассмотрим характеристический
треугольник, образованный с осью x характеристиками волнового
уравнения — прямыми (11.3), проходящими через вершину треголь-
ника — точку (x0, t0). Пусть

x1 = x0 − at0,
x2 = x0 + at0

- точки пересечения характеристик с осью x — вершины основания
характеристического треугольника (см. рисунок).

По формуле Даламбера решение задачи Коши можно представить в
виде

u (x0, t0) =
ϕ (x1) + ϕ (x2)

2
+

1
2a

x2∫

x1

ψ (z) dz.

Таким образом, для нахождения решения задачи Коши в произволь-
ной точке фазовой плоскости достаточно сложить полусумму началь-
ных отклонений в вершинах основания характеристического треуголь-
ника с интегралом по основанию от начальной скорости, делённым
на 2a. Внутри характеристического треугольника колебания струны
определяются исключительно начальными данными на основании ха-
рактеристического треугольника. Это следствие фундаментального свой-
ства волновых процессов, распространяющихся в пространстве с ко-
нечной скоростью.

4Всё это говорит о корректности постановки задачи Коши в указанных классах функ-
ций.

5Например, функция ϕ может быть вообще любой функцией одного переменного.
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Задача Коши для неоднородного волнового уравнения.




u′′t2 = a2u′′x2 + f (x, t) , −∞ < x < +∞, t > 0,
u (x, 0) = ϕ (x) , −∞ < x < +∞,
u′t (x, 0) = ψ (x) , −∞ < x < +∞.

(11.8)

Учитывая линейность задачи, будем искать её решение в виде суммы
u = v + w, где функции v, w являются решениями задач





v′′t2 = a2v′′x2 ,
v (x, 0) = ϕ (x) ,
v′t (x, 0) = ψ (x) ,





w′′t2 = a2w′′x2 + f (x, t) ,
w (x, 0) = 0,
w′t (x, 0) = 0,

,

соответственно.
Решение первой задачи получено выше. Решение второй будем искать в

интегральной форме

w (x, t) =

t∫

0

Φ (x, t, τ) dτ, (11.9)

где 



Φ′′t2 = a2Φ′′x2 , −∞ < x < ∞, t ≥ τ > 0,
Φ(x, t, τ) |t=τ= 0, −∞ < x < ∞,
Φ′t (x, t, τ) |t=τ= f (x, τ) , −∞ < x < ∞.

Решение последней задачи даётся, очевидно, формулой Даламбера:

Φ(x, t, τ) =
1
2a

x+a(t−τ)∫

x−a(t−τ)

f (z, τ) dz.

Проверим, что функция (11.9) действительно является решением соот-
ветствующей начальной задачи. Имеем

w′t (x, t) = Φ (x, t, t) +
t∫
0

Φ′t dτ =
t∫
0

Φ′t dτ,

w′′t2 = Φ′t (x, t, t) +
t∫
0

Φ′′t2 dτ = f (x, t) + a2
t∫
0

Φ′′x2 dτ =

= f (x, t) + a2w′′x2 ,

w (x, 0) =
0∫
0

Φ(x, t, τ) dτ = 0,

w′t (x, 0) =
0∫
0

Φ′t (x, t, τ) dτ = 0,

что и требовалось проверить.
В итоге решение рассматриваемой задачи можно записать в форме рас-

ширенной формулы Даламбера

u (x, t) = ϕ(x−at)+ϕ(x+at)
2 + 1

2a

x+at∫
x−at

ψ (z) dz+

+ 1
2a

t∫
0

x+a(t−τ)∫
x−a(t−τ)

f (z, τ) dzdτ.

(11.10)
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[5]
Заметим, что данную формулу можно записать и в более компактном

виде. А именно,

u (x, t) =
∂

∂t
Φϕ (x, t, 0) + Φψ (x, t, 0) +

t∫

0

Φf (x, t, τ) dτ, (11.11)

где Φα (x, t, τ), α = ϕ,ψ, f — решение задачи Коши





∂2

∂t2 Φα = a2 ∂2

∂x2 Φα, −∞ < x < ∞, t ≥ τ ≥ 0,
Φα (x, t, τ) |t=τ= 0, −∞ < x < ∞,
∂
∂tΦα (x, t, τ) |t=τ= α (x, τ) , −∞ < x < ∞.

(11.12)

В отличие от (11.10) формула (11.11) \работает " в случае простран-
ственной переменной x любой размерности. При n > 1 задача (11.12) имеет
вид





∂2

∂t2 Φα = a24Φα, x ∈ Rn, t ≥ τ ≥ 0,
Φα (x, t, τ) |t=τ= 0, x ∈ Rn,
∂
∂tΦα (x, t, τ) |t=τ= α (x, τ) , x ∈ Rn.

Её решения зависят от размерности пространства n. Приведём их для
n = 1, 3:

Φα (x, t, τ) =





1
2a

∫
|x−z|≤a(t−τ)

α (z, τ) dz, n = 1

1
2πa

∫∫
|z−x|≤a(t−τ)

α(z1,z2,τ) dz1dz2√
a2(t−τ)2−(z1−x1)

2−(z2−x2)
2
, n = 2

1
4πa

∫∫
|z−x|=a(t−τ)

α(z,τ)
|z−x| dSz, n = 3

Заметим, что в последнем варианте (при n = 3) в отличие от двух преды-
дущих интегрирование ведется лишь по поверхности шара радиуса a (t− τ),
а не по его внутренности. Это приводит к тому, что волны в трёхмерном про-
странстве обладают следующим свойством отсутствия последействия: ес-
ли волна возникает вследствие локализованного в пространстве и времени
возмущения, то в произвольной точке x пространства она локализована во
времени (наличие переднего и заднего фронтов волны)6.

Отметим также, что формулу Даламбера (n = 1) и формулу Пуассона
(n = 2) можно вывести из формулы Кирхгофа (n = 3) как частные случаи,
когда функция α (z1, z2, z3, τ) не зависит от соответствующих координат zi

(метод спуска)7.

6Вопрос: почему в одно- и двумерном случаях последействие имеет место?
7Задача на \пятёрку " на экзамене. См., например, [13].
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Задача Коши для системы телеграфных уравнений (линия без
искажений)

Рассмотрим теперь задачу Коши для системы телеграфных уравнений пер-
вого порядка 




v′x + Ri + Li′t = 0, x ∈ R, t > 0
i′x + Gv + Cv′t = 0, x ∈ R, t > 0
v (x, 0) = v0 (x) , x ∈ R
i (x, 0) = i0 (x) . x ∈ R

(11.13)

Как было показано выше в разделе 11.1.1, после исключения из системы
дифференциальных уравнений функции тока i (x, t) для напряжения v (x, t)
получается гиперболическое уравнение, которое в свою очередь упрощается
после замены u (x, t) = exp (µt) v (x, t) до уравнения

u′′t2 = a2u′′x2 + b2u,

где
b ≡ 1

2

(
R
L − G

C

)
,

µ ≡ 1
2

(
R
L + G

C

)
.

При b = 08 это уравнение принимает вид простейшего волнового

u′′t2 = a2u′′x2 .

общее решение которого (см. формулу (11.4) имеет вид

u (x, t) = f (x− at) + g (x + at) .

Следовательно, общее выражение для напряжения

v (x, t) = exp (−µt) u (x, t) =
= exp (−µt) (f (x− at) + g (x + at)) .

Для нахождения общего выражения для тока имеем из второго уравне-
ния системы

i′x (x, t) = −Gv − Cv′t =
= −Gv (x, t) + Cµv (x, t) +

+aC exp (−µt) (f ′ (x− at)− g′ (x + at)) =

=
√

C
L exp (−µt) (f ′ (x− at)− g′ (x + at)) .

После интегрирования по x получаем отсюда

i (x, t) =
√

C
L exp (−µt) (f (x− at)− g (x + at)) + c1 (t) =

=
√

C
L exp (−µt) (f (x− at)− g (x + at) + c2 (t)) ,

8Заметим, что при этом

µ = R
L

= G
C

,

aC = C√
LC

=
q

C
L

,

R = µL, G = µC, aL
q

C
L

= 1
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где c1 (t) — \постоянная " интегрирования — произвольная функция вре-

мени, c2 (t) ≡
√

L
C exp (µt) c1 (t).

В действительности функция c2 (t) постоянна. В этом можно убедиться
подставляя найденные решения в первое из телеграфных уравнений:

v′x + Ri + Li′t =
= exp (−µt) (f ′ (x− at) + g′ (x + at))+

+R
√

C
L exp (−µt) (f (x− at)− g (x + at) + c2 (t))−

−µL
√

C
L exp (−µt) (f (x− at)− g (x + at) + c2 (t))−

−aL
√

C
L exp (−µt) (f ′ (x− at) + g′ (x + at) + c′2 (t)) =

= − exp (−µt) c′2 (t) = 0.

Вводя вместо произвольных профилей волн f, g новые

f̃ ≡ f + c2
2 ,

g̃ ≡ f − c2
2

и опуская затем тильду, находим окончательное представление общего ре-
шения системы телеграфных уравнений для линии без искажений

{
v (x, t) = exp (−µt) (f (x− at) + g (x + at))

i (x, t) =
√

C
L exp (−µt) (f (x− at)− g (x + at))

(11.14)

Используем (11.14) для решения поставленной выше задачи Коши. До-
статочно подобрать профили волн f, g так, чтобы выполнялись начальные
условия {

f (x) + g (x) ≡ v0 (x) ,√
C
L (f (x)− g (x)) ≡ i0 (x) .

Для этого следует взять




f (x) ≡ v0(x)+
√

L
C i0(x)

2 ,

g (x) ≡ v0(x)−
√

L
C i0(x)

2 .

Задача о распространении краевого режима.

Рассмотрим смешанную задачу для однородного волнового уравнения




u′′t2 = a2u′′x2 , 0 < x < +∞, t > 0,
u (x, 0) = ϕ (x) , 0 < x < +∞,
u′t (x, 0) = ψ (x) , 0 < x < +∞,
u (0, t) = µ (t) , t ≥ 0.

Ищем её решение в виде суммы u = v + w, где




v′′t2 = a2v′′x2 ,
v (x, 0) = ϕ (x) ,
v′t (x, 0) = ψ (x) ,
v (0, t) = 0.

(v)





w′′t2 = a2w′′x2 ,
w (x, 0) = 0,
w′t (x, 0) = 0,
w (0, t) = µ (t) .

(w)
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Решим сперва задачу (v). Для этого построим вспомогательную задачу
Коши 




v̄′′t2 = a2v̄′′x2 , −∞ < x < ∞, t > 0
v̄ (x, 0) = ϕ̄ (x) , −∞ < x < ∞
v̄′t (x, 0) = ψ̄ (x) , −∞ < x < ∞,

где ϕ̄ (x) , ψ̄ (x) — нечётные продолжения соответствующих функций с по-
ложительной полуоси x на всю ось, то есть функции, удовлетворяющие
условиям

ϕ̄ (x) =
{

ϕ (x) , x > 0
−ϕ (−x) x ≤ 0 ,

ψ̄ (x) =
{

ψ (x) , x > 0
−ψ (−x) , x ≤ 0

.

Решение вспомогательной задачи Коши даётся формулой Даламбера

v̄ (x, t) =
ϕ̄ (x− at) + ϕ̄ (x + at)

2
+

1
2a

x+at∫

x−at

ψ̄ (z) dz.

Покажем, что эта функция, если её рассматривать лишь для x ≥ 0
(сужение функции v̄ (x, t)), даёт решение задачи (v). Достаточно проверить
лишь выполнение граничного условия; все остальные условия выполнены
на всей прямой x и, в частности, при x > 0. Имеем

v̄ (0, t) =
ϕ̄ (−at) + ϕ̄ (+at)

2
+

1
2a

at∫

−at

ψ̄ (z) dz = 0

в силу нечётности функций ϕ̄, ψ̄.
Замечание. Пусть ψ (x) ≡ 0. Записывая функцию ϕ̄ (x) в виде

ϕ̄ (x) ≡ ϕ (x) χ (x)− ϕ (−x)χ (−x) ,

где

χ (x) ≡
{

1, x ≥ 0
0, x < 0 (11.15)

— функция Хевисайда (индикатор положительной полуоси), получаем ре-
шение задачи (v) в виде

v (x, t) = 1
2 [ϕ (x + at)χ (x + at) + ϕ (x− at) χ (x− at)−

−ϕ (at− x)χ (at− x)− ϕ (−x− at)χ (−x− at)] =
= 1

2 [ϕ (x + at) + ϕ (x− at)χ (x− at)− ϕ (at− x) χ (at− x)] .

Эта формула допускает простую физическую интерпретацию. Первое
слагаемое это волна, набегающая на границу x = 0 с положительного на-
правления оси x. Второе и третье слагаемые это волны, бегущие в поло-
жительном направлении оси, причём вторая (прямая) отлична от нуля в
данной точке x лишь при 0 ≤ t ≤ x/a, а третья (отражённая от начала
координат и потому сменившая знак на противоположный — инвертиро-
ванная) - лишь при t ≥ x/a. Наконец, четвертая волна тождественно равна
нулю, так как аргумент функции Хевисайда −x− at отрицателен при всех
(x, t).
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Докажем, что найдённое решение задачи (v) единственно. Пусть суще-
ствуют два её решения: v1 и v2. Для их разности r (x, t) получаем





r′′t2 = a2r′′x2 , 0 < x < +∞, t > 0,
r (x, 0) = 0, 0 < x < +∞,
r′t (x, 0) = 0, 0 < x < +∞,
r (0, t) = 0, t ≥ 0.

Так как все решения волнового уравнения даются формулой (11.6), то

r (x, 0) = f (x) + g (x) = 0, x ≥ 0,
r′t (x, 0) = a (g′ (x)− f ′ (x)) = 0, x ≥ 0,
r (0, t) = f (−at) + g (at) = 0, t ≥ 0,

откуда
f (x) + g (x) = 0, x ≥ 0,
g (x)− f (x) = C1, x ≥ 0,
f (−x) + g (x) = 0, x ≥ 0.

Из первых двух тождеств получаем
{

f (x) ≡ −C2,
g (x) ≡ C2

при x ≥ 0, а затем из последнего тождества —

f (x) ≡ −g (−x) = −C2, x ≤ 0.

Таким образом,

r (x, t) = f (x− at) + g (x + at) ≡ C2 − C2 ≡ 0,

так как входящие в формулу функции определены выше как равные C2 по-
стоянные в соответствующих областях изменения аргументов. Полученное
тождество доказывает единственность решения задачи (v).

Перейдём к решению задачи (w). Представляя решение уравнения в виде
суммы бегущих волн

w (x, t) = f (x− at) + g (x + at)

и подставляя это решение в начальные и краевые условия задачи, получаем
систему уравнений для определения неизвестных профилей волн





w (x, 0) = f (x) + g (x) = 0, x ≥ 0,
wt (x, 0) = a (g′ (x)− f ′ (x)) = 0, x ≥ 0,
w (0, t) = f (−at) + g (at) = µ (t) , t ≥ 0

.

Решением этой системы являются функции
{

f (x) = χ (−x)µ
(−x

a

)− C, x ∈ (−∞,∞) ,
g (x) = C, x ≥ 0,

где C — произвольная постоянная, χ (x) — функция Хевисайда (11.15). Сле-
довательно, решение задачи (w) имеет вид

w (x, t) = χ
(
t− x

a

)
µ

(
t− x

a

)
.

Очевидно,что данное решение следует интерпретировать как \распро-
странение краевого режима " в положительном направлении оси x.
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Колебания отрезка струны.

Рассмотрим следующую смешанную задачу для однородного волнового урав-
нения





u′′t2 = a2u′′x2 , 0 < x < l, t > 0,
u (x, 0) = ϕ (x) , 0 < x < l,
u′t (x, 0) = ψ (x) , 0 < x < l,
u (0, t) = u (l, t) = 0, t ≥ 0,

моделирующую процесс малых колебаний отрезка струны 0 < x < l с за-
креплёнными конечными точками.

Для её решения построим вспомогательную задачу Коши. Пусть ϕ̄ (x) —
продолжение функции ϕ (x) с интервала (0, l) на всю действительную ось,
удовлетворяющее следующим условиям

ϕ̄ (0 + x) ≡ −ϕ̄ (0− x) ,
ϕ̄ (l + x) ≡ −ϕ̄ (l − x)

(нечётность относительно обеих граничных точек, иными словами, симмет-
рия графика функции относительно этих точек). Аналогично определим
продолжение ψ̄ функции ψ с интервала (0, l) на всю ось. Заметим, что по-
лученные функции периодичны с периодом 2l. Действительно,

ϕ̄ (2l + x) ≡ −ϕ̄ (l + l + x) ≡
≡ −ϕ̄ (l − l − x) ≡ −ϕ̄ (−x) ≡ ϕ̄ (x) .

Нетрудно видеть9, что

ϕ̄ (x) ≡
+∞∑

k=−∞
[ϕ (x− 2kl)χl (x− 2kl)− ϕ (2kl − x)χl (2kl − x)] ≡

≡ ϕ (x)χl (x)− ϕ (−x)χl (−x) + ϕ (x− 2l)χl (x− 2l)− . . . ,

(11.16)

где χl (x) — индикаторная функция интервала (0, l).
Рассмотрим теперь вспомогательную задачу Коши





ū′′t2 = a2ū′′x2 , −∞ < x < ∞, t > 0,
ū (x, 0) = ϕ̄ (x) , −∞ < x < ∞,
ū′t (x, 0) = ψ̄ (x) , −∞ < x < ∞,

решение которой даёт формула Даламбера

ū (x, t) =
ϕ̄ (x− at) + ϕ̄ (x + at)

2
+

1
2a

x+at∫

x−at

ψ̄ (z) dz. (11.17)

Убедимся в том, что это решение, если рассматривать его лишь для
t > 0, x ∈ [0, l], даёт решение исходной смешанной задачи. Очевидно, до-
статочно проверить лишь выполнение граничных условий. Имеем

ū (0, t) = ϕ̄(−at)+ϕ̄(at)
2 + 1

2a

at∫
−at

ψ̄ (z) dz ≡ 0,

ū (l, t) = ϕ̄(l−at)+ϕ̄(l+at)
2 + 1

2a

l+at∫
l−at

ψ̄ (z) dz ≡ 0

9При каждом x среди членов данного формального ряда лишь один отличен от ну-
ля. Заметим, что для корректности данной записи следует считать, что функция ϕ (x)
первоначально продолжена каким-либо образом (например нулём) на всю ось.
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в силу определения функций ϕ̄, ψ̄. Единственность решения смешанной за-
дачи можно доказать тем же способом, что и в предыдущей задаче.

Замечания.

1. Используя ряд (11.16), запишем полученное решение в виде

ū (l, t) = ϕ(x−at)χl(x−at)
2 + ϕ(x+at)χl(x+at)

2 −
−ϕ(−x+at)χl(−x+at)

2 − ϕ(−x+at)χl(−x+at)
2 + . . .

Члены формального ряда в правой части формулы можно интерпре-
тировать как бегущие в прямом и обратном направлениях волны, ис-
пытывающие последовательные отражения от закреплённых концов
отрезка. При этом при каждом отражении волна меняет свой знак.

2. Решение (11.17) допускает и другую, более естественную в данном
случае интерпретацию. Разложим периодические нечётные функции
ϕ̄, ψ̄ в ряды Фурье, сходящиеся к ним на всей прямой:

ϕ̄ (x) =
∞∑

n=1
ϕn sin πnx

l ,

ψ̄ (x) =
∞∑

n=1
ψn sin πnx

l ,

где
ϕn = 2

l

∫ l

0
ϕ (x) sin πnx

l dx,

ψn = 2
l

∫ l

0
ψ (x) sin πnx

l dx.

После подстановки этих рядов в (11.17) и несложных формальных
преобразований получаем

u (x, t) =
∞∑

n=1
ϕn

(sin πn(x−at)
l +sin

πn(x+at)
l )

2 +

+ 1
2a

∞∑
n=1

ψn

x+at∫
x−at

sin πnz
l dz =

=
∞∑

n=1

(
ϕn cos ωnt + sin ωnt

ωn
ψn

)
sin πnx

l ,

где ωn ≡ πna
l .

Каждая из функций под знаком данного ряда может быть истолко-
вана как стоячая волна с профилем sin πnx

l и собственной частотой
ωn. Следовательно, решение смешанной задачи о колебаниях отрезка
струны можно представить и как бесконечную сумму стоячих волн.

11.1.3 Метод фундаментальных решений
В основе данного метода лежит представление о точечном мгно-
венном источнике волн и принципе суперпозиции, справедливом
для линейных систем. Исходя из последнего волна, порождаемая
сложным источником может рассматриваться как сумма (инте-
грал) элементарных волн, порождаемых совокупностью элемен-
тарных источников.
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Математическим обоснованием метода служит теория обобщённых функ-
ций10, краткое введение в которую излагается далее. Дополнительные све-
дения по обобщённым функциям можно получить, например, в книгах [13,
14, 17, 18].

Введение в теорию обобщенных функций

Определение11. Пространством основных (пробных) функций K назы-
вается множество всех бесконечно-дифференцируемых функций с ограни-
ченными носителями12:

K = {ϕ (x) : x ∈ R, ϕ (·) ∈ C∞ (R) , Supp ϕ ⊂ [A,B] ⊂ R} .

(здесь отрезок [A,B] зависит от функции ϕ).
Определение. Пространством обобщённых функций (о.ф.) K ′ (над

пространством основных функций K) называется множество всех линей-
ных непрерывных функционалов на K:

1. f : K → R;

2. (f, c1ϕ1 + c2ϕ2) = c1 (f, ϕ1) + c2 (f, ϕ2) ∀ϕ1,2 ∈ K;

3. (f, ϕn) → 0 при ϕn
K→ 0.13

Примеры.

1. Пусть f̂ (x) — локально интегрируемая14 в R функция. Положим

(f, ϕ) =

+∞∫

−∞
f̂ (x)ϕ (x) dx.

Такие обобщённые функции называются регулярными. Все прочие —
сингулярными.

2. Главное значение15 от 1
x :

(P 1
x , ϕ

)
= Vp

+∞∫
−∞

ϕ(x)
x dx =

= lim
ε→+0

(
−ε∫
−∞

ϕ(x)
x dx +

+∞∫
ε

ϕ(x)
x dx

)
.

10В зарубежной литературе чаще используется термин \распределения " .
11Здесь мы излагаем случай обобщённых функций (о.ф.) одной действительной пере-

менной. Однако, большинство вводимых определений и утверждений без труда может
быть обобщено и на случай о.ф. многих действительных переменных.

12Носителем функции Supp ϕ называется замыкание множества тех точек оси, в ко-
торых функция ϕ (x) отлична от нуля.

13Предварительно следует, конечно, точно определить тип сходимости последователь-
ности в пространстве K. Именно, последовательность ϕn

K→ 0, если сама эта функция и
её производные любого порядка сходятся к нулю равномерно на любом отрезке оси.

14То есть интегрируемая по Риману на любом конечном отрезке.
15Заметим, что функция 1

x
не является локально интегрируемой и соответствующие

интегралы существуют для неё лишь в смысле главного значения.
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3. Дельта-функция Дирака:

(δ, ϕ) = ϕ (0) .

Подобные функции использовались в прикладных исследованиях дав-
но, ещё до Дирака. Рассмотрим, например, обычные для физики рас-
суждения, приводящие к понятию плотности массы материальной точ-
ки. Рассмотрим единичную массу, \размазанную" в ε-окрестности точ-
ки ноль (в трёхмерном пространстве). При ε → +0 плотность массы
ρε (x) оказывается равной нулю во всём пространстве за исключением
точки x = 0, где она \уходит" на бесконечность. При этом интеграл
по всему пространству от \предельной функции" должен оставаться
равным единице — полной массе вещества. Далее, для любой непре-
рывной функции ϕ (x)

∫
R3

ρε (x)ϕ (x) dx = ϕ (ξε)
∫
R3

ρε (x) dx =

= ϕ (ξε) → ϕ (0) , ε → 0.

Таким образом, плотность материальной точки следовало бы опреде-
лить как функцию ρ (x), обладающую следующими свойствами

ρ (x) =
{

+∞, x = 0
0, x 6= 0 ,

∫
R3

ρ (x)ϕ (x) dx = ϕ (0) ∀ϕ (·) .

Нетрудно, однако, показать, что интеграл Римана для такой функции
не существует (а Лебега — равен нулю). Это означает, что построен-
ную плотность точечной массы нельзя рассматривать как \обычную
функцию" .

4. Смещённая дельта-функция:

(δ (x− x0) , ϕ (x)) = ϕ (x0) .

5. Производная дельта-функции:

(δ′, ϕ) = −ϕ′ (0) .

Разумеется, не всякий функционал над пространством основных функ-
ций K является обобщённой функцией. Приведём примеры таких функци-
оналов.

Примеры.

1. Все нелинейные функционалы. Например, (f, ϕ) = max
x
|ϕ (x)|.

2. Линейные разрывные функционалы. Существование подобных функ-
ционалов можно доказать, однако конструктивные примеры очень слож-
ны (см.[17]).
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Большинство элементарных функций локально интегрируемы в R и по-
тому порождают регулярные обобщённые функции. Однако, не все обобщённые
функции являются регулярными.

Лемма. Дельта-функция — сингулярна.
Доказательство. От противного. Пусть найдется локально интегриру-

емая в R функция f̃ (x) такая, что

(δ, ϕ) =

+∞∫

−∞
f̃ (x)ϕ (x) dx = ϕ (0) ∀ϕ ∈ K.

Возьмем, в частности, пробную функцию

ϕε (x) =

{
0, |x| ≥ ε

exp
(
− 1

1−(x/ε)2

)
, |x| < ε

.

Для неё

|(δ, ϕε)| = |ϕε (0)| = 1
e =

=

∣∣∣∣∣
+∞∫
−∞

f̃ (x)ϕε (x) dx

∣∣∣∣∣ =

∣∣∣∣∣
ε∫
−ε

f̃ (x) exp
(
− 1

1−(x/ε)2

)
dx

∣∣∣∣∣ ≤

≤
ε∫
−ε

∣∣∣f̃ (x)
∣∣∣ dx →

ε→0
0.

Полученное противоречие доказывает лемму.

Операции над обобщёнными функциями

• Обобщённые функции f1 и f2 совпадают на множестве E, если

(f1, ϕ) = (f2, ϕ) ∀ϕ ∈ K, Suppϕ ⊂ E

В частности, обобщённые функции просто совпадают, если они сов-
падают на всём множестве R, то есть

(f1, ϕ) = (f2, ϕ) ∀ϕ ∈ K.

• Для любых обобщённых функций f1,2 и любых чисел α1,2 линейная
комбинация α1f1 + α2f2 определяется как обобщённая функция вида

(α1f1 + α2f2, ϕ) = α1 (f1, ϕ) + α2 (f2, ϕ) , ϕ ∈ K.

• Для любых α (·) ∈ C∞ (R) и f ∈ K ′ их произведение определяется как
обобщённая функция вида

(αf, ϕ) = (f, αϕ) .

• (Обобщённая) производная обобщённой функции f определяется как
функционал вида

(f ′, ϕ) = − (f, ϕ′) .
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Производная k−го порядка определяется как первая производная от
производной порядка k − 1. В итоге по индукции получаем формулу

(
f (k), ϕ

)
= (−1)k

(
f, ϕ(k)

)
.

Примеры.

• Производная регулярной обобщённой функции, порождаемой функци-
ей Хевисайда (11.15).

1. Имеем
(χ′, ϕ) = − (χ, ϕ′) =

= −
+∞∫
0

ϕ′ (x) dx = +ϕ (0) = (δ, ϕ) ,

следовательно, χ′ = δ.16

2. Производная регулярной обобщённой функции, порождаемой кусочно-
гладкой функцией.
Пусть

f ∈ C1 (−∞, x0) ∩ C1 (x0, +∞) ,
f (x0 + 0)− f (x0 − 0) = h.

Найдем обобщённую производную f ′об этой функции. Обозначая
через f ′кл (x) обычную (классическую) производную данной функ-
ции (в тех точках где она существует) и вычисляя интегралы по
частям, имеем

(f ′об, ϕ) = − (f, ϕ′) = −
+∞∫
−∞

f (x)ϕ′ (x) dx =

= −
x0∫
−∞

f (x)ϕ′ (x) dx−
+∞∫
x0

f (x)ϕ′ (x) dx =

= −fϕ|x0−0
−∞ +

x0∫
−∞

f ′кл (x)ϕ (x) dx− fϕ|+∞x0+0 +
+∞∫
x0

f ′кл (x)ϕ (x) dx =

= ϕ (x0) (f (x0 + 0)− f (x0 − 0)) +
+∞∫
−∞

f ′кл (x)ϕ (x) dx =

= (hδ (x− x0) , ϕ (x)) +
+∞∫
−∞

f ′кл (x)ϕ (x) dx =

= (hδ (x− x0) + f ′кл (x) , ϕ (x)) .

Отсюда получаем следующее правило обобщённого дифференци-
рования кусочно-гладких функций:

f ′об (x) = f ′кл (x) + hδ (x− x0)

— обобщённая производная регулярной о.ф., порождаемой кусочно-
гладкой функцией, равна сумме регулярной о.ф., порождаемой
классической производной данной функции, и дельта-функции,

16Интуитивно этого следовало ожидать: функция χ (x) везде постоянна, кроме точки
x = 0, в которой скорость её изменения бесконечна.
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сосредоточенной в точке скачка с весом, равным скачку. Отсю-
да в частности следует, что обобщённая производная регуляр-
ной о.ф., порождаемой непрерывно-дифференцируемой функци-
ей, совпадает с регурярной о.ф., порождаемой классической про-
изводной функции (обобщённая производная совпадает с класси-
ческой в случае существования последней).

• Результат предыдущего примера естественно обобщается на случай
функций с бесконечным числом скачков. В качестве примера найдём
производную \пилы ": периодической (с периодом 2π) функции

f (x) = x, |x| < π.

1. Аналогично вышеизложенному находим

f ′ (x) = 1−
∞∑

k=−∞
2πδ (x− π − 2πk) .

2. Производные дельта-функции:

(δ′, ϕ) = − (δ, ϕ′) = −ϕ′ (0) ,
· · · ,(

δ(k), ϕ
)

= (−1)k (
δ, ϕ(k)

)
= (−1)k

ϕ(k) (0) .

• Замена переменной в обобщённой функции. По определению

(f (ax + b) , ϕ (x)) =
(

f (x) ,
1
|a|ϕ

(
x− b

a

))
.

В частности,

(f (x + b) , ϕ (x)) = (f (x) , ϕ (x− b)) ,

(f (ax) , ϕ (x)) =
(

f (x) ,
1
|a|ϕ

(x

a

))
,

(f (−x) , ϕ (x)) = (f (x) , ϕ (−x)) .

Используя данное определение можно ввести разнообразные свойства
симметрии обобщённых функций. Например, обобщённая функция на-
зывается

– чётной, если f (−x) = f (x), то есть

(f (x) , ϕ (x)) = (f (x) , ϕ (−x)) ∀ϕ ∈ K;

– нечётной, если f (−x) = −f (x), то есть

(f (x) , ϕ (x)) = − (f (x) , ϕ (−x)) ∀ϕ ∈ K;

– периодической с периодом T , если f (x + T ) = f (x), то есть

(f (x) , ϕ (x)) = (f (x) , ϕ (x− T )) ∀ϕ ∈ K

и т.д. Примером чётной о.ф. является дельта-функция , нечётной
— её производная (докажите!).
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• Прямое произведение обобщённых функций f (x) и g (y) независимых
переменных x и y вводится как обобщённая функция двух перемен-
ных, действующая на основную функцию этих переменных по правилу

(f (x) g (y) , ϕ (x, y)) = (f (x) , (g (y) , ϕ (x, y))) .

• Свёртка обобщённых функций вводится в два этапа:

– свёрткой обобщённой функции g с основной функцией ϕ называ-
ется основная функция17

ϕ1 (x) = (g (ξ) , ϕ (x + ξ)) ;

– свёрткой обобщённых функций f и g называется функционал
h ≡ f ∗ g, действующий на пробную функцию по правилу

(h, ϕ) = (f ∗ g, ϕ) = (f, g ∗ ϕ) ,

при условии, что он принадлежит K ′, то есть сам является обобщённой
функцией.

Пример.
Пусть f, g — регулярные о.ф. Имеем

g ∗ ϕ = (g (ξ) , ϕ (x + ξ)) =
+∞∫
−∞

g (ξ)ϕ (x + ξ) dξ,

(f ∗ g, ϕ) =
+∞∫
−∞

f (x) dx
+∞∫
−∞

g (ξ)ϕ (x + ξ) dξ =
+∞∫
−∞

h (y) ϕ (y) dy,

h (y) ≡
+∞∫
−∞

g (y − x) f (x) dx.

Отметим, что функция h (y), определяемая последней формулой, на-
зывается в теории функций свёрткой (интегрируемых) функций g
и f . Следовательно, свёртке регулярных обобщённых функций соот-
ветствует регулярная обобщённая функция, порождаемая свёрткой
соответствующих локально интегрируемых функций.
Свойства свёртки.

1. Коммутативность: если хотя бы одна из следующих свёрток
существует, то

f ∗ g = g ∗ f ;

2. Дифференцирование свёртки: в случае существования соответ-
ствующих свёрток

(f ∗ g)′ = f ′ ∗ g = f ∗ g′;

3. Роль дельта-функции в свёртке:

f ∗ δ = δ ∗ f = f,
f ∗ δ′ = f ′ ∗ δ = f ′

17Обозначаемая g ∗ ϕ.



РАЗДЕЛ 11.1. ГИПЕРБОЛИЧЕСКИЕ УРАВНЕНИЯ 101

Докажем, например, свойство 2. Пусть ϕ1 ≡ g ∗ ϕ. Тогда

ϕ′1 = (g ∗ ϕ)′ = (g, ϕ)′ = −g′ ∗ ϕ.

Поэтому
(
(f ∗ g)′ , ϕ

)
= − (f ∗ g, ϕ′) = − (f, g ∗ ϕ′) =

= (f, g′ ∗ ϕ) = (f ∗ g′, ϕ)

и
(f ∗ g)′ = f ∗ g′.

Применение теории обобщенных функций при решении задачи
Коши для волнового уравнения.

В данном разделе все функции, зависящие от временн о́й переменной t,
считаются равными нулю при t < 0. Введём также оператор Даламбера18

¤a ≡ ∂2

∂t2
− a2 ∂2

∂x2

Теорема. Регулярная обобщённая функция u (x, t), порождаемая (клас-
сическим) решением задачи Коши





¤au (x, t) = f (x, t) , x ∈ R, t > 0,
u (x, 0) = ϕ (x) , x ∈ R,
u′t (x, 0) = ψ (x) , x ∈ R,

удовлетворяет следующему уравнению в обобщённых функциях

¤au (x, t) = ϕ (x) δ′ (t) + ψ (x) δ (t) + f (x, t)

Доказательство. Пусть α (x, t) — произвольная пробная функция двух
переменных. Имеем с учётом сделанного выше замечания о равенстве нулю
функций при t < 0

(¤au, α) = (u,¤aα) =
∫∫
R2

(
α′′t2 − a2α′′x2

)
u dxdt =

=
+∞∫
0

dt
+∞∫
−∞

(
α′′t2 − a2α′′x2

)
u dx.

Далее,

+∞∫
0

dt
+∞∫
−∞

α′′t2u dx =
+∞∫
−∞

dx
+∞∫
0

α′′t2u dt =

=
+∞∫
−∞

dx

[
uα′t|+∞0 − u′tα|+∞0 +

+∞∫
0

αu′′t2 dt

]
=

=
+∞∫
−∞

dx

[
−ϕ (x)α′t (x, 0) + ψ (x)α (x, 0) +

+∞∫
0

αu′′t2 dt

]
=

= (ϕ (x) δ′ (t) + ψ (x) δ (t) , α) +
∫∫
R2

αu′′t2 dxdt.

18Значок ¤ называют иногда даламбертианом по аналогии со значком 4 - лапласиа-
ном.
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Аналогично,

− a2
+∞∫
0

dt
+∞∫
−∞

α′′x2u dx =

= − a2
+∞∫
0

dt
+∞∫
−∞

u′′x2α dx =
∫∫
R2

(
f − u′′t2

)
α dxdt =

= (f, α)− ∫∫
R2

αu′′t2 dxdt

Поэтому ∀α

(¤au, α) = (ϕ (x) δ′ (t) + ψ (x) δ (t) + f (x, t) , α) ,

что и доказывает теорему.
Определение.Пусть f (x, t) , ϕ (x) , ψ (x) — заданные обобщённые функ-

ции своих переменных. Решением обобщённой задачи Коши




¤au (x, t) = f (x, t) ,
u (x, 0) = ϕ (x) ,
u′t (x, 0) = ψ (x)

называется о.ф. u (x, t), удовлетворяющая следующему уравнению в обобщённых
функциях

¤au (x, t) = ϕ (x) δ′ (t) + ψ (x) δ (t) + f (x, t) .

Определение. Фундаментальным решением волнового уравнения

¤au (x, t) = 0

называется о.ф. G (x, t), удовлетворяющая уравнению

¤aG = δ (x, t) .

Замечание. Можно дать также следующие два эквивалентные19 при-
ведённому выше определения: фундаментальным решением G (x, t) назы-
вается решение любой из следующих двух обобщённых задач Коши

а) 



¤aG (x, t) = δ (x, t) ,
G (x, 0) = 0,
G′t (x, 0) = 0;

б) 



¤aG (x, t) = 0,
G (x, 0) = 0,
G′t (x, 0) = δ (x) .

Теорема. Фундаментальное решение волнового уравнения имеет вид

G (x, t) =
1
2a

χ (at− |x|) , (11.18)

19Проверьте эквивалентность, учитывая данное выше определение обобщённого реше-
ния задачи Коши!
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где χ (x) — функция Хевисайда (11.15).
Доказательство. Пусть α (x, t) — произвольная пробная функция двух

переменных. Имеем для функции (11.18)

(¤aG, α) = (G,¤aα) = 1
2a

∫∫
R2

χ (at− |x|)¤aα (x, t) dxdt =

= 1
2a

+∞∫
0

dt
at∫
−at

dx
(
α′′t2 − a2α′′x2

)
= :

{
ξ = x− at
η = x + at

=

= 1
4a2

∫∫
{η>0,ξ<0}

(
−4a2α′′ξη

)
dξdη = α (0, 0) = (δ, α) ,

что доказывает теорему.
Теорема. Решение уравнения

¤au (x, t) = F (x, t) , (11.19)

где F — заданная, u — искомая обобщённые функции, существует, един-
ственно20 и имеет вид

u = F ∗G, (11.20)

где G — фундаментальное решение волнового уравнения.
В частности, единственное решение обобщённой задачи Коши даётся

свёрткой

u (x, t) = G (x, t) ∗ (f (x, t) + ϕ (x) δ′ (t) + ψ (x) δ (t)) . (11.21)

Доказательство. Покажем, что (11.20) является решением уравнения
(11.19). Имеем, используя свойства свёртки,

¤au = ¤a (F ∗G) = F ∗¤aG = F ∗ δ = F.

Покажем далее, что решение (11.20) единственно в классе тех обобщённых
функций, для которых существует свёртка с G (x, t). Для этого достаточно
убедиться в том, что однородное уравнение

¤au (x, t) = 0,

имеет в данном классе лишь нулевое решение. Но это действительно спра-
ведливо, так как

u = u ∗ δ = u ∗¤aG = ¤au ∗G = 0.

Второе утверждение теоремы является простым следствием первого в
силу определения решения обобщённой задачи Коши.

Теорема. Классическое решение задачи Коши даётся формулой Далам-
бера.21

Доказательство. По доказанным выше теоремам всякое классическое
решение задачи Коши является её обобщённым решением. Поэтому оно за-
писывается в форме (11.21). Остаётся лишь вычислить соответствующие
свёртки для регулярных функционалов.

Имеем, вычисляя последовательно свёртки,
20См. уточнение свойства единственности в доказательстве теоремы.
21Ещё один вывод этой формулы - с помощью аппарата обобщённых функций.
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1.
G (x, t) ∗ (ψ (x) δ (t)) = (G (x, t) ∗ δ (t)) ∗ ψ (x) =

= G (x, t) ∗ ψ (x) =
+∞∫
−∞

ψ (x− ξ)G (ξ, t) dξ =

= 1
2a

+∞∫
−∞

χ (at− |ξ|)ψ (x− ξ) dξ = 1
2a

x+at∫
x−at

ψ (z) dz;

2.
G (x, t) ∗ (ϕ (x) δ′ (t)) = (G (x, t) ∗ ϕ (x)) ∗ δ′ (t) =

= (G (x, t) ∗ ϕ (x))′t =

(
1
2a

x+at∫
x−at

ϕ (z) dz

)′

t

= ϕ(x−at)+ϕ(x+at)
2

3.

G (x, t) ∗ f (x, t) =
+∞∫
−∞

dξ
+∞∫
−∞

dη G (ξ, η) f (x− ξ, t− η) =

= 1
2a

+∞∫
0

dη
aη∫
−aη

f (x− ξ, t− η) dξ =

= 1
2a

t∫
0

dτ
x+a(t+τ)∫
x−a(t−τ)

f (z, τ) dz.

После подстановки полученных выражений в формулу (11.21) для обобщённого
решения получаем формулу Даламбера, что и доказывает теорему.

11.1.4 Метод интегральных преобразований

Общая идея данной группы методов заключается в замене ис-
ходной начально-краевой задачи для уравнения в частных про-
изводных начально-краевой задачей для обыкновенного диффе-
ренциального уравнения (с параметром), которому удовлетворя-
ет образ исходного решения при интегральном преобразовании.

Введём необходимые определения. Пусть

Φ ≡ {f (x)}

— некоторое множество функций (класс оригиналов), а

Φ̄ ≡ {
f̄ (p)

}

— множество соответствующих им при интегральном преобразовании

f̄ (p) = A [f (x)]

функций (класс изображений)
Общий вид интегрального оператора

A [f (x)] =

b∫

a

K (p, x) f (x) dx,
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где −∞ ≤ a < b ≤ +∞, K (p, x) — ядро интегрального оператора. Соответ-
ствие между оригиналом f (x) и его изображением f̄ (p) будем обозначать
также формулой

f (x)÷ f̄ (p) .

Приведём примеры наиболее часто используемых в приложениях инте-
гральных преобразований. Заметим, что выбор того или иного интеграль-
ного преобразования для решения конкретной задачи определяется специ-
фикой этой задачи: свойствами решения, граничными условиями и т.д. (см.
[20]).

Примеры.

1. Фурье-преобразование: p ≡ ω ∈ R, K (p, x) ≡ exp (−iωx),

f̄ (ω) =

+∞∫

−∞
exp (−iωx) f (x) dx;

2. Синус(косинус)-Фурье преобразования: p ≡ ω ∈ R, KS (p, x) ≡ sinωx
(KC (p, x) ≡ cos ωx),

f̄S (ω) =
+∞∫
0

sin ωx f (x) dx,

f̄C (ω) =
+∞∫
0

cos ωx f (x) dx;

3. Преобразование Лапласа: p ∈ C, K (p, x) ≡ exp (−px),

f̄ (p) =

+∞∫

0

exp (−px) f (x) dx;

4. Преобразование Меллина: p ∈ C, K (p, x) ≡ xp−1,

f̄ (p) =

+∞∫

0

xp−1f (x) dx;

5. Преобразование Бесселя: p ∈ C, K (p, x) ≡ Kν (px) — одна из функций
Бесселя,

f̄ (p) =

+∞∫

0

Kν (px) f (x) dx.

Преобразование Фурье

Напомним некоторые основные свойства данного интегрального преобразо-
вания22. В качестве класса оригиналов будем использовать здесь множество

22См. соответствующие разделы курса математического анализа. Это касается и дру-
гих интегральных преобразований.
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ΦF кусочно-гладких, интегрируемых и регулярных23 на всей прямой функ-
ций. Прямое и обратное преобразования Фурье24 задаются соответственно
формулами

f̄ (ω) ≡ F (f (x)) =

+∞∫

−∞
exp (−iωx) f (x) dx;

f (x) ≡ F−1
(
f̄ (ω)

)
= Vp

1
2π

+∞∫

−∞
exp (iωx) f̄ (ω) dω.

Если f (x)÷ f̄ (ω), g (x)÷ ḡ (ω), то

1. αf (x) + βg (x)÷ αf̄ (ω) + βḡ (ω) (линейность преобразования);

2. f (x− β)÷ exp (−iωβ) f̄ (ω) (формула смещения);

3. f (αx)÷ 1
α f̄

(
ω
α

)
(преобразование подобия);

4.
f ′ (x)÷ iωf̄ (ω) ,

. . . ,
f (n) (x)÷ (iω)n

f̄ (ω)

(дифференцирование оригинала);

5. ∫
f (x) dx÷ 1

iω f̄ (ω) ,
. . . ,∫

· · ·
∫

︸ ︷︷ ︸
n

f (x) dx÷ 1
(iω)n f̄ (ω)

(интегрирование оригинала);

6. f (x) ∗ g (x)÷ f̄ (ω) · ḡ (ω) (преобразование свёртки).

Пример (Решение задачи Коши для однородного волнового уравнения).




u′′tt = a2u′′xx, −∞ < x < +∞, t > 0,
u (x, 0) = ϕ (x) , −∞ < x < +∞,
u′t (x, 0) = ψ (x) −∞ < x < +∞.

(11.22)

Для решения данной задачи применим метод интегрального преобразо-
вания Фурье по пространственной переменной x.

Предполагая, что начальные данные принадлежат классу оригиналов
ΦF , введём обозначения

ϕ̄ (ω) ≡ F (ϕ (x)) ≡
+∞∫
−∞

exp (−iωx)ϕ (x) dx,

ψ̄ (ω) ≡ F (ψ (x)) ≡
+∞∫
−∞

exp (−iωx)ψ (x) dx.

23Функция в данном разделе называется регулярной в точке x, если

f (x) =
f (x + 0) + f (x− 0)

2

24\Memoire sur la propagation de la chaleur " (1811).
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Можно показать25, что решение задачи при любом фиксированном t
также принадлежит классу оригиналов. Его образ обозначим

ū (ω, t) ≡ F (u (x, t)) ≡
+∞∫

−∞
exp (−iωx)u (x, t) dx.

Применяя преобразование Фурье к каждой из строк системы (11.22), по-
лучаем (с учётом свойств преобразования) задачу Коши для обыкновенного
дифференциального уравнения с параметром ω





F (u′′tt) = F
(
a2u′′xx

)
,

F (u (x, 0)) = F (ϕ (x)) ,
F (u′t (x, 0)) = F (ψ (x))

⇔




ū′′tt = −ω2a2ū,
ū (ω, 0) = ϕ̄ (ω) ,
ū′t (ω, 0) = ψ̄ (ω)

.

Решение этой последней задачи легко находится:

ū (ω, t) =
1
2

[
ϕ̄ (ω) e−iωat + ϕ̄ (ω) eiωat

]
+

1
2a

[
ψ̄ (ω)
iω

eiωat − ψ̄ (ω)
iω

e−iωat

]

Так как

ϕ̄ (ω) e−iωat = F (ϕ (x− at)) , ϕ̄ (ω) eiωat = F (ϕ (x + at)) ,
ψ̄(ω)
iω e−iωat = F (E (x− at)) , ψ̄(ω)

iω eiωat = F (E (x + at)) ,

где

E (x) ≡
x∫

0

ψ (z) dz,

то

F (u (x, t)) = F


ϕ (x + at) + ϕ (x− at)

2
+

1
2a

x+at∫

x−at

ψ (z) dz


 .

Отсюда после обратного преобразования Фурье вновь26 получаем фор-
мулу Даламбера для решения задачи Коши. Заметим, что это решение мож-
но записать также в виде \суммы плоских волн "

u (x, t) = Vp
+∞∫
−∞

A1 (ω) exp iω (x− at) dω+

+ Vp
+∞∫
−∞

A2 (ω) exp iω (x + at) dω,

где комплексные амплитуды волн

A1 (ω) ≡ ωaϕ̄(ω)+iψ̄(ω)
4πωa ,

A2 (ω) ≡ ωaϕ̄(ω)−iψ̄(ω)
4πωa = Ā1 (ω) .

25Используя, например, ранее полученную формулу Даламбера.
26Уже третий раз.
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Синус- и косинус-Фурье преобразования

Класс оригиналов ΦS(C) для данных преобразований состоит из всех функ-
ций f (x), определённых на положительной полуоси x ≥ 0, которые, будучи
продолженными нулём на всю ось, принадлежат множеству ΦF . Сами пре-
образования определяются формулами

f̄ (ω) = S (f (x)) =
+∞∫
0

f (x) sin ωxdx,

f (x) = S−1
(
f̄ (ω)

)
= 2

π

+∞∫
0

f̄ (ω) sin ωxdω,

f̄ (ω) = C (f (x)) =
+∞∫
0

f (x) cos ωx dx,

f (x) = C−1
(
f̄ (ω)

)
= 2

π

+∞∫
0

f̄ (ω) cos ωx dω.

Свойства данных преобразований близки соответствующим свойствам
преобразования Фурье (см., например, [20]). Приведём лишь формулы для
преобразований производных, нужные нам для решения следующей далее
задачи:

S (f ′) = −ωC (f) ,
C (f ′) = −f (+0) + ωS (f) ,
S (f ′′) = ωf (+0)− ω2S (f) ,

. . .

Пример (Решение смешанной задачи для однородного волнового уравне-
ния - колебания полуограниченной струны).





u′′tt = a2u′′xx, x > 0, t > 0,
u (0, t) = 0, t > 0,
u (x, 0) = 0, x > 0,
u′t (x, 0) = ψ (x) , x > 0.

(11.23)

Вводя обозначения

ū (ω, t) ≡ S (u (x, t)) ,
ψ̄ (ω) ≡ S (ψ (x)) ,

и применяя синус-Фурье преобразование к первым трём строкам системы
(11.23), получим следующую задачу Коши для обыкновенного дифферен-
циального уравнения второго порядка





ū′′tt = a2ωu (+0, t)− a2ω2ū = −a2ω2ū,
ū (ω, 0) = 0,
ū′t (ω, 0) = ψ̄ (ω) .

Её решением, очевидно, является функция

ū (ω, t) =
1

aω
ψ̄ (ω) sin aωt.
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Остаётся лишь взять обратное синус-Фурье преобразование для восста-
новления решения задачи:

u (x, t) = S−1 (ū (ω, t)) = 2
π

+∞∫
0

1
aω ψ̄ (ω) sin aωt sin ωxdω =

= 1
π

+∞∫
0

ψ̄(ω)
aω [cos ω (x− at)− cos ω (x + at)] dω =

= 1
2a

2
π

+∞∫
0

ψ̄ (ω)
(− cos ωz

ω

)∣∣z=x+at

z=x−at
dω = 1

2a
2
π

+∞∫
0

ψ̄ (ω)
(− cos ωz

ω

)∣∣z=x+at

z=|x−at| dω =

= 1
2a

2
π

+∞∫
0

ψ̄ (ω)
x+at∫
|x−at|

sin ωz dz dω = 1
2a

x+at∫
|x−at|

(
2
π

+∞∫
0

ψ̄ (ω) sin ωz dω

)
dz =

= 1
2a

x+at∫
|x−at|

ψ (z) dz = 1
2a

x+at∫
x−at

ψ̃ (z) dz,

где ψ̃ (z) — нечётное продолжение функции ψ (z) на всю прямую. Таким
образом, помимо формул для решения задачи нами получен также следу-
ющий рецепт её решения27: можно продолжить начальные данные на всю
прямую с учётом краевого условия (нечётным образом в данном случае —
жёсткое закрепление) и воспользоваться формулой Даламбера для полу-
ченной вспомогательной задачи Коши.

Преобразование Лапласа (1782)

В класс оригиналов для преобразования Лапласа включается любая функ-
ция f (x), для которой существует постоянная γ (своя для каждой функ-
ции), для которой f (x) exp (−γx) ∈ ΦS . Само преобразование имеет вид

f̄ (p) = L (f (x)) ≡
+∞∫

0

f (x) exp (−px) dx, p ∈ C, Re p > γ.

Обратным к нему выступает интегральное преобразование

f (x) = L−1
(
f̄ (p)

) ≡ Vp
1

2πi

γ1+i∞∫

γ1−i∞

f̄ (p) exp (px) dp, γ1 > γ.

Из свойств преобразования Лапласа приведём лишь необходимые нам
формулы для преобразования производных:

L (f ′) = pL (f)− f (+0) ,
L (f ′′) = p2L (f)− pf (+0)− f ′ (+0) ,

. . . ,
L

(
f (n)

)
= pnL (f)− pn−1f (+0)− . . .− f (n−1) (+0) .

Пример (Решение смешанной задачи для однородного волнового уравне-
ния — колебания отрезка струны).





u′′tt = a2u′′xx, 0 < x < l, t > 0,
u (0, t) = u (l, t) = 0, t > 0,
u (x, 0) = ϕ (x) , 0 < x < l,
u′t (x, 0) = ψ (x) , 0 < x < l.

(11.24)

27См. раздел 11.1.2.
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Пусть

ū (x, p) ≡
(t)

L (u (x, t)) =

+∞∫

0

u (x, t) exp (−pt) dt.

Применяя преобразование Лапласа по временн о́й переменной t к урав-
нению задачи (11.24) и граничным условиям, получаем с учётом начальных
данных следующую краевую задачу для обыкновенного дифференциально-
го уравнения второго порядка

{
a2ū′′xx − p2ū + pϕ (x) + ψ (x) = 0, 0 < x < l
ū (0, p) = ū (l, p) = 0.

После её решения находим функцию u (x, t) обратным преобразованием
Лапласа:

u (x, t) = L−1 (ū (x, p)) ≡ Vp
1

2πi

γ1+i∞∫

γ1−i∞

ū (x, p) exp (pt) dp.

11.1.5 Метод разделения переменных Фурье — метод
стоячих волн

В основе данного метода решения различных задач математиче-
ской физики лежит факт существования решений уравнения в
частных производных специального вида — с разделяющимися
переменными. В волновых задачах подобные решения допускают
простое физическое истолкование в терминах стоячих волн. Об-
щее решение задачи при этом пытаются найти как сумму (ряд,
интеграл) стоячих волн, подбирая параметры последних.

Математическим обоснованием данной группы методов служит спек-
тральная теория дифференциальных операторов, исторически развивша-
яся из теории задачи Штурма-Лиувилля. При изложении данных разделов
удобно оперировать общими понятиями и терминами теории евклидовых
пространств (функциональный анализ).

Минимум сведений об евклидовых пространстах.

Определение 1. Линейное (векторное) пространство28 E называется ев-
клидовым, если в нём определено скалярное произведение, удовлетворяющее
следующим аксиомам:

1. 〈x, y〉 = 〈y, x〉 ∀x, y;

2. 〈λ1x1 + λ2x2, y〉 = λ1 〈x1, y〉+ λ2 〈x2, y〉 ∀x1, x2, y ∈ E, ∀λ1, λ2 ∈ R;

3. 〈x, x〉 ≥ 0 ∀x; 〈x, x〉 = 0 ⇔ x = 0.

28Над полем вещественных чисел.
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Любое евклидово пространство становится нормированным после введе-
ния в нём нормы ‖x‖ ≡

√
〈x, x〉.

Определение 2. Система29 элементов {ek} евклидова пространства E
называется

1. ортогональной, если 〈ei, ej〉 = 0 ∀i, j : i 6= j;

2. нормированной, если ‖ei‖ = 1 ∀i;
3. ортонормированной, если 〈ei, ej〉 = δij ∀i, j;
4. полной, если для любых ε > 0 и f ∈ E существует конечная линейная

комбинация элементов системы
∑

k αkek, для которой
∥∥∥∥∥f −

∑

k

αkek

∥∥∥∥∥ < ε;

5. линейно независимой, если для любой её конечной подсистемы {ẽk}n
k=1

n∑

k=1

ckẽk = 0 ⇔ ck = 0 ∀k,

иными словами, никакой её элемент не может быть представлен как
конечная линейная комбинация других элементов.

Определение 3. Евклидово пространство E называется бесконечно-
мерным, если в нём имеется бесконечная линейно независимая система эле-
ментов.

Определение 4. Пусть {ek} — ортонормированная система в евклидо-
вом пространстве E. Ряд30

∞∑

k=1

ckek, ck ≡ 〈f, ek〉

называется (обобщённым) рядом Фурье для элемента f по системе {ek}.
Ряд Фурье по заданной ортонормированной системе можно построить

для любого элемента пространства. Указанное соответствие записывается
в виде

f ∼
∞∑

k=1

ckek.

Это не означает, однако, что данный ряд сходится к f , или даже вообще
сходится. Вместе с тем, верна следующая теорема.

Теорема 1. Для любой ортонормированной системы {ek} и любого век-
тора f ряд

∑∞
k=1 c2

k сходится, и справедливо неравенство Бесселя

∞∑

k=1

c2
k ≤ ‖f‖2 .

29Набор, множество, семейство, совокупность . . .
30Или сумма - для конечной системы элементов.
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Определение 5. Ортонормированная система {ek} называется замкну-
той, если для любого f ∈ E справедливо равенство Парсеваля-Стеклова:

∞∑

k=1

c2
k = ‖f‖2 .

Теорема 2. Пусть {ek} — ортонормированная система в евклидовом
пространстве. Следующие три утверждения относительно неё равносильны:

• система замкнута;

• система полна;

• произвольный элемент пространства может быть представлен сходя-
щимся к нему рядом Фурье по данной системе.

Определение 6. Замкнутая ортонормированная система элементов ев-
клидова пространства называется ортонормированным базисом в этом про-
странстве.

Примеры:

1. E = Rn, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),. . .,en = (0, 0, 0, . . . , 1).

2. E = CL2 (0, l) — пространство непрерывных на интервале (0, l) функ-
ций со скалярным произведением

〈ϕ,ψ〉 =

l∫

0

ϕ (x)ψ (x) dx

и нормой

‖ϕ‖ =

√√√√√
l∫

0

ϕ2 (x) dx.

Ортонормированный базис в нём образует, например, система функ-

ций
{

ϕk (x) ≡
√

2
π sin πkx

l

}∞
k=1

.

Общая схема метода разделения переменных (Фурье).

Рассмотрим смешанную задачу для уравнения гиперболического типа




∂2u
∂t2 = −Lu, 0 < x < l, t > 0,
αu (0, t) + βu′x (0, t) = 0, t ≥ 0,
γu (l, t) + δu′x (l, t) = 0, t ≥ 0,
u (x, 0) = ϕ (x) , 0 ≤ x ≤ l,
u′t (x, 0) = ψ (x) , 0 ≤ x ≤ l,

(11.25)

где

L u ≡ q (x)u− ∂

∂x

(
p (x)

∂u

∂x

)
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— линейный дифференциальный оператор второго порядка, q (x) , p (x) —
заданные функции, α, β, γ, δ — заданные, не все равные нулю числа (|α| +
|β| 6= 0, |γ|+ |δ| 6= 0).

Метод разделения переменных реализуем как последовательность сле-
дующих шагов.

Шаг 1. Рассмотрим однородную краевую задачу, ассоциированную с ис-
ходной задачей (11.25):





∂2u
∂t2 = −L u, 0 < x < l, t > 0,
αu (0, t) + βu′x (0, t) = 0, t ≥ 0,
γu (l, t) + δu′x (l, t) = 0, t ≥ 0.

(11.26)

Найдем все нетривиальные решения этой задачи с разделёнными пе-
ременными, т.е. решения вида u (x, t) = y (x)T (t) — стоячие волны.
Подставляя подобное решение в (11.26), получаем тождества





y (x) T̈ (t) = −L (y (x))T (t) , 0 < x < l, t > 0,
(αy (0) + βy′ (0)) T (t) = 0, t ≥ 0,
(γy (l) + δy′ (l)) T (t) = 0, t ≥ 0.

Отсюда, учитывая нетривиальность решения и независимость пере-
менных x, t, имеем

αy (0) + βy′ (0) = 0,
γy (l) + δy′ (l) = 0,

T̈ (t)
T (t)

≡ −L (y (x))
y (x)

≡ −λ,

где λ — постоянная величина. Таким образом, функция y (x) — про-
филь стоячей волны — должна быть нетривиальным решением следу-
ющей краевой задачи для обыкновенного дифференциального уравне-
ния второго порядка





L (y (x)) = λy (x) , 0 < x < l,
αy (0) + βy′ (0) = 0,
γy (l) + δy′ (l) = 0

(11.27)

— задачи Штурма-Лиувилля, а функция T (t) — решением диффе-
ренциального уравнения второго порядка

T̈ (t) + λT = 0. (11.28)

Оказывается, что при достаточно широких предположениях относи-
тельно данных задачи (11.27), она имеет бесконечное множество реше-
ний, т.е. существует бесконечный набор чисел λ1, λ2, . . ., при каждом
из которых λn краевая задача (11.27) имеет хотя бы одно нетриви-
альное решение yn (x). Более того, оказывается , что множество нор-
мированных функций {yn (x)} образует ортонормированный базис в
евклидовом пространстве CL2 (0, l). Найдя соответствующее этому λn

общее решение Tn (t) уравнения (11.28), получаем бесконечный набор
стоячих волн un (x, t) ≡ yn (x)Tn (t), каждая из которых содержит в
себе два свободных параметра — значения Tn (0) , Ṫn (0).
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Шаг 2. В силу линейности всех уравнений краевой задачи (11.26) сумма
произвольных стоячих волн также является решением этой задачи.
Сумма ряда

u (x, t) ≡
∞∑

n=1

un (x, t) =
∞∑

n=1

yn (x)Tn (t)

из стоячих волн также будет решением этой задачи при условии доста-
точно быстрой его сходимости31. Остаётся подобрать свободные пара-
метры стоячих волн так, чтобы удовлетворить начальным условиям
задачи (11.25):

u (x, 0) =
∞∑

n=1
yn (x)Tn (0) = ϕ (x) , 0 ≤ x ≤ l

ut (x, 0) =
∞∑

n=1
yn (x) Ṫn (0) = ψ (x) , 0 ≤ x ≤ l.

(11.29)

Так как {yn (x)} образует ортонормированный базис, то для выполне-
ния этих равенств необходимо и достаточно, чтобы значения Tn (0) , Ṫn (0)
совпадали с коэффициентами Фурье разлагаемых функций

Tn (0) = ϕn ≡ 〈ϕ (x) , yn (x)〉 ,
Ṫn (0) = ψn ≡ 〈ψ (x) , yn (x)〉 .

В итоге мы получаем формальное решение задачи (11.25) в виде ряда

u (x, t) ≡
∞∑

n=1

yn (x)Tn (t) , (11.30)

где Tn (t) — решение задачи Коши




T̈ (t) + λnT = 0,
Tn (0) = ϕn,

Ṫn (0) = ψn.

Шаг 3. Завершающим в методе разделения переменных является этап обос-
нования произведенных на предыдущих шагах действий. На этом эта-
пе исследуется сходимость ряда (11.30), возможность его почленного
дифференцирования и подстановки в уравнение, характер сходимо-
сти рядов (11.29) и пр. Отметим, что существуют различные подходы
к понятию решения задачи. Например, если ряд (11.30) сходится к
функции, не имеющей необходимых производных второго порядка, то
подобная функция может быть названа обобщённым решением зада-
чи. Обобщённые решения задачи также могут различаться, например,
по характеру сходимости соответствующих рядов (11.30), по своим
дифференциальным свойствам и т.д.

31Обеспечивающей возможность его двукратного дифференцирования под знаком ряда
по переменным x, t.
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Теория задачи Штурма-Лиувилля.

Рассмотрим задачу Штурма-Лиувилля с граничными условиями частного
вида 




L y (x) = λy (x) , 0 < x < l,
y (0) = 0,
y (l) = 0,

(11.31)

(обобщения на случай однородных граничных условий более общего вида
могут быть сделаны без особых осложнений).

Уточним постановку задачиШтурма-Лиувилля. Предположим, что функ-
ции p (x) , q (x), задающие дифференциальный оператор

L y (x) ≡ q (x) y (x)− d

dx

(
p (x)

dy (x)
dx

)
,

удовлетворяют следующим, обеспечивающим эллиптичность оператора, усло-
виям:

p (·) ∈ C1 (0, l) , q (·) ∈ C (0, l) ,
q (x) ≥ q0 > 0, p (x) ≥ p0 > 0,

где p0, q0 — постоянные числа. Любое комплексное число λ ∈ C, при ко-
тором краевая задача (11.31) имеет хотя бы одно нетривиальное решение
y (·) ∈ C2 (0, l), называется собственным числом задачиШтурма-Лиувилля.
Само это решение называется собственной функцией задачиШтурма-Лиувилля,
отвечающей данному собственному числу.

Задача Штурма-Лиувилля: найти все собственные числа и
для каждого из них найти множество всех ему отвечающих соб-
ственных функций.

Свойства решений задачи Штурма-Лиувилля.

При исследовании свойств решений задачи Штурма-Лиувилля удобно рас-
сматривать эти решения как элементы евклидова пространства CL2 (0, l).
Используемые далее термины из теории евклидовых пространств (норма
функции, ортогональность функций и т.д.) относятся именно к данному
пространству.

Теорема 1. Если yk — собственные функции, отвечающие одному и
тому же собственному числу λ, то произвольная их (конечная) линейная
комбинация y ≡ ∑

k Ckyk либо тождественно равна нулю, либо является
собственной функцией, отвечающей тому же λ.

Доказательство. Если y ≡ 0, то теорема доказана. Иначе в силу ли-
нейности дифференциального оператора L,

L y = L

(∑

k

Ckyk

)
=

∑

k

Ck L (yk) =
∑

k

Ckλyk = λy,

и, следовательно, y — собственная функция32, что доказывает теорему.
Теорема 2. Если y — собственная функция, то y′ (0) 6= 0 и y′ (l) 6= 0.

32Следует еще проверить выполнение граничных условий y (0) = y (l) = 0 — они, оче-
видно, выполняются.
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Доказательство. Пусть, например, y′ (0) = 0. Преобразуя (11.31), по-
лучаем для y (x) 




y′′ + f (x) y′ + g (x) y = 0,
y (0) = 0,
y′ (0) = 0,

где функции f (x) , g (x) определены через p (x) , q (x). Рассматривая этот
набор условий как задачу Коши для линейного однородного дифференци-
ального уравнения и учитывая единственность решения подобной задачи,
получаем y (x) ≡ 0. Но это противоречит тому, что y (x) — собственная
функция. Следовательно, y′ (0) 6= 0 и аналогично y′ (l) 6= 0.

Теорема 3. Собственные функции y1,2 (x), отвечающие одному соб-
ственному числу, пропорциональны: y1 (x) ≡ ky2 (x), где k 6= 0 — посто-
янная.

Доказательство. Рассмотрим следующую линейную комбинацию этих
функций: y (x) ≡ y1 (x) y′2 (0)− y2 (x) y′1 (0). Для неё имеем y′ (0) = 0. Следо-
вательно, по предыдущей теореме y (x) не является собственной функцией.
Но тогда по теореме 1 y (x) ≡ 0, и потому

y1 (x) ≡ y′1 (0)
y′2 (0)

y2 (x) ≡ ky2 (x) ,

что и требовалось доказать.
Теорема 4. Для любого собственного числа λ существуют две (и только

две) нормированные собственные функции. Они различаются только зна-
ком 33.

Доказательство. Пусть y (x) — собственная функция, отвечающая λ.
Тогда

y1,2 (x) ≡ ± y (x)
‖y (x)‖

— нормированные собственные функции, отвечающие λ. С другой стороны,
если y1,2 (x) — нормированные собственные функции, отвечающие λ, то по
теореме 3 они пропорциональны: y1 (x) ≡ ky2 (x). Поэтому

1 = ‖y1‖ = |k| ‖y2‖ = |k| ⇒
k = ±1, y1 (x) ≡ ±y2 (x) ,

что и требовалось доказать.
Лемма 1. Для любых функций y1,2 (x) ∈ C2 (0, l), удовлетворяющих

нулевым граничным условиям y1,2 (0) = y1,2 (l) = 0, имеет место равенство

〈L y1, y2〉 = 〈y1, L y2〉 .
Доказательство. Имеем

l∫
0

(L (y1) y2 − L (y2) y1) dx =

=
l∫
0

(
y1

d
dx (py′2)− y2

d
dx (py′1)

)
dx =

= (y1py′2 − y2py′1)|x=l
x=0 −

l∫
0

(y′1py′2 − y′2py′1) dx = 0

33Это означает, что множество собственных функций, отвечающих одному и тому же
собственному числу (собственное подпространство), образует одномерное линейное под-
пространство.
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в силу граничных условий для данных функций. Лемма доказана34.
Теорема 5. Собственные функции, отвечающие различным собствен-

ным числам, ортогональны между собой.
Доказательство. Пусть L y1 = λ1y1, L y2 = λ2y2. Тогда 〈L y1, y2〉 =

λ1 〈y1, y2〉, 〈L y2, y1〉 = λ2 〈y1, y2〉, и по предыдущей лемме

0 = 〈L y1, y2〉 − 〈L y2, y1〉 =
= (λ1 − λ2) 〈y1, y2〉 .

Поэтому при λ1 6= λ2 имеем 〈y1, y2〉 = 0, что и требовалось доказать.
Теорема 6. Все собственные числа вещественны.
Доказательство. Пусть, напротив, для некоторого собственного числа

λ имеем λ 6= λ̄. Применяя операцию комплексного сопряжения к обеим ча-
стям вещественного уравнения L y = λy, получим L y = λ̄y. Следовательно,
λ̄ является собственным числом, отвечающим той же собственной функции
y (x). Из теоремы 5 вытекает тогда равенство

〈y, y〉 = ‖y‖2 = 0,

противоречащее условию нетривиальности собственной функции. Поэтому
исходное предположение неверно. Теорема доказана.

Экстремальная задача, связанная с задачей Штурма-Лиувилля.

Рассмотрим экстремальную задачу, следующим образом связанную с зада-
чей Штурма-Лиувилля: в функционале использованы функции p (x) , q (x),
входящие в дифференциальный оператор L, а множество функций, на кото-
ром минимизируется функционал, является подмножеством области опре-
деления данного оператора —





J (y (·)) =
l∫
0

(
q (x) y2 (x) + p (x) y′2 (x)

)
dx → min

D
,

D =
{
y (x) : y (·) ∈ C2 (0, l) , y (0) = y (l) = 0,

‖y‖2 =
∫ l

0
y2 (x) dx = 1

}
.





(11.32)

Лемма 2. Если y (·) — нормирвованная собственная функция задачи
Штурма-Лиувилля, отвечающая собственному числу λ, то J (y (·)) = λ.

Доказательство. Имеем

λ = λ
l∫
0

y2 (x) dx =
l∫
0

λy (x) y (x) dx =

=
l∫
0

L (y (x)) y (x) dx =
l∫
0

(
qy − d

dx (py′)
)
ydx =

=
l∫
0

(
qy2 + py′2

)
dx− py′y|l0 = J (y (·)) ,

что и утверждалось.

34Свойство самосопряженности оператора L на соответствующем подпространстве про-
странства CL2.
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Теорема 7. Экстремальная задача (11.32) имеет решение. Это реше-
ние y1 (·) является нормированной собственной функцией задачи Штурма-
Лиувилля, отвечающей минимальному из всех собственных чисел λ1. Со-
ответствующее минимальное значение функционала J (y1 (·)) = λ1.

Доказательство. Доказательство существования решения вариацион-
ной задачи (11.32) выходит за рамки нашего курса (см., например, книгу
[9]).

Выпишем необходимое условие экстремума35 для изопериметрической
задачи (11.32): существует нетривиальный набор множителей Лагранжа
(λ0, λ1) такой, что для решения вариационной задачи y1 выполнено тож-
дество (уравнение Лагранжа)

∂H

∂y
− d

dx

∂H

∂y′
= 0,

где H (x, y, y′) ≡ λ0

(
q (x) y2 + p (x) y′2

)− λ1y
2 — функция Лагранжа.

Иными словами,

λ0

(
qy1 (x)− d

dx
(py′1 (x))

)
≡ λ1y1 (x) .

Если λ0 = 0, то λ1y1 (x) ≡ 0, что противоречит условиям нетривиаль-
ности набора множителей Лагранжа и функции y1 (x). Поэтому λ0 = 1 и,
значит, L y1 = λ1y1, т.е. y1 (x) — собственная функция задачи Штурма-
Лиувилля, отвечающая собственному числу λ1. Покажем, что λ1 — мини-
мальное из всех собственных чисел. Пусть y (·) — произвольная нормиро-
ванная собственная функция задачи Штурма-Лиувилля. Тогда y (·) ∈ D, а
для соответствующего собственного числа λ имеем в силу леммы 2 нера-
венство

λ = J (y (·)) ≥ J (y1 (·)) = λ1,

что и доказывает минимальность λ1. Теорема доказана.
Теорема 8. Собственные числа задачи Штурма-Лиувилля могут быть

расположены в бесконечную возрастающую последовательность

0 < λ1 < λ2 < · · · < λn < · · ·
При этом нормированная собственная функция yn (·) , n ≥ 1, отвечаю-

щая собственному числу λn, является решением экстремальной задачи




J (y (·)) =
l∫
0

(
q (x) y2 (x) + p (x) y′2 (x)

)
dx → min

Dn

,

Dn =
{
y (x) : y (·) ∈ C2 (0, l) , y (0) = y (l) = 0,

‖y‖2 =
∫ l

0
y2 (x) dx = 1,

∫ l

0
y (x) yk (x) dx = 0, k = 1, n− 1

}
.





(11.33)

Минимальное значение функционала на Dn

J (yn) = λn.

Доказательство. Проведем его по индукции. При n = 1 теорема верна
(см. теорему 7). Предположим, что она верна и при n−1. Рассмотрим теперь

35См. раздел 2.12.



РАЗДЕЛ 11.1. ГИПЕРБОЛИЧЕСКИЕ УРАВНЕНИЯ 119

задачу (11.33). Она имеет решение (см. [9]), которое мы обозначим yn. Тогда
(см. раздел 2.12) существует нетривиальный набор множителей Лагранжа
(λ0, λn, ν1, . . . , νn−1) такой, что

∂H

∂y
− d

dx

∂H

∂y′
= 0, (11.34)

где

H (x, y, y′) ≡ λ0

(
q (x) y2 + p (x) y′2

)− λny2 − 2
n−1∑

i=1

νiyiy

— функция Лагранжа изопериметрической вариационной задачи (11.33).
Из (11.34) получаем

λ0 L yn = λnyn +
n−1∑

i=1

νiyi.

Умножая обе части этого равенства скалярно на yj , j = 1, n− 1, имеем

λ0 〈L yn, yj〉 = λn 〈yn, yj〉+
n−1∑

i=1

νi 〈yi, yj〉 .

В правой части этого равенства все члены, кроме νj 〈yj , yj〉 = νj , равны
нулю. Преобразуем левую часть. По лемме 1

〈L yn, yj〉 = 〈yn,L yj〉 = λj 〈yn, yj〉 = 0.

Следовательно, νj = 0 j = 1, n− 1 и

λ0 L yn = λnyn.

Если λ0 = 0, то λn = 0 и весь набор множителей Лагранжа нулевой, что
неверно. Значит, λ0 = 1,

L yn = λnyn,

т.е. yn — собственная функция, отвечающая собственному числу λn. Пока-
жем, что λn > λn−1. Имеем

λn−1 = J (yn−1) = min
y∈Dn−1

J (y) ≤ J (yn) = λn,

т.к. yn ∈ Dn ⊂ Dn−1. Если же λn = λn−1, то по теореме 4 yn = ±yn−1. Но
тогда в силу (11.33)

0 = |〈yn, yn−1〉| = 1

— противоречие! Следовательно, λn > λn−1. Теорема доказана.
Теорема 9. Последовательность собственных чисел задачи Штурма-

Лиувилля λn → +∞ при n →∞.
Доказательство. Примем без доказательства следующее \очевидное "

утверждение: если функции p (x) , q (x) получают неотрицательные прира-
щения δp (x) , δq (x), то все собственные числа при этом могут лишь возрас-
ти. Это позволяет сравнить собственные числа λn с собственными числами
λ0n следующей \простейшей " задачи Штурма-Лиувилля

{
L0 y = λy,
y (0) = y (l) = 0,
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L0 (y) ≡ q0y − p0y
′′, которая \минорирует " исходную задачу, ведь q (x) ≥

q0, p (x) ≥ p0. Имеем

λn ≥ λ0n = q0 +
(πn

l

)2

p0,

откуда и следует утверждение теоремы.
Замечание. Если функции p (x) , q (x) также равномерно ограничены

сверху постоянными p1, q1, соответственно, то аналогично изложенному по-
лучаем верхнюю оценку

λn ≤ λ1n = q1 +
(πn

l

)2

p1.

Следовательно, в этом случае λn = O
(
n2

)
при n →∞.

Теорема Стеклова. Любая функция f (·) ∈ C2 (0, l), f (0) = f (l) = 0
разлагается в равномерно и абсолютно сходящийся ряд Фурье по системе
собственных функций задачи Штурма-Лиувилля:

f (x) =
∞∑

i=1

ciyi (x) , x ∈ [0, l] ,

ci = 〈f, yi〉 .
Доказательство. Рассмотрим остаток ряда

rn (x) ≡ f (x)−
n∑

i=1

ciyi (x) .

Докажем лишь более слабое утверждение: ‖rn‖ → 0 при n →∞. Нетруд-
но видеть, что

a) rn (0) = rn (l) = 0;

b) 〈rn, yj〉 = 〈f, yj〉 −
∑n

i=1 ci 〈yi, yj〉 = cj − cj = 0 ∀j = 1, n;

c) J (rn) ≥ λn+1 ‖rn‖2 .

Проверим последнее неравенство. Так как в силу пп. a),b) rn/ ‖rn‖ ∈
Dn+1, то

1
‖rn‖2

J (rn) = J

(
rn

‖rn‖
)
≥ min

Dn+1
J = λn+1,

что и утверждалось.

Рассмотрим также билинейный функционал

K(y1, y2) =

l∫

0

(q (x) y1y2 + p (x) y′1y
′
2) dx.

Отметим следующие его свойства:

a) Для любых функций y1, y2 ∈ C2 (0, l), удовлетворяющих граничным
условиям y1,2 (0) = y1,2 (l) = 0,

K(y1, y2) = 〈L y1, y2〉 = 〈y1, L y2〉 = K(y2, y1) ,
K (y, y) = J (y) ;
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b) K(yi, yj) = 〈L yi, yj〉 = λi 〈yi, yj〉 = 0 i 6= j;

c) K(rn, yj) = 〈L yj , rn〉 = λj 〈yj , rn〉 = 0 j = 1, n.

Имеем поэтому

J (f) = J

(
rn +

n∑
i=1

ciyi

)
= J (rn) +

n∑
i=1

c2
i J (yi)+

+
∑∑

i 6=j

cicj K(yi, yj) + 2
n∑

i=1

ci K(rn, yi) ≥

≥ λn+1 ‖rn‖2 +
n∑

i=1

c2
i λi ≥ λn+1 ‖rn‖2 ,

следовательно, в силу теоремы 9

‖rn‖2 ≤ J (f)
λn+1

→ 0,

что и утверждалось. Заметим, что из доказанного вытекает, в частности,
полнота ортонормированной системы собственных функций {yi} в CL2 (0, l).

Замечание. Как уже отмечалось, полученные выше результаты относи-
тельно собственных чисел и функций задачи Штурма-Лиувилля без труда
обобщаются на случай произвольных однородных граничных условий, т.е.
на задачу (11.27). Сверх того, и эта более общая задача может быть легко
обобщена до следующей





L (y (x)) = λρ (x) y (x) , 0 < x < l,
αy (0) + βy′ (0) = 0,
γy (l) + δy′ (l) = 0,

(11.35)

где функция ρ (·) ∈ C (0, l), ρ (x) > 0 ∀x ∈ (0, l). В этом случае, однако, все
рассмотрения следует проводить в евклидовом пространстве CL

(ρ)
2 (0, l) со

скалярным произведением

〈yi, yj〉 =

l∫

0

ρ (x) yi (x) yj (x) dx.

Задача Штурма-Лиувилля (11.35) служит источником многих извест-
ных в математике ортогональных систем функций.

Примеры.

1. q (x) ≡ 0, p (x) ≡ ρ (x) ≡ 1. Здесь уравнение имеет вид

y′′ + λy = 0.

Спектр собственных чисел и собственные функции зависят от краевых
условий. Приведём некоторые варианты:

(a) y (0) = y (l) = 0 ⇒ λn =
(

πn
l

)2, yn (x) ≡
√

2
l sin πnx

l ,n = 1, 2, . . . ;
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(b) y (0) = y′ (l) = 0 ⇒ λn =
(

π
l

)2 (
n− 1

2

)2, yn (x) ≡
√

2
l sin π

l

(
n− 1

2

)
x,n =

1, 2, . . . ;

(c) y′ (0) = y′ (l) = 0 ⇒ λn =
(
π n

l

)2, n = 0, 1, 2, . . . ;

yn (x) ≡




√
2
l cos πnx

l , n = 1, 2, . . .√
1
l , n = 0

2. q (x) ≡ m2

x , p (x) ≡ ρ (x) ≡ x, |y (0)| < ∞, y (l) = 0

y′′ +
1
x

y′ +
(

λ− m2

x2

)
y = 0

— уравнение Бесселя m-го порядка (m - заданное целое число). Соб-
ственные числа λn, n = 1, 2, . . . в этом случае находятся из характе-
ристического уравнения

Jm

(√
λl

)
= 0,

где Jm — функция Бесселя первого рода m-го порядка, а собственные
функции имеют вид

yn (x) =
√

2
J ′m

(√
λn

)
l
Jm

(√
λnx

)

3. q (x) ≡ 0, p (x) ≡ 1− x2, ρ (x) ≡ 1, x ∈ (−1, 1)

− d

dx

((
1− x2

) dy

dx

)
= λy

— уравнение Лежандра. Ограниченные ненулевые решения этого урав-
нения существуют лишь при λn = n (n + 1) , n = 0, 1, . . . и являются
многочленами n-го порядка (многочлены Лежандра Pn (x)).

4. q (x) ≡ m2

1−x2 , m = 0, 1, . . .(фиксированное число); p (x) ≡ 1−x2; ρ (x) ≡
1; x ∈ (−1, 1)

m2

1− x2
y − d

dx

((
1− x2

) dy

dx

)
= λy

— присоединённое уравнение Лежандра. Ограниченные ненулевые ре-
шения данного уравнения существуют лишь при λn = n (n + 1) , n ≥
m.

Решение неоднородной задачи методом разделения переменных.

Изложим теперь общую схему решения неоднородной смешанной задачи
методом Фурье:





ρ (x) ∂2u
∂t2 = −L u + g (x, t) , 0 < x < l, t > 0,

αu (0, t) + βu′x (0, t) = f1 (t) , t ≥ 0,
γu (l, t) + δu′x (l, t) = f2 (t) , t ≥ 0,
u (x, 0) = ϕ (x) , 0 ≤ x ≤ l,
u′t (x, 0) = ψ (x) , 0 ≤ x ≤ l,

(11.36)
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где g (x, t) , f1 (t) , f2 (t) — заданные функции.
Прежде всего следует избавиться от неоднородности в граничных усло-

виях. Будем искать решение задачи (11.36) в виде суммы

u (x, t) = û (x, t) + ǔ (x, t) , (11.37)

где \предназначение " функции û (x, t) — удовлетворить граничным усло-
виям

αû (0, t) + βû′x (0, t) = f1 (t) ,
γû (l, t) + δû′x (l, t) = f2 (t) .

Указанными граничными условиями функция определена, очевидно, неод-
нозначно. Поэтому для её нахождения можно привлекать и дополнительные
соображения: простота аналитического описания, возможность физической
интерпретации и т.д. Из дальнейшего также выясняется, что удобно было
бы взять подобную функцию из множества решений однородного уравнения
ρu′′tt = −L u.

После подстановки (11.37) в (11.36) получаем для ǔ (x, t) следующую
задачу с однородными граничными условиями





ρ (x) ∂2ǔ
∂t2 = −L ǔ + ǧ (x, t) , 0 < x < l, t > 0,

αǔ (0, t) + βǔ′x (0, t) = 0, t ≥ 0,
γǔ (l, t) + δǔ′x (l, t) = 0, t ≥ 0,
ǔ (x, 0) = ϕ̌ (x) , 0 ≤ x ≤ l,

ǔ′t (x, 0) = ψ̌ (x) , 0 ≤ x ≤ l,

где ǧ (x, t) ≡ g (x, t) − (ρ (x) û′′tt − L û), ϕ̌ (x) ≡ ϕ (x) − û (x, 0), ψ̌ (x) ≡
ψ (x) − û′t (x, 0). Решение этой смешанной задачи также будем искать36 в
виде суммы

ǔ (x, t) ≡ v (x, t) + w (x, t) ,

где v (x, t) — решение задачи




ρ (x) ∂2v
∂t2 = −L v, 0 < x < l, t > 0,

αv (0, t) + βv′x (0, t) = 0, t ≥ 0,
γv (l, t) + δv′x (l, t) = 0, t ≥ 0,
v (x, 0) = ϕ̌ (x) , 0 ≤ x ≤ l,

v′t (x, 0) = ψ̌ (x) , 0 ≤ x ≤ l,

(11.38)

а w (x, t) — задачи




ρ (x) ∂2w
∂t2 = −L w + ǧ (x, t) , 0 < x < l, t > 0,

αw (0, t) + βw′x (0, t) = 0, t ≥ 0,
γw (l, t) + δw′x (l, t) = 0, t ≥ 0,
w (x, 0) = 0, 0 ≤ x ≤ l,
w′t (x, 0) = 0, 0 ≤ x ≤ l.

(11.39)

Решение однородной задачи (11.38) производится по стандартной схеме,
изложенной выше и записывается в виде ряда

v (x, t) =
∞∑

n=1

(
ϕ̌n cos ωnt +

ψ̌n

ωn
sin ωnt

)
yn (x) (11.40)

36Очевидно, что возможность подобных разложений исходной смешанной задачи непо-
средственнно связаны с её линейностью - принцип суперпозиции.



124 ЧАСТЬ II. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

по системе собственных функций {yn (x)} задачи Штурма-Лиувилля




L y = λρy,
αy (0) + βy′ (0) = 0,
γy (l) + δy′ (l) = 0.

Подставляя в (11.40) значения коэффициентов Фурье ϕ̌n, ψ̌n функций ϕ̌ (x) , ψ̌ (x),
получим интегральное представление для функции v (x, t):

v (x, t) =
∞∑

n=1

(
l∫
0

ρ (ξ) ϕ̌ (ξ) yn (ξ) dξ cos ωnt+

+ 1
ωn

l∫
0

ρ (ξ) ψ̌ (ξ) yn (ξ) dξ sin ωnt

)
yn (x) =

=
l∫
0

ρ (ξ)
( ∞∑

n=1
yn (x) cos ωnt yn (ξ) ϕ̌ (ξ) +

∞∑
n=1

yn (x) sin ωnt
ωn

yn (ξ) ψ̌ (ξ)
)

dξ ≡

≡
l∫
0

ρ (ξ) G′t (x, t, ξ) ϕ̌ (ξ) dξ +
l∫
0

ρ (ξ)G (x, t, ξ) ψ̌ (ξ) dξ.

(11.41)
Здесь

G (x, t, ξ) ≡ G (x | t | ξ) ≡
∞∑

n=1

yn (x)
sin ωnt

ωn
yn (ξ) (11.42)

— функция Грина краевой задачи




ρ (x) ∂2v
∂t2 = −L v, 0 < x < l, t > 0,

αv (0, t) + βv′x (0, t) = 0, t ≥ 0,
γv (l, t) + δv′x (l, t) = 0, t ≥ 0.

Решение задачи (11.39) также будем искать в виде ряда

w (x, t) =
∞∑

n=1

wn (t) yn (x) .

Для нахождения переменных коэффициентов Фурье wn (t) ≡ 〈w (x, t) , yn (x)〉
подставим это решение в (11.39), предварительно разложив по той же си-
стеме неоднородный член уравнения:

1
ρ (x)

ǧ (x, t) =
∞∑

n=1

gn (t) yn (x) .

В итоге получаем




∞∑
n=1

yn (x) ρ (x) {ẅn (t) + λnwn (t)− gn (t)} = 0, 0 < x < l, t > 0,

w (x, 0) =
∞∑

n=1
wn (0) yn (x) = 0, 0 < x < l,

w′t (x, 0) =
∞∑

n=1
ẇn (0) yn (x) = 0, 0 < x < l.

откуда в силу полноты ортонормированной системы {yn (x)}




ẅn (t) + λnwn (t)− gn (t) = 0, t > 0
wn (0) = 0,
ẇn (0) = 0.
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Решение последней задачи Коши для обыкновенного дифференциаль-
ного уравнения 2-го порядка запишем в интегральной форме

wn (t) =

t∫

0

Gn (t− τ) gn (τ) dτ,

где Gn (t) ≡ sin
√

λnt√
λn

— фундаментальное решение уравнения, т.е. решение
задачи Коши 




G̈n + λnGn = 0,
Gn (0) = 0,

Ġn (0) = 1.

После подстановки найденных коэффициентов Фурье в ряд решение
неоднородной задачи (11.39) запишется в интегральной форме

w (x, t) =
∞∑

n=1
wn (t) yn (x) =

=
∞∑

n=1

1√
λn

t∫
0

l∫
0

sin
(√

λn (t− τ)
)
g (ξ, τ) yn (ξ) dξdτ yn (x) =

=
t∫
0

l∫
0

G (x, t− τ, ξ) g (ξ, τ) dξdτ

через функцию Грина (11.42).

Примеры.

1. g (x, t) ≡ δ (x− x0) δ (t)

w (x, t) =
t∫
0

l∫
0

G (x, t− τ, ξ) g (ξ, τ) dξdτ =

=
t∫
0

l∫
0

G (x, t− τ, ξ) δ (ξ − x0) δ (τ) dξdτ = G (x | t | x0) .

Отсюда можно вывести \физический смысл " функции Грина: её зна-
чение G (x | τ | x0) — это отклонение точки x в момент времени t, вы-
званное мгновенным точечным возмущением, приложенным в точку
x0 в начальный момент времени. Из формулы (11.42) видна симмет-
рия функции Грина относительно переменных x и ξ. Это означает
выполнение следующей теоремы взаимности: отклонение точки x,
вызванное начальным возмущением, приложенным в точку x0, тожде-
ственно с отклонением точки x0, вызванным аналогичным начальным
возмущением точки x.

2. g (x, t) ≡ A sin ωt

w (x, t) =
t∫
0

l∫
0

G (x, t− τ, ξ) g (ξ, τ) dξdτ =

= A
∞∑

n=1
yn (x)

l∫
0

yn(ξ)
ωn

dξ
t∫
0

sinωn (t− τ) sin ωτ︸ ︷︷ ︸
En(t,τ)

dτ,
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где ωn ≡ √
λn — собственная частота колебаний n-ой стоячей вол-

ны (моды). Окончательный вид решения определяется тем, совпадает
частота вынуждающей силы ω с одной из резонансных частот ωn си-
стемы или нет:

(a) ω 6= ωn при всех n (нерезонансный случай). Здесь

En (t, τ) = 1
2 [cos (ωnt− (ω + ωn) τ)− cos (ωnt + (ω − ωn) τ)] ,

w (x, t) = W1 (x) sin ωt +
∞∑

n=1
Bnyn (x) sin ωnt.

(b) ω = ωn∗ — резонанс на частоте стоячей волны с номером n∗. В
этом случае

En∗ (t, τ) = − cos ωn∗ t
2 + cos(ωn∗ t−2ωn∗τ)

2 ,
w (x, t) = W2 (x) t cosωn∗t +

∑
n6=n∗

Cnyn (x) sin ωnt.

Метод разделения переменных Фурье в многомерных задачах.

Схема метода разделения, изложенная выше, без существенных изменений
обобщается на случай пространственной переменной любого числа измере-
ний. Пусть

u = u (t,x) , x ≡ (x1, . . . , xn) ∈ Ω, t > 0,

L u ≡ a0 (x)u−
n∑

i,j=1

∂
∂xi

(
aij (x) ∂u

∂xj

)
,

a0 (x) ≥ 0, aij (x) ≡ aji (x) ,

〈a (x) η, η〉 ≡
n∑

i,j=1

aij (x) ηiηj > 0 ∀x ∈ Ω, ∀η 6= 0.

Здесь n > 1, Ω — ограниченное множество в Rn, a0 (·) ∈ C (Ω), aij (·) ∈
C1 (Ω).

Рассмотрим смешанную задачу для уравнения гиперболического типа
(волнового уравнения)





∂2u
∂t2 = −Lu, x ∈ Ω, t > 0,
u = 0, (x, t) ∈ Γ ≡ ∂Ω× (0,∞) ,
u (x, 0) = ϕ (x) , x ∈ Ω,
u′t (x, 0) = ψ (x) , x ∈ Ω.

(11.43)

Как и в случае одномерной пространственной переменной x, метод раз-
деления переменных решения задачи (11.43) реализуется в виде последова-
тельности стандартных шагов.

Шаг 1. Ищутся все нетривиальные решения (стоячие волны) однородной
краевой задачи

{
∂2u
∂t2 = −Lu, x ∈ Ω, t > 0,
u = 0, (x, t) ∈ Γ ≡ ∂Ω× (0,∞) ,

(11.44)
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с разделёнными временной и пространственной переменной: u (x, t) =
y (x) T (t). После подстановки подобного решения в (11.44) и разделе-
ния переменных, получаем тождество

T̈

T
(t) ≡ −L y

y
(x) .

Так как переменные t и x независимы, то обе части тождества должны
быть постоянны. Обозначая эту постоянную −λ, приходим к следую-
щей многомерной задаче Штурма-Лиувилля: найти все (собственные)
числа λ, при которых краевая задача

{
L y = λy
y|∂Ω = 0 (11.45)

имеет нетривиальное решение (собственные функции). Теория та-
ких задач аналогична той, что построена нами выше для одномерного
случая. Оказывается, что в указанных выше условиях существует бес-
конечный набор собственных чисел

0 < λ1 < λ2 < . . . < λn < . . . , λn →∞,

а отвечающий им набор нормированных собственных функций

y1, y2, . . .

образует ортонормированный базис в соответствующем евклидовом
пространстве

〈yi, yj〉 =
∫
· · ·

∫

Ω

yi (x) yj (x) dx = δij .

После решения уравнений для T (t):

T̈ + λnT = 0

находим все стоячие волны в виде

un (x, t) = yn (x)Tn (t) =
(
An cos

√
λnt + Bn sin

√
λnt

)
yn (x) .

Шаг 2. Ищем решение исходной начально-краевой задачи (11.43) в виде
ряда

u (x, t) =
∞∑

n=1

(
An cos

√
λnt + Bn sin

√
λnt

)
yn (x)

по найденным стоячим волнам. Для нахождения неопределенных ко-
эффициентов An, Bn имеем начальные условия

u (x, 0) =
∞∑

n=1
Anyn (x) = ϕ (x) ⇔ An = 〈ϕ, yn〉 ∀n,

u′t (x, 0) =
∞∑

n=1

√
λnBnyn (x) = ψ (x) ⇔ Bn = 1√

λn
〈ψ, yn〉 ∀n.
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В итоге формальное решение задачи приобретает вид

u (x, t) =
∞∑

n=1

(
〈ϕ, yn〉 cos

√
λnt + 1√

λn
〈ψ, yn〉 sin

√
λnt

)
yn (x) =

=
∫ ··· ∫

Ω

G (x, t, ξ)ψ (ξ) dξ +
∫ ··· ∫

Ω

G′t (x, t, ξ)ϕ (ξ) dξ,

(11.46)
где

G (x, t, ξ) ≡
∞∑

n=1

yn (x)
sin
√

λnt√
λn

yn (ξ)

— функция Грина соответствующей краевой задачи (11.44).

Шаг 3. На этом шаге ряд (11.46) исследуется на сходимость, устанавли-
вается возможность его двукратного почленного дифференцирования,
что позволяет произвести подстановку ряда в дифференциальное урав-
нение и убедиться подобным образом, что он действительно является
классическим решением задачи. Разумеется, это возможно лишь при
достаточно гладких начальных данных.

Пример 1. Колебания прямоугольной мембраны




u′′tt = a2∆u = a2
(
u′′xx + u′′yy

)
, (x, y) ∈ Ω, t > 0,

u|∂Ω = 0, t > 0,
u (x, y, 0) = ϕ (x, y) , (x, y) ∈ Ω,
u′t (x, y, 0) = ψ (x, y) , (x, y) ∈ Ω.

Здесь Ω — прямоугольная область 0 < x < p, 0 < y < q.
Решение. Найдем все стоячие волны, то есть нетривиальные решения

однородной краевой задачи
{

u′′tt = a2∆u = a2
(
u′′xx + u′′yy

)
, (x, y) ∈ Ω, t > 0,

u|∂Ω = 0, t > 0,

вида u (x, y, t) ≡ v (x, y)T (t). После подстановки подобной функции в зада-
чу и разделения переменных получаем тождества

T̈
a2T ≡ 4v

v ,
v |∂Ω T (t) ≡ 0.

Отсюда { 4v + k2v = 0,
v|∂Ω = 0,

(11.47)

T̈ + k2a2T = 0, (11.48)

где k — постоянная.
Решение задачи Штурма-Лиувилля (11.47) также будем искать в фор-

ме с разделёнными переменными: v (x, y) ≡ X (x) Y (y). После подстановки
подобного решения в (11.47) и разделения переменных, получаем тождества

−X′′(x)
X ≡ Y ′′(y)

Y + k2, 0 < x < p, 0 < y < q,
X (x)Y (0) ≡ X (x) Y (q) ≡ 0, 0 < x < p,
Y (y) X (0) ≡ Y (y) X (p) ≡ 0, 0 < y < q.
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Отсюда в силу независимости переменных x, y имеем
{

X ′′ + k2
1X = 0,

X (0) = X (p) = 0,

{
Y ′′ + k2

2Y = 0,
Y (0) = Y (q) = 0,

где k1, k2 — постоянные, k2
1 +k2

2 = k2. Нетривиальные решения двух послед-
них краевых задач имеют соответственно вид

Xn (x) =
√

2
p sin πnx

p , k1n = πn
p , n = 1, 2, . . .

Ym (y) =
√

2
q sin πmy

q , k2m = πm
q , m = 1, 2, . . . .

Поэтому нетривиальными решениями краевой задачи (11.47) являются
функции

vnm (x, y) = Xn (x) Ym (y) =
√

4
pq

sin
πnx

p
sin

πmy

q
,

отвечающие её собственным числам

knm =
√

k2
1n + k2

2m =

√
π2

(
n2

p2
+

m2

q2

)
, n,m = 1, 2, . . . .

Заметим, что из теории кратных рядов Фурье37 следует, что данная си-
стема функций образует ортонормированный базис в евклидовом простран-
стве L2 (Ω).

Находя соответствующие решения задачи (11.48), получаем стоячие вол-
ны вида

unm (x, y, t) = vnm (x, y)Tnm (t) =
= vnm (x, y) (Anm cos ωnmt + Bnm sin ωnmt) ,

где Anm, Bnm — произвольные постоянные, ωnm = aknm.
Найдем формальное решение исходной задачи в виде двойного ряда по

данным стоячим волнам

u (x, y, t) =
∞∑

n,m=1
unm (x, y, t) =

=
∞∑

n,m=1
vnm (x, y)Tnm (t) .

Имеем из начальных условий:

u (x, y, 0) =
∞∑

n,m=1
vnm (x, y)Tnm (0) =

=
∞∑

n,m=1
Anmvnm (x, y) = ϕ (x, y) ,

37А также и из общей теории задачи Штурма-Лиувилля.
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u′t (x, y, 0) =
∞∑

n,m=1
vnm (x, y) Ṫnm (0) =

=
∞∑

n,m=1
ωnmBnmvnm (x, y) = ψ (x, y) .

Следовательно,

Anm = 〈ϕ, vnm (x, y)〉 =
∫ ··· ∫

Ω

ϕ (x, y) vnm (x, y) dxdy,

Bnm = 1
ωnm

〈ψ, vnm (x, y)〉 = 1
ωnm

∫ ··· ∫
Ω

ψ (x, y) vnm (x, y) dxdy,

и на этом построение формального решения заканчивается. После подста-
новки найденных значений коэффициентов Anm, Bnm в ряд решение можно
также записать в интегральной форме с использованием функции Грина.
Накладывая ограничения на начальные условия ϕ,ψ, можно добиться быст-
рой сходимости полученного ряда и возможности его двукратного диффе-
ренцирования (см. [10]). В этом случае сумма ряда является классическим
решением задачи.

Пример 2. Колебания круглой мембраны




u′′tt = a2∆u, (x, y) ∈ Ω, t > 0,
u |∂Ω= 0, t > 0,
u (x, y, 0) = ϕ (x, y) , (x, y) ∈ Ω,
u′t (x, y, 0) = ψ (x, y) , (x, y) ∈ Ω.

Теперь Ω ≡ {
(x, y) : x2 + y2 < r2

0

}
— круг радиуса r0 с центром в начале

координат.
Учитывая геометрию задачи, перейдём в полярную систему координат





u′′tt = a2
(

1
ρ

∂
∂ρ

(
ρ∂u

∂ρ

)
+ 1

ρ2
∂2u
∂2θ2

)
, 0 < ρ < r0, θ ∈ R, t > 0,

u (r0, θ, t) = 0, θ ∈ R, t > 0,
u (ρ, θ, 0) = ϕ (ρ, θ) , 0 < ρ < r0, θ ∈ R,
u′t (ρ, θ, 0) = ψ (ρ, θ) , 0 < ρ < r0, θ ∈ R.

Дополнительным условием является условие однозначности решения:
u (ρ, θ + 2π, t) ≡ u (ρ, θ, t).

Решение. Вначале определяем все стоячие волны, то есть нетривиаль-
ные решения краевой задачи

{
u′′tt = a2

(
1
ρ

∂
∂ρ

(
ρ∂u

∂ρ

)
+ 1

ρ2
∂2u
∂2θ2

)
, 0 < ρ < r0, θ ∈ R, t > 0,

u (r0, θ, t) = 0, θ ∈ R, t > 0.

с разделёнными пространственными и временн о́й переменной: u (ρ, θ, t) =
v (ρ, θ)T (t). Разделяя обычным способом переменные, получаем следующее
уравнение для \временн о́й " функции T (t):

T̈ (t) + a2λT = 0, (11.49)

и следующую задачу Штурма-Лиувилля для \пространственной " функции
v (ρ, θ): 




L (v) = λv,
v (ρ0, θ) = 0,
v (ρ, θ + 2π) = v (ρ, θ) ,

(11.50)
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где L (v) ≡ − 1
ρ

∂
∂ρ

(
ρ∂u

∂ρ

)
− 1

ρ2
∂2u
∂2θ2 .

Решения последней задачи ищем опять в виде функций с разделёнными
переменными v (ρ, θ) = R (ρ)Θ (θ). После подстановки подобного решения в
(11.50) и разделения переменных получаем тождество

ρ2

(
(ρR′)′

ρR
+ λ

)
≡ −Θ′′

Θ
= µ2,

где µ — постоянная. Отсюда
{

Θ′′ + µ2Θ = 0,
Θ(θ + 2π) = Θ (θ) .

Общим решением данного уравнения является

Θµ (θ) = D1µ cosµθ + D2µ sinµθ

(при µ = 0 имеем Θ0 (θ) = D10 + D20θ). Очевидно, оно будет иметь своим
периодом 2π тогда и только тогда, когда µ = n = 0, 1, . . .. В итоге

Θn (θ) = D1n cosnθ + D2n sin nθ, n = 0, 1, . . . .

Для нахождения функции R (ρ) получаем при каждом фиксированном
n следующую одномерную задачу Штурма-Лиувилля: найти числа λ, для
которых существует нетривиальное ограниченное на отрезке [0, r0] решение
краевой задачи {

n2

ρ R− d
dρ

(
ρdR

dρ

)
= λρR,

R (r0) = 0.
(11.51)

Из общей теории задачи Штурма-Лиувилля, развитой выше, вытекает
существование бесконечного, не ограниченного сверху набора собственных
чисел данной задачи:

0 < λ
(n)
1 < λ

(n)
2 < . . . < λ(n)

m < . . .

Отвечающие им нормированные собственные функции

R
(n)
1 (ρ) , R

(n)
2 (ρ) , . . . , R(n)

m (ρ) , . . .

образуют ортонормированный базис в евклидовом пространстве CL
(ρ)
2 со

скалярным произведением

〈ϕ1 (ρ) , ϕ2 (ρ)〉 =

r0∫

0

ρϕ1 (ρ) ϕ2 (ρ) dρ.

С другой стороны, если

x =
√

λρ, y (x) = R (ρ) , (11.52)

то
dR

dρ
=
√

λ
dy

dx
,

d2R

dρ2
= λ

d2y

dx2
,

и потому, делая в уравнении подобную замену переменных, получаем для
y (x) следующее уравнение Бесселя n-го порядка:

y′′ +
1
x

y′ +
(

1− n2

x2

)
y = 0.
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Уравнения и функции Бесселя.

Уравнение Бесселя38 порядка ν ∈ C для комплексной функции y (x) ком-
плексного переменного x может быть записано в одной из следующих двух
эквивалентных форм

y′′ +
1
x

y′ +
(

1− ν2

x2

)
y = 0,

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0.

Одно из его решений представляется рядом

Jν (x) =
(x

2

)ν ∞∑

k=0

(−1)k

k!Γ (ν + k + 1)

(x

2

)2k

и называется цилиндрической функцией 1-го рода ν-го порядка39. В част-
ности,

J0 (x) = 1− (
x
2

)2 +
(

1
2!

)2 (
x
2

)4 − (
1
3!

)2 (
x
2

)6 + . . . ,

J1 (x) =
(

x
2

) (
1− 1

2!

(
x
2

)2 + 1
2!3!

(
x
2

)4 − . . .
)

.

Общее решение уравнения Бесселя записывается в виде

y (x) = C1Jν (x) + C2Yν (x) ,

где Yν (x) — цилиндрическая функция 2-го рода ν-го порядка40

Yν (x) = 2
π

(
C + ln x

2

)
Jν (x)− 1

π

ν−1∑
k=0

(ν−k−1)!
k!

(
2
x

)ν−2k −

− 1
π

∞∑
k=0

(−1)k( x
2 )ν+2k

k!(ν+k)!

[
Γ′(k+1)
Γ(k+1) + Γ′(k+ν+1)

Γ(k+ν+1)

]
,

C — постоянная Эйлера-Маскерони41. Заметим, что функции 2-го рода име-
ют логарифмические особенности в нуле и, следовательно, неограничены в
окрестности данной точки.

Свойства функций Бесселя.

38Справка из аналитической теории обыкновенных дифференциальных уравнений.
39Или функцией Бесселя 1-го рода ν-го порядка.
40Более частные названия данных функций - функции Бесселя, Неймана (Nν), Вебера

и т.д.
41C = lim

n→∞

�
nP

k=1

1
k
− ln n

�
' 0.5772157
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Свойства функций Бесселя хорошо изучены. Отметим некоторые из них42.

а) J−n (x) = (−1)n
Jn (x) , n ∈ Z.

б) При ν /∈ Z функции Jν и J−ν линейно независимы и образуют фунда-
ментальную систему решений уравнения Бесселя.

в) Jν+1 (x) = −Jν−1 (x) + 2ν
x Jν (x).

г) J ′ν (x) = − ν
xJν (x) + Jν−1 (x).

д) (xνJν (x))′ = xνJν−1 (x) , (xJ1 (x))′ = xJ0 (x) , J ′0 (x) = −J1 (x).

е) (x−νJν (x))′ = −x−νJν+1 (x).

ж) Jn+1/2 (x) =
√

2
πx

[
Pn

(
1
x

)
sin

(
x− πn

2

)
+ Qn

(
1
x

)
cos

(
x− πn

2

)]
, где Pn (·) , Qn (·)

— известные многочлены степени n, в частности, J1/2 (x) =
√

2
πx sin x, J−1/2 (x) =√

2
πx cos x.

з) Асимптотические выражения для функций Бесселя:

1. при x → +∞

Jν (x) =
√

2
πx cos

(
x− πν

2 − π
4

)
+ O

(
1

x3/2

)
,

Yν (x) =
√

2
πx sin

(
x− πν

2 − π
4

)
+ O

(
1

x3/2

)
;

2. при x → +0, ν > 0

Jν (x) ∼ 1
ν!

(
x
2

)ν
,

Y0 (x) ∼ 2
π

(
ln x

2 + C
)
,

Yν (x) ∼ (ν−1)!
π

(
2
x

)ν
.

42Приводимые ниже соотношения для функций Бесселя являются тождествами в со-
ответствующих областях определения.
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и) Приближённые значения корней некоторых функций Бесселя:

J0 :





µ
(0)
1 ' 2.4

µ
(0)
2 ' 5.5

µ
(0)
3 ' 8.7

. . .

µ
(0)
k ∼ 3π

4 + πk, k →∞

Jν : µ
(ν)
k ∼ 3π

4
+

πν

2
+ πk, k →∞.

к) Некоторые другие цилиндрические функции

1. Функции Ханкеля

H
(1)
ν (x) = Jν (x) + iYν (x) ,

H
(2)
ν (x) = Jν (x)− iYν (x) .

2. Функции Бесселя мнимого аргумента

Iν (x) = exp
(−πνi

2

)
Jν (ix) ,

Kν (x) = πi
2 exp

(
πνi
2

)
H

(1)
ν (x)

Данные функции образуют фундаментальную систему решений
уравнения

y′′ +
1
x

y′ −
(

1 +
ν2

x2

)
y = 0.

Вернёмся к задаче о колебаниях круглой мембраны. После введения но-
вых переменных (11.52) задача (11.51) приобретает вид





y′′ + 1
xy′ +

(
1− n2

x2

)
y = 0,

y
(√

λr0

)
= 0.

Общее решение уравнения Бесселя, как это следует из приведённой вы-
ше справки, имеет вид

y (x) = C1Jn (x) + C2Yn (x) .

Постоянную C2 следует положить равной 0, иначе решение будет неогра-
ничено в окрестности точки x = 0. Следовательно C1 6= 0, иначе решение
будет тривиальным.

Подстановка решения в граничное условие приводит тогда к следующе-
му характеристическому уравнению

Jn

(√
λr0

)
= 0

для нахождения собственных чисел задачи (11.51). Значит,
√

λr0 = µ
(n)
m , m = 1, 2, . . . ⇒

λ
(n)
m =

(
µ(n)

m

r0

)2

.
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Сами решения задачи выражаются через функции Бесселя первого рода:

R
(n)
m (ρ) = y (x) = C1Jn (x) =

= C1Jn

(√
λ

(n)
m ρ

)
= C1Jn

(
µ(n)

m ρ
r0

)
.

Постоянную C1 выберем из условия нормировки43:

1 =
∥∥∥R

(n)
m

∥∥∥
2

=
r0∫
0

ρ
(
R

(n)
m (ρ)

)2

dρ = C2
1

r0∫
0

ρJ2
n

(
µ(n)

m ρ
r0

)
dρ =

= C2
1

r2
0
2 J ′2n

(
µ

(n)
m

)
.

Отсюда
C1 =

√
2

r0J′n
�

µ
(n)
m

� ,

R
(n)
m (ρ) =

√
2

J′n
�

µ
(n)
m

�
r0

Jn

(
µ(n)

m ρ
r0

)
.

Теперь мы можем выписать решения задачи (11.50):

vnm (ρ, θ) = R(n)
m (ρ)Θn (θ) = R(n)

m (ρ) {D1n cos nθ + D2n sin nθ} . (11.53)

Выберем из множества функций (11.53) ортонормированный набор {vnm} =
{v̄nm} ∪ {ṽnm}, состоящий из следующих функций

v̄nm (ρ, θ) = R
(n)
m (ρ) cos nθ√

π
, v̄0m (ρ, θ) = R

(0)
m (ρ) 1√

2π
,

ṽnm (ρ, θ) = R
(n)
m (ρ) sin nθ√

π
, n = 1, 2, . . . .

Как нетрудно проверить,

〈v̄nm, ṽn1m1〉 ≡
r0∫
0

dρ
2π∫
0

dθ ρv̄nm (ρ, θ) ṽn1m1 (ρ, θ) = 0,

〈v̄nm, v̄n1m1〉 = δnn1δmm1 , 〈ṽnm, ṽn1m1〉 = δnn1δmm1 .

Следующее утверждение о полноте данной системы функций в соответ-
ствующем евклидовом пространстве примем без доказательства.

Теорема. Всякая непрерывная функция F (ρ, θ) может быть разложе-
на в средне-квадратически сходящийся ряд по ортонормированной системе
функций {vnm}:

F (ρ, θ) =
∞∑

n,m

(
Ānmv̄nm (ρ, θ) + Ãnmṽnm (ρ, θ)

)
,

где
Ānm = 〈F, v̄nm〉 =

=
√

2
π

1

r0J ′n
�

µ
(n)
m

�
r0∫
0

ρdρ
2π∫
0

Jn

(
µ(n)

m ρ
r0

)
cos (nθ) F (ρ, θ) dθ,

Ãnm = 〈F, ṽnm〉 .
43Интеграл точно вычисляется с использованием вышеприведённых свойств функций

Бесселя.
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После нахождения из (11.49) \временн ы́х " функций, соответствующих
найденным значениям λ

(n)
m

Tnm (t) = αnm cosωnmt + βnm sinωnmt,

где ωnm = a

√
λ

(n)
m = aµ(n)

m

r0
— собственные частоты колебаний стоячих волн,

находим, наконец, и сами стоячие волны:

unm (ρ, θ, t) =
(
ᾱnm cos ωnmt + β̄nm sin ωnmt

)
v̄nm (ρ, θ)+

+
(
α̃nm cos ωnmt + β̃nm sin ωnmt

)
ṽnm (ρ, θ) .

Решение всей задачи ищем в виде ряда по найденным стоячим волнам

u (ρ, θ, t) =
∑
n,m

unm (ρ, θ, t) .

Неизвестные постоянные определяем из начальных условий:

u (ρ, θ, 0) =
∑
n,m

unm (ρ, θ, 0) =

=
∑
n,m

ᾱnmv̄nm (ρ, θ) + α̃nmṽnm (ρ, θ) = ϕ (ρ, θ) ,

u′t (ρ, θ, 0) =
∑
n,m

(unm)′t (ρ, θ, 0) =

=
∑
n,m

ωnm

(
β̄nmv̄nm (ρ, θ) + β̃nmṽnm (ρ, θ)

)
= ψ (ρ, θ) .

Отсюда
ᾱnm = 〈ϕ, v̄nm〉 , α̃nm = 〈ϕ, ṽnm〉 ,

β̄nm = 1
ωnm

〈ψ, v̄nm〉 , β̃nm = 1
ωnm

〈ψ, ṽnm〉 .
и формальное решение задачи построено.

11.2 Методы решения задач для уравнений па-
раболического типа

11.2.1 Физические задачи, приводящие к уравнениям
параболического типа

• Теплопроводность.

Рассмотрим трёхмерную среду. С точки зрения её теплоконденсирующих свойств
она характеризуется удельной теплоёмкостью c (r) и плотностью распределения
массы ρ (r). Тепло, которое удерживает в себе бесконечно-малый объём dv, окру-
жающий точку r при абсолютной температуре T (r),

dQ = c (r) ρ (r)T dv.

Теплопроводящие свойства среды характеризуются коэффициентом теплопровод-
ности k (r). Тепловые потоки в среде происходят в соответствии с законом Фурье

q = −k (r)∇T,
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где q - плотность потока тепла. Количество тепла dQ, прошедшее на интервале
времени (t, t + dt) через бесконечно-малую площадку dS в направлении вектора
нормали к ней n находится по формуле

dQ = 〈q,n〉 dtdS.

Используя введённые характеристики, составим уравнение баланса тепла на ин-
тервале времени (t, t +4t) (закон сохранения энергии) в произвольном конечном
объёме Ω пространства c гладкой границей ∂Ω и вектором внешней нормали к ней
n. Имеем, применяя теорему Остроградского-Гаусса,

4Q = Q (t +4t)−Q (t) =
∫∫∫
Ω

ρc (T (t +4t)− T (t)) dv =

=
∫∫∫
Ω

f (r) dv4t− ∫∫
∂Ω

〈q,n〉 dS4t =

=
∫∫∫
Ω

(f − div q) dv4t =
∫∫∫
Ω

(f + div k∇T ) dv4t.

После деления на 4t и перехода к пределу при 4t → 0 получаем
∫∫∫

Ω

(
ρc

∂T

∂t
− div k∇T − f

)
dv = 0.

Отсюда, учитывая произвольность области Ω, получаем следующее параболиче-
ское уравнение в частных производных — уравнение теплопроводности, описыва-
ющее изменение температуры T , как функции (r,t):

ρc
∂T

∂t
= div k∇T + f (r,t) .

Здесь f (r, t) — плотность внутренних источников тепла, распределённых в среде.
В однородной среде, где функции k, c, ρ постоянны, уравнение теплопроводности
принимает свой простейший вид

∂T

∂t
= a2∆T + f̃ (r,t) ,

где a2 ≡ k/cρ, f̃ ≡ f/ρc.

• Диффузия.

Процесс диффузии стороннего вещества, помещённого в непрерывную среду про-
исходит по закону Нернста:

W = −D (r)∇u.

Здесь D — коэффициент диффузии, W — плотность диффузионного потока (мас-
са вещества, протекающего в единицу времени через единичную ортогональную
площадку), u— концентрация вещества (u dv = dm— масса вещества в бесконечно-
малом объеме пространства dv). Составляя уравнение баланса вещества (закон
сохранения массы) в произвольном объеме пространства, получаем, как и в слу-
чае задачи о распространении тепла, следующее уравнение параболического типа
(диффузионное уравнение) для функции концентрации u (r,t):

∂u

∂t
= div D∇u + f (r, t) ,

где f (r, t) — плотность источников стороннего вещества.
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• Диффузионные приближения в электродинамике, теории переноса, аку-
стике.

• Уравнение Колмогорова-Фоккера-Планка в теории марковских случай-
ных процессов.

Основное уравнение теории марковских процессов (процессов без последействия)
— параболическое уравнение Колмогорова для переходной плотности вероятностей
p (t,x,y)

∂p

∂t
=

1
2

∑

i,j

∂2

∂yi∂yj

(
aij (y) p

)−
∑

i

∂

∂yi

(
bi (y) p

)
.

11.2.2 Корректность постановки задач для уравнений
параболического типа

Основные типы задач для уравнений параболического типа (u = u (x, t)):

• Задача Коши — t > 0, x ∈ Rn —

ищется решение, удовлетворяющее заданному начальному условию
u (x,0) = ϕ (x). Граничные условия отсутствуют.

• Смешанные задачи: t > 0, x ∈ Ω ⊂ Rn, u (x,0) = ϕ (x)

• Первого рода (Дирихле) —

– значение функции на границе пространственной области ∂Ω за-
дано — u|∂Ω = ψ (x, t)

– Второго рода (Неймана) —
на границе пространственной области задано значение нормаль-
ной производной — ∂u

∂n

∣∣
∂Ω

= ψ (x, t)

• Третьего рода —

– на границе пространственной области задано линейное соотноше-
ние, связывающее между собой функцию и её нормальную про-
изводную αu + β ∂u

∂n

∣∣
∂Ω

= ψ (x, t).

Подобные начально-краевые задачи возникают из потребностей практики. Рассмот-
рим, например, теплотехническую интерпретацию перечисленных выше задач. Задача
Коши возникает при определении температуры во всем пространстве, при известной на-
чальной температуре и известных тепловых источниках, распределенных в пространстве.
Задача Дирихле — это задача о распределении температуры в ограниченной области, при
известной начальной температуре и температуре граничных точек. Задаче Неймана со-
ответствует задача определения распределения температуры при известных тепловых
потоках на границе области. В задаче третьего рода на границе области происходит теп-
лообмен с окружающей средой по закону Ньютона44.

44Плотность нормального потока тепла, проистекающего из среды с температурой u1

в среду с температурой u2 через разделяющую их границу

q12 = h (u1 − u2) ,

где h - коэффициент теплообмена.
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Обсудим корректность постановки основных задач математической фи-
зики для простейшего уравнения параболического типа — однородного урав-
нения теплопроводности

u′t = a2∆u,
u = u (x, y, z, t) , (x, y, z) ∈ Ω ⊂ R3, t > 0.

Здесь Ω — ограниченная (diamΩ < ∞) область в трёхмерном простран-
стве с границей ∂Ω. Обозначим QT ≡ Ω×(0, T ) — цилиндр в четырёхмерном
пространстве. Пусть Γ1 ≡ Ω×{T} — его верхнее основание, Γ ≡ ∂QT \Γ1 ≡
Ω×{0}∪∂Ω× [0, T ] — оставшаяся часть его полной границы ∂QT — боковая
поверхность вместе с нижним основанием:

Теорема (о максимуме и минимуме решения однородного уравнения
теплопроводности). Функция u (x, y, z, t), удовлетворяющая в QT однород-
ному уравнению теплопроводности и непрерывная в замыкании QT , дости-
гает своих минимального и максимального значений в QT на границе Γ, то
есть либо в начальный момент времени, либо в граничных точках области
Ω.

Доказательство. Пусть45

M ≡ max
QT

u = u (x0, y0, z0, t0) , m ≡ max
Γ

u.

Так как Γ ⊂ QT , то m ≤ M . Покажем, что здесь в действительности
имеет место равенство, т.е. m = M .

Предположим, что m < M . Построим вспомогательную функцию

v (x, y, z, t) ≡ u (x, y, z, t)+
+ (M−m)

6d2

[
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
]
,

где d ≡ diam (Ω). На границе Γ имеем

v ≤ m +
M −m

6d2
d2 =

5m + M

6
< M.

Так как
v (x0, y0, z0, t0) = u (x0, y0, z0, t0) = M,

то непрерывная в компакте QT функция v (·) достигает своего максималь-
ного на QT значения в некоторой точке (x1, y1, z1, t1) ∈ QT \Γ = QT ∪Γ1. В
этой точке имеем

v′t − a24v = u′t − a24u︸ ︷︷ ︸
=0

− a2 M −m

d2
< 0.

С другой стороны, в этой точке как в точке экстремума

v′t = 0, (x1, y1, z1, t1) ∈ QT

v′t ≥ 0, (x1, y1, z1, t1) ∈ Γ1

45Поскольку множества QT , Γ являются компактами (ограниченными замкнутыми
множествами в трёхмерном пространстве), то непрерывная функция u (·) достигает на
них своих экстремальных значений (теорема Вейерштрасса).
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(необходимые условия экстремума первого порядка для внутренней и гра-
ничной точек, соответственно), а также

v′′xx ≤ 0, v′′yy ≤ 0, v′′zz ≤ 0 ⇒4v ≤ 0

(необходимые условия экстремума второго порядка).
Поэтому v′t − a24v ≥ 0. Полученное противоречие показывает, что слу-

чай m < M невозможен, следовательно, m = M , что и требовалось дока-
зать.

Следствия.

1. Решение задачи Дирихле для уравнения теплопроводности




u′t = a2∆u + f (r,t)
u (r,t)|Γ = ψ (r,t)
u (r,0) = ϕ (r)

единственно.
Доказательство. Для разности возможных двух решений u ≡ u1−u2

имеем u |Γ≡ 0. Поэтому

max
QT

u = min
QT

u = 0,

что и требовалось доказать.

2. Пусть u1,2 — решения задач Дирихле




u′t = a2∆u + f (r,t)
u (r,t)|Γ = ψ1,2 (r,t)
u (r,0) = ϕ1,2 (r)

Тогда {
ϕ1 (r) ≤ ϕ2 (r) , r ∈Ω
ψ1 (r,t) ≤ ψ2 (r, t) , (r, t) ∈ ∂Ω× [0, T ]

}
⇒

⇒ u1 ≤ u2 в QT .

Доказательство. Имеем для разности u ≡ u1 − u2 по доказанной
теореме

u ≤ max
QT

u = max
Γ

u ≤ 0,

так как на Γ указанное неравенство выполнено по условию.

3. Пусть u0,1,2 — решения задач Дирихле




u′t = a2∆u + f (r,t)
u (r,t)|Γ = ψ0,1,2 (r,t)
u (r,0) = ϕ0,1,2 (r)

Тогда {
ϕ1 (r) ≤ ϕ0 (r) ≤ ϕ2 (r) , r ∈Ω
ψ1 (r,t) ≤ ψ0 (r, t) ≤ ψ2 (r, t) , (r, t) ∈ ∂Ω× [0, T ]

}
⇒

⇒ u1 ≤ u0 ≤ u2 в QT .

Доказательство. Непосредственно вытекает из предыдущего.
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4. Пусть u1,2 — решения задач Дирихле




u′t = a2∆u + f (r,t)
u (r,t)|Γ = ψ1,2 (r,t)
u (r,0) = ϕ1,2 (r)

Тогда при любом положительном ε
{ |ϕ1 (r)− ϕ2 (r)| ≤ ε, r ∈Ω
|ψ1 (r,t)− ψ2 (r, t)| ≤ ε, (r, t) ∈ ∂Ω× [0, T ]

}
⇒

⇒ |u1 − u2| ≤ ε в QT .

Доказательство. Непосредственно вытекает из предыдущего.

Из приведённых утверждений следует корректность постановки зада-
чи Дирихле для уравнения теплопроводности в соответствующих равно-
мерных нормах оценки решений. Доказательство корректности постановки
первой краевой задачи в случае неограниченной пространственной обла-
сти, а также — корректности постановки других смешанных задач, требует
более сложных построений.

Перечислим основные методы, которые применяются при решении раз-
нообразных задач математической физики, связанных с уравнениями па-
раболического типа:

• Метод интегральных преобразований;

• Метод разделения переменных Фурье;

• Метод фундаментальных решений;

• Специальные методы (метод подобия, асимптотические методы и др.).

11.2.3 Метод интегральных преобразований
Решение задачи Коши методом интегрального преобразования Фу-
рье по пространственным переменным.

Рассмотрим задачу Коши для однородного уравнения теплопроводности в
трёхмерном пространстве

{
u′t = a24u, r ∈ R3, t > 0
u (r,0) = ϕ (r) , r ∈ R3.

(11.54)

Для её решения применим интегральное преобразование Фурье по про-

странственной переменной r: F ≡
(r)

F . Применяя это преобразование к пра-
вым и левым частям тождеств (11.54), получим с учётом его свойств

{
F (u′t) = F

(
a24u

)
,

F (u (r,0)) = F (ϕ (r)) ,
⇔

{
d
dt ū = −a2k2ū,
ū (k,0) = ϕ̄ (k) ,

(11.55)

где
ϕ̄ (k) ≡ F (ϕ (r)) =

∫∫∫
R3

ϕ (r) exp (−i 〈k, r〉) dr,

ū (k,t) ≡ F (u (r,t)) , k2 ≡ 〈k,k〉 .
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Решив (при фиксированном значении вектора k) задачу Коши (11.55)
для обыкновенного дифференциального уравнения первого порядка, нахо-
дим образ решения при фиксированном t

ū (k,t) = ϕ̄ (k) exp
(−a2k2t

)
.

Остаётся обратным преобразованием восстановить само решение по его
Фурье-образу:

u (r,t) = F−1 (ū (k,t)) =
(

1
2π

)3 ∫∫∫
R3

ū (k,t) exp (i 〈k, r〉) dk =

=
(

1
2π

)3 ∫∫∫
R3

ϕ̄ (k) exp
(
i 〈k, r〉 − a2k2t

)
dk =

=
(

1
2π

)3 ∫∫∫
R3

dk
∫∫∫
R3

ϕ (ξ) exp (−i 〈k, ξ〉) dξ exp
(
i 〈k, r〉 − a2k2t

)
=

=
∫∫∫
R3

ϕ (ξ)

(
(

1
2π

)3 ∫∫∫
R3

exp
(
i 〈k, r− ξ〉 − a2k2t

)
dk

)
dξ ≡

≡ ∫∫∫
R3

G (r |t| ξ)ϕ (ξ) dξ,

(11.56)

где

G (r |t| ξ) ≡
(

1
2π

)3 ∫∫∫

R3

exp
(
i 〈k, r− ξ〉 − a2k2t

)
dk (11.57)

— фундаментальное решение уравнения теплопроводности. Интеграл (11.57)
легко вычисляется — достаточно воспользоваться следующим следствием
известного интеграла Пуассона46

∞∫

−∞
exp

(
iωα− pω2

)
dω =

√
π

p
exp

(
−α2

4p

)
, p > 0.

Тогда

1
2π

∞∫

−∞
exp

(
ik1 (x− ξ1)− a2k2

1t
)
dk1 =

√
1

4πa2t
exp

(
− (x− ξ1)

2

4a2t

)

и потому

G (r |t| ξ) ≡
(

1
4πa2t

)3/2

exp

(
− (x− ξ1)

2 +
(
y − ξ2

2

)
+ (z − ξ3)

2

4a2t

)
.

Замечание. В том частном случае, когда ϕ (x, y, z) ≡ ϕ (x, y) или даже
ϕ (x, y, z) ≡ ϕ (x) из симметрии ясно, что должно соответственно быть u ≡

46Удобная для запоминания форма интеграла Пуассона:

R+∞
−∞ e−(Ax2+Bx+C)dx =

q
π
A

exp
�

∆
4A

�
,

∆ ≡ B2 − 4AC, Real A > 0.
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u (x, y, t) и u ≡ u (x, t). Так и получается из (11.56):

u (r, t) =
∫∫∫
R3

G (r |t| ξ)ϕ (ξ) dξ =

=
∫∫
R2

(
∫

R1

G (x, y, z |t| ξ1, ξ2, ξ3) dξ3

)
ϕ (ξ1, ξ2) dξ1dξ2 ≡

≡ ∫∫
R2

G2 (x, y |t| ξ1, ξ2)ϕ (ξ1, ξ2) dξ1dξ2 ≡ u (x, y, t) ,

где
G2 (x, y |t| ξ1, ξ2) ≡

∫
R1

G (x, y, z |t| ξ1, ξ2, ξ3) dξ3 =

=
∫

R1

(
1

4πa2t

)3/2 exp
(
− (x−ξ1)

2+(y−ξ2
2)+(z−ξ3)

2

4a2t

)
dξ3 =

= 1
4πa2t exp

(
− (x−ξ1)

2+(y−ξ2
2)

4a2t

)

—фундаментальное решение уравнения теплопроводности в двумерном про-
странственном случае. Аналогично при ϕ ≡ ϕ (x)

u (r, t) =
∫∫∫
R3

G (r |t| ξ)ϕ (ξ) dξ =

=
∫∫
R2

(
∫

R1

G (x, y, z |t| ξ1, ξ2, ξ3) dξ2dξ3

)
ϕ (ξ1) dξ1 ≡

≡ ∫∫
R2

G1 (x |t| ξ1) ϕ (ξ1) dξ1 ≡ u (x, t) ,

где
G1 (x |t| ξ1) ≡

∫
R1

G (x, y, z |t| ξ1, ξ2, ξ3) dξ2dξ3 =

=
∫

R1

(
1

4πa2t

)3/2 exp
(
− (x−ξ1)

2+(y−ξ2
2)+(z−ξ3)

2

4a2t

)
dξ3 =

=
√

1
4πa2t exp

(
− (x−ξ1)

2

4a2t

)

— фундаментальное решение уравнения теплопроводности в одномерном
пространственном случае.

Как уже отмечалось выше 47, подобный приём получения решений задач
для пространств меньшей размерности из решений задач для пространств
большей размерности называется методом спуска.

Свойства фундаментального решения.

1. Физический смысл фундаментального решения: для ϕ (r) ≡ δ (r− r0)
из (11.56) имеем

u (r,t) =
∫∫∫

R3

G (r |t | ξ) δ (ξ − r0) dξ = G (r |t | r0) .

Следовательно, значение фундаментального решения G (r |t | r0) рав-
но температуре точки r среды в момент времени t, при условии, что

47В разделе 11.1.2 о методе бегущих волн.
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первоначальное распределение температуры — дельтаобразное (мгно-
венный источник тепла мощности

Q =
∫∫∫

R3

cρδ (r− r0) dr = cρ,

помещённый в точку r = r0 ).

2. Условие нормировки для фундаментального решения: для ϕ (r) ≡ 1 в
силу единственности решения задачи Коши

u (r,t) ≡ 1 ≡
∫∫∫

R3

G (r |t | ξ) dξ.

3. Теорема взаимности:

G (r |t | r0) ≡ G (r0|t | r) .

Решение смешанной задачи с помощью преобразования Лапласа.

Рассмотрим задачу о нагреве полуограниченного стержня под воздействием
тепловых источников, задающих температуру левого конца стержня:





u′t = a2u′′xx, x > 0, t > 0,
u (0, t) = f (t) , t > 0,
u (x,0) = 0, x > 0.

(11.58)

Применим для её решения метод интегрального преобразования Лапла-
са по временн о́й переменной t. Пусть

F (p) ≡
(t)

L (f (t)) =
+∞∫
0

f (t) exp (−pt) dt,

U (x, p) ≡
(t)

L (u (x, t)) =
+∞∫
0

u (x, t) exp (−pt) dt.

По свойству преобразования Лапласа имеем

u
.= U ⇒ u′t

.= pU − u (x, +0) = pU.

Поэтому из (11.58) получаем
{

pU = a2U ′′
xx,

U (0, p) = F (p) ,

откуда U (x, p) = F (p) exp
(−√px/a

)
. По таблице изображений преобразо-

вания Лапласа (см., например, справочник [20]) находим

G (x, p) ≡ 1
p exp

(
−x

√
p

a

)
.=

.= Erf
(

x
2a
√

t

)
≡ 2√

π

+∞∫
x/2a

√
t

exp
(−ξ2

)
dξ ≡ g (x, t) .
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Так как, очевидно, g (x,+0) = 0, то

g′t
.= pG (p)− g (x, +0) = p

1
p

exp
(
−x

√
p

a

)
= exp

(
−x

√
p

a

)
.

Поэтому

u (x, t) .= U (x, p) = F (p) exp
(
−x

√
p

a

)
.= f ∗ g′t,

то есть

u (x, t) =

t∫

0

f (τ) g′t (x, t− τ) dτ =
x

2a
√

π

t∫

0

f (τ)

(t− τ)3/2
exp

(
− x2

4a2 (t− τ)

)
dτ.

11.2.4 Метод Фурье разделения переменных
Рассмотрим следующую смешанную задачу общего вида о нагреве отрезка
стержня, концы которого поддерживаются при нулевой температуре,





ρ (x) u′t = −Lu + f (x, t) , x ∈ (0, l) , t > 0,
u (0, t) = u (l, t) = 0, t > 0,
u (x, 0) = ϕ (x) , x ∈ (0, l) ,

(11.59)

где L u ≡ q (x)u− ∂
∂x

(
p (x) ∂u

∂x

)
.

Будем искать решение задачи (11.59) в виде суммы u = v + w, где v =
v (x, t) , w = w (x, t) — соответственно решения задач

(v)



ρv′t = −L v
v (x, 0) = ϕ (x)
v (0, t) = v (l, t) = 0



 ,

(w)



ρw′t = −Lw + f
w (x, 0) = 0
w (0, t) = w (l, t) = 0



.

Вначале решим задачу (v). Для этого найдем все нетривиальные реше-
ния отвечающей ей однородной краевой задачи

{
ρv′t = −L v
v (0, t) = v (l, t) = 0 (11.60)

с разделёнными переменными: v (x, t) ≡ y (x)T (t). Подставив это решение
в (11.60), получим после разделения переменных

{
L y = λρy
y (0) = y (l) = 0 Ṫ + λT = 0,

где λ — подлежащая определению постоянная. Предполагая, что получен-
ная задача Штурма-Лиувилля удовлетворяет условиям раздела 11.1.5, на-
ходим бесконечный спектр собственных чисел 0 < λ1 < λ2 < . . . < λn < . . .
Соответствующий им набор собственных функций {yn (x)} образует орто-
нормированный базис в евклидовом пространстве CL

(ρ)
2 (0, l) со скалярным

произведением

〈ϕ,ψ〉 =

l∫

0

ρ (x) ϕ (x)ψ (x) dx.
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Отвечающая λn функция T (t) равна, очевидно, Tn (t) = An exp (−λnt) и
потому соответствующее решение с разделёнными переменными

vn (x, t) = Anyn (x) exp (−λnt) ,

где An — произвольная постоянная.
Будем теперь искать решение задачи (v) в виде ряда по полученному

набору подобных решений уравнения:

v (x, t) =
∞∑

n=1

Anyn (x) exp (−λnt) .

Формально подставляя это решение в начальное условие задачи и ис-
пользуя полноту системы, получаем

v (x, 0) =
∞∑

n=1

Anyn (x) = ϕ (x) ⇔ An = 〈ϕ, yn〉 .

В итоге формальное решение задачи (v) можно записать в виде

v (x, t) =
∞∑

n=1
〈ϕ, yn〉 yn (x) exp (−λnt) =

=
∞∑

n=1

(
l∫
0

ρ (ξ)ϕ (ξ) yn (ξ) dξ

)
yn (x) exp (−λnt) =

=
l∫
0

ρ (ξ)G (x |t| ξ)ϕ (ξ) dξ,

где

G (x |t| ξ) ≡
∞∑

n=1

yn (x) exp (−λnt) yn (ξ) (11.61)

— функция Грина соответствующей краевой задачи.
Решение задачи (w) будем искать в виде ряда Фурье по системе функций

{yn (x)}:
w (x, t) =

∞∑
n=1

wn (t) yn (x) .

Для нахождения переменных коэффициентов Фурье wn (t) ≡ 〈w (x, t) , yn (x)〉
подставим этот ряд в уравнение и начальное условие системы (w), предва-
рительно разложив неоднородный член f (x, t) в ряд по той же системе:

1
ρf (x, t) =

∞∑
n=1

fn (t) yn (x) ,

fn (t) ≡
〈

1
ρf (x, t) , yn (x)

〉
=

=
l∫
0

f (ξ, t) yn (ξ) dξ.

После несложных формальных преобразований имеем




ρ (x)
∞∑

n=1
{ẇn + λnwn − fn (t)} yn (x) = 0,

∞∑
n=1

wn (0) yn (x) = 0.
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Отсюда в силу полноты ортонормированной системы {yn (x)}
{

ẇn + λnwn = fn (t) ,
wn (0) = 0

для каждого n. Поэтому

wn (t) =

t∫

0

exp (−λn (t− τ)) fn (τ) dτ

и

w (x, t) =
∞∑

n=1

t∫
0

exp (−λn (t− τ)) fn (τ) dτyn (x) =

=
t∫
0

l∫
0

G (x |t− τ | ξ) f (ξ, τ) dξdτ.

В конечном итоге решение задачи (11.59) записывается в интегральной
форме

u (x, t) =

l∫

0

ρ (ξ)G (x |t| ξ)ϕ (ξ) dξ +

t∫

0

l∫

0

G (x |t− τ | ξ) f (ξ, τ) dξdτ. (11.62)

Свойства функции Грина.

1. Физический смысл функции Грина.
Рассмотрим смешанную задачу вида





ρ (x) u′t = −L u, x ∈ (0, l) , t > 0,
u (0, t) = u (l, t) = 0, t > 0,
u (x, 0) = 1

ρ(x)δ (x− x0) , x ∈ (0, l) .

Её решение в соответствии с (11.62) имеет вид

u (x, t) =

l∫

0

G (x |t| ξ) δ (ξ − x0) dξ = G (x |t|x0) ,

что даёт основания для трактовки функции Грина как распределе-
ния температуры в среде, вызванное начальным дельтаобразным её
распределением. С другой стороны, решение следующей смешанной
задачи





ρ (x)u′t = −L u + δ (t) δ (x− x0) , x ∈ (0, l) , t > 0,
u (0, t) = u (l, t) = 0, t > 0,
u (x, 0) = 0, x ∈ (0, l)

также в соответствии с (11.62) имеет вид

u (x, t) =

t∫

0

l∫

0

G (x |t− τ | ξ) δ (τ) δ (ξ − x0) dξdτ = G (x |t|x0) ,

что позволяет также трактовать функцию Грина как распределение
температуры в среде, вызванное дельтаобразными источниками тепла,
распределёнными в среде.



148 ЧАСТЬ II. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

2. Теорема взаимности.

Как легко видеть из формулы (11.61),

G (x |t| ξ) ≡ G (ξ |t|x) .

Данное свойство симметрии функции Грина принято трактовать как
свойство взаимности: влияние точечного источника тепла, помещённого
в точку ξ, на точку измерения x симметрично относительно замены
ξ ↔ x.

Метод разделения переменных Фурье в многомерных параболи-
ческих задачах.

Рассмотрим задачу об остывании однородного круглого теплопроводящего
цилиндра:





u′t = a2∆u = a2
(

∂2u
∂ρ2 + 1

ρ
∂u
∂ρ + 1

ρ2
∂2u
∂θ2

)
, ρ ≥ 0, θ ∈ R1, t > 0

u (ρ0, θ, t) = 0, θ ∈ R1, t > 0,
u (ρ, θ, 0) = ϕ (ρ, θ) , ρ ≥ 0, θ ∈ R1.

, (11.63)

Здесь ρ0 — радиус цилиндра. Исходя из геометрии задачи, для её реше-
ния выбрана полярная система координат (ρ, θ). При этом для того чтобы
решение задачи имело физический смысл следует добавить в постановке
задачи условие периодичности решения по углу:

u (ρ, θ + 2π, t) ≡ u (ρ, θ, t) .

Ограничимся, впрочем, для простоты лишь случаем радиально-симметричного
начального распределения температуры: ϕ (ρ, θ) ≡ ϕ (ρ). Из симметрии за-
дачи ясно, что в этом случае распределение температуры в стержне всегда
будет радиально-симметрично:

u (ρ, θ, t) ≡ u (ρ, t) .

Найдём все радиально-симметричные решения однородной краевой за-
дачи {

u′t = a2∆u = a2
(

∂2u
∂ρ2 + 1

ρ
∂u
∂ρ

)
, ρ ≥ 0, t > 0,

u (ρ0, t) = 0, t > 0

с разделёнными переменными, то есть решения вида

u (ρ, t) = R (ρ)T (t) .

Подставляя это решение в уравнение и граничное условие, получаем
после разделения переменных

(R){
R′′ + 1

ρR′ + λR = 0, ρ ≥ 0,

R (ρ0) = 0,

(T )

Ṫ + a2λT = 0, t > 0

Здесь λ — постоянная (собственное число), подлежащая определению.
Роль отсутствующего второго граничного условия в краевой задаче (R) для
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уравнения второго порядка для функции R (ρ) играет условие ограничен-
ности решения в круге ρ ≤ ρ0: |R (ρ)| < ∞. Заметим, что из общей теории
задачи Штурма-Лиувилля, изложенной выше в разделе 11.1.5, следует су-
ществование бесконечного набора положительных собственных чисел; со-
ответствующий ортонормированный набор собственных функций образует
базис в евклидовом пространстве. Не ограничиваясь данной констатацией,
выразим указанные собственные функции через функции Бесселя нулевого
порядка. Ортогональность и полнота системы функций будет тогда следо-
вать также и из теории бесселевых функций.

Заменой
x =

√
λρ, y (x) = R (ρ)

сведём краевую задачу (R) к следующей задаче для уравнения Бесселя
нулевого порядка:





y′′ + 1
xy′ +

(
1− 02

x2

)
y = 0,

y
(√

λρ0

)
= 0, |y (0)| < ∞.

Общее решение уравнения выразим через цилиндрические функции пер-
вого и второго рода нулевого порядка

y (x) = C1J0 (x) + C2Y0 (x) .

Постоянную C2 полагаем равной нулю для ограниченности решения в
нулевой точке. Граничное условие в другой точке интервала решения при-
водит к следующему уравнению для нахождения собственных чисел:

J0

(√
λρ0

)
= 0.

Отсюда имеем
√

λρ0 = µ
(0)
n , λn =

(
µ(0)

n

ρ0

)2

, где
{

µ
(0)
n , n = 1, 2, . . .

}
— серия

последовательных корней функции Бесселя J0. Соответствующее решение
задачи (R) имеет вид

Rn (ρ) = C1J0

(√
λnρ

)
.

Нормируем его надлежащим выбором постоянной C1:

1 = ‖Rn‖2 = C2
1

ρ0∫
0

ρJ2
0

(
µ(0)

n ρ
ρ0

)
dρ = C2

1
ρ2
0
2

(
J ′0

(
µ

(0)
n

))2

,

Rn (ρ) =
√

2

ρ0J ′0
�

µ
(0)
n

�J0

(
µ(0)

n ρ
ρ0

)
.

Система функций {Rn (ρ)} образует ортонормированный базис в евкли-
довом пространстве CL

(ρ)
2 (0, ρ0).

После интегрирования уравнения (T) находим все радиально-симметричные
решения однородной краевой задачи с разделёнными переменными48

un (ρ, t) = AnRn (ρ) exp
(−a2λnt

)
.

48Стоячие волны в терминологии гиперболических задач.
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Решение исходной задачи (11.63) ищем в виде ряда по системе таких
решений

u (ρ, t) =
∞∑

n=1

AnRn (ρ) exp
(−a2λnt

)
.

Постоянные An определяются из начального условия

u (ρ, 0) =
∞∑

n=1
AnRn (ρ) = ϕ (ρ) ⇔

⇔ An = 〈Rn (ρ) , ϕ (ρ)〉 =
√

2

ρ0J ′0
�

µ
(0)
n

�
ρ0∫
0

ρϕ (ρ)J0

(
µ(0)

n ρ
ρ0

)
dρ.

Решение задачи Коши для уравнения теплопроводности методом
разделения переменных Фурье.

Рассмотрим задачу Коши для однородного уравнения теплопроводности
{

u′t = a2u′′xx, −∞ < x < +∞, t > 0
u (x, 0) = ϕ (x) , −∞ < x < +∞.

(11.64)

Вначале найдём все решения уравнения с разделёнными переменными
u (x, t) = y (x) T (t), удовлетворяющие дополнительному условию limt→+∞ u (x, t) =
0. После подстановки подобного решения в уравнение и разделения пере-
менных получаем тождество

y′′ (x)
y (x)

≡ Ṫ (t)
a2T (t)

.

Поскольку правая и левая его части зависят от различных независимых
переменных, то они могут быть лишь постоянны. Обозначив соответствую-
щую постоянную −λ2, получаем уравнения

y′′ + λ2y = 0,

Ṫ + a2λ2T = 0,

откуда
yλ (x) = exp (iλx) ,

Tλ (t) = A (λ) exp
(−a2λ2t

)
,

uλ (x, t) = A (λ) exp
(
iλx− a2λ2t

)
.

Заметим, что исчезающее при t → +∞ решение получается лишь при ве-
щественном λ.

Решение задачи (11.64) ищем теперь в виде интеграла

u (x, t) =

+∞∫

−∞
A (λ) exp

(
iλx− a2λ2t

)
dλ,

подбирая коэффициенты A (λ) так, чтобы удовлетворить начальным усло-
виям

u (x, 0) =

+∞∫

−∞
A (λ) exp (iλx) dλ = ϕ (x) .
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Из теории интеграла Фурье следует, что подобное разложение возможно
при условии принадлежности функции ϕ (x) классу Φ (см. раздел 11.1.4).
При этом

A (λ) = 1
2π

+∞∫
−∞

u (ξ, 0) exp (−iλξ) dξ =

= 1
2π

+∞∫
−∞

ϕ (ξ) exp (−iλξ) dξ.

В итоге решение задачи (11.64) можно записать в интегральной форме

u (x, t) = 1
2π

+∞∫
−∞

(
+∞∫
−∞

ϕ (ξ) exp (−iλξ) dξ

)
exp

(−a2λ2t + iλx
)
dλ =

=
+∞∫
−∞

(
1
2π

+∞∫
−∞

exp
(−iλ (ξ − x)− a2λ2t

)
dλ

)
ϕ (ξ) dξ ≡

≡
+∞∫
−∞

G (x |t| ξ)ϕ (ξ) dξ,

где

G (x |t| ξ) ≡ 1
2π

+∞∫
−∞

exp
(−iλ (ξ − x)− a2λ2t

)
dλ =

= 1√
4πa2t

exp
(
− (x−ξ)2

4a2t

)

—фундаментальное решение уравнения теплопроводности (см. раздел 11.2.3).

11.3 Методы решения задач для уравнений эл-
липтического типа

11.3.1 Примеры физических задач, приводящих к урав-
нениям эллиптического типа

1. Уравнение Пуассона
4u = f (x)

и его однородный вариант — уравнение Лапласа —

4u = 0.

Описывают стационарные распределения потенциалов полей в электростатике,
магнитостатике, теории гравитации, теплопроводности, диффузии. Функция f (x)
представляет плотность распределения стационарных источников поля:

~E = −∇u ⇒ 4πρ = ∇ ~E = −∇2u = −4u
u′t = a24u, u′t ≡ 0 ⇒ 4u = 0

2. Уравнение Гельмгольца

4u + k2u = ρ (x) .
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Описывает распределение амплитуды гармонического процесса, удовлетворяюще-
го волновому уравнению:

v′′tt = a24v + f (~r) eiωt, v (~r, t) = u (~r) eiωt

⇒4u + k2u = − 1
a2 f (~r) , k2 ≡ ω2

a2

3. Стационарное уравнение Шрёдингера

~2

2m
4ψ + [E − U (x, y, z)] ψ = 0.

Описывает стационарные состояния квантовомеханических систем: U (x, y, z) —
оператор потенциальной энергии, E — энергия системы.

11.3.2 Корректность постановки краевых задач для урав-
нений эллиптического типа

Основные краевые задачи для эллиптических уравнений.

• 1-го рода — задача Дирихле — на границе области задается значение
функции: u|∂Ω = ϕ.

• 2-го рода — задача Неймана — на границе области задается значение
нормальной производной функции: ∂u

∂n

∣∣
∂Ω

= ψ.

• 3-го рода — на границе области задается линейное соотношение, свя-
зывающее значения решения и его нормальной производной: αu + β ∂u

∂n

∣∣
∂Ω

=
χ, α (x) β (x) 6≡ 0.

Интегральные формулы Грина.

Согласно формуле Остроградского-Гаусса
∫∫∫

Ω

div Ã dΩ =
∫∫

∂Ω

〈
Ã, ñ

〉
dS, (11.65)

где Ã = Ã (r̃) — непрерывно-дифференцируемое векторное поле в ограни-
ченной пространственной области Ω с гладкой границей ∂Ω, ñ — внеш-
няя нормаль к границе. Взяв, в частности, Ã ≡ u∇v, где u (·) , v (·) ∈
C1

(
Ω̄

) ∩ C2 (Ω), имеем
〈
Ã, ñ

〉
= u 〈∇v, ñ〉 = u ∂v

∂n ,

div Ã = ∇ (u∇v) = u4v + 〈∇u,∇v〉 .

Подставив эти выражения в формулу (11.65), получаем первую формулу
Грина ∫∫∫

Ω

u4vdΩ =
∫∫

∂Ω

u
∂v

∂n
dS −

∫∫∫

Ω

〈∇u,∇v〉 dΩ. (11.66)

Меняя местами функции u, v в этой формуле и вычитая полученную
формулу из (11.66), получаем вторую формулу Грина
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∫∫∫

Ω

(u4v − v4u) dΩ =
∫∫

∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
dS (11.67)

Используем формулы Грина для доказательства следующего вспомога-
тельного утверждения, играющего важную роль в теории гармонических
функций.

Лемма. 4 (
1
r

)
= −4πδ (x), где r ≡ |x| ≡

√
x2

1 + x2
2 + x2

3.
Доказательство. Положим для ε > 0

Ωε ≡
{
x : ε < |x| < 1

ε

}
,

S
(1)
ε ≡ {

x : |x| = 1
ε

}
,

S
(2)
ε ≡ {x : |x| = ε} .

Применяя вторую формулу Грина, имеем для произвольной основной
(бесконечно-дифференцируемой, финитной — см. раздел ??) функции ϕ (x)

〈4 (
1
r

)
, ϕ

〉
=

〈
1
r ,4ϕ

〉
=

=
∫∫∫
R3

1
r4ϕdΩ ≡ lim

ε→+0

∫∫∫
Ωε

1
r4ϕ dΩ =

= lim
ε→+0

{
∫∫∫
Ωε

ϕ4 (
1
r

)
dΩ +

∫∫
Sε

(
1
r

∂ϕ
∂n − ϕ

∂( 1
r )

∂n

)
dS

}
=

= lim
ε→+0





1
ε

∫∫
S

(2)
ε

∂ϕ
∂ndS + ε

∫∫
S

(1)
ε

∂ϕ
∂ndS−

− 1
ε2

∫∫
S

(2)
ε

ϕdS + ε2
∫∫

S
(1)
ε

ϕdS



 =

= −4πϕ (0) = 〈−4πδ (x) , ϕ (x)〉 .
Здесь мы учли, что

∂
∂n

(
1
r

)
= − 1

r2
∂r
∂n =

{
1
r2 = 1

ε2 , x ∈ S
(2)
ε

− 1
r2 = −ε2 x ∈ S

(1)
ε

,

∫∫
S

(1)
ε

∂ϕ
∂ndS = 0,

∫∫
S

(1)
ε

ϕdS = 0 ∀ε > ε∗,
∣∣∣∣∣∣
∫∫

S
(2)
ε

∂ϕ
∂ndS

∣∣∣∣∣∣
≤ Kε2,

∫∫
S

(2)
ε

ϕdS = 4πε2ϕ (ηε) , ηε →
ε→+0

0.

Лемма доказана.49

Гармонические функции.

Определение.Функция u (x) называется гармонической в области x ∈Ω ⊂
Rn, n ≥ 1, если она дважды непрерывно дифференцируема в Ω и удовле-

49Фактически в лемме доказано, что функция − 1
4πr

является фундаментальным ре-
шением уравнения Лапласа.
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творяет в этой области уравнению Лапласа

4u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . . +
∂2u

∂x2
n

= 0.

Примеры:

а) Линейная функция во всём пространстве любой размерности;

б) u (x) = 1
|x| в любой области трёхмерного пространства, не содержащей

точки 0;

в) u (x) = ln 1
|x| в любой области двумерного пространства, не содержащей

точки 0;

Свойства гармонических функций.

1. Интегральное представление гармонической функции через её значе-
ния на границе области (для n = 3).

Полагая во второй формуле Грина (11.67)

v (ξ) =
1

|ξ − x| ≡
1

rξx
,

где x — фиксированная, ξ — текущая точка области, и учитывая (см.
вышеприведённую лемму), что

4v (ξ) = −4πδ (x− ξ) ,

получаем из этой формулы для произвольной гармонической в обла-
сти функции u (x)

u (x) =
1
4π

∫∫

∂Ω

[
1

rξx

∂u

∂n
(ξ)− u (ξ)

∂

∂nξ

(
1

rξx

)]
dSξ. (11.68)

2. Поток градиента гармонической функции через границу произволь-
ной замкнутой области гармоничности

∫∫

∂Ω

〈∇u, ~n〉 dSξ =
∫∫

∂Ω

∂u

∂n
(ξ) dSξ = 0. (11.69)

Для доказательства этого свойства гармонической функции достаточ-
но положить во второй формуле Грина v (x) ≡ 1.

3. Всякая гармоническая функция двух переменных (x, y) является ре-
альной (мнимой) частью некоторой аналитической функции ком-
плексного переменного z ≡ x + iy :

u (x, y) ≡ Real f (z) .

Отсюда, в частности, вытекает, что любая гармоническая функция
бесконечно дифференцируема в области гармоничности.
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И наоборот, реальная u и мнимая v части любой аналитической функ-
ции являются сопряжёнными между собой гармоническими функци-
ями. Последнее означает выполнение всюду в области гармоничности
условий Коши-Римана для этих функциd́:

{
u′x = v′y,
u′y = −v′x.

4. Теорема (о среднем для гармонических функций).

Для всякой точки x из области гармоничности и любой сферы S ≡
{ξ : |x− ξ| = a} ⊂ R3, целиком принадлежащей этой области,

u (x) =
1

4πa2

∫∫

S

u (ξ) dSξ.

Для доказательства данного утверждения достаточно применить
формулу (11.68) к области Ω ≡ {ξ : |x− ξ| < a}. Тогда с учётом
формулы (11.69) получаем

u (x) =
1

4πa

∫∫

S

∂u

∂n
dS

︸ ︷︷ ︸
=0

− 1
4π

∫∫

S

u
∂

∂n

(
1
r

)

︸ ︷︷ ︸
≡−1/a2

dS =
1

4πa2

∫∫

S

u dS,

что и требовалось доказать.

5. Теорема (о максимуме и минимуме гармонической функции). Мак-
симальное и минимальное значения гармонической функции, непре-
рывной в замыкании области, достигается на границе этой области.

Доказательство. Пусть максимум гармонической функции достига-
ется в некоторой точке M . Если данная точка принадлежит грани-
це, то теорема доказана. В противном случае максимальное значение
достигается также и в любой точке сферы с центром в M , целиком
лежащей в области гармоничности (иначе среднее значение функции
по поверхности этой сферы будет меньше значения в центре). Увели-
чив радиус сферы до её соприкосновения с границей области, докажем
теорему.

Следствия (к корректности постановки задачи Дирихле):

(a) Если на границе области гармоничности u (x) ≡ 0, то и внутри
неё функция тождественно равна нулю.

(b) Если две гармонические функции тождественно совпадают на
границе области, то они совпадают и внутри неё.

(c) Если на границе области гармонические функции различаются
не более чем на ε, то и внутри области они удовлетворяют тому
же условию.

(d) Решение задачи Дирихле для уравнения Пуассона единственно и
непрерывно в равномерной метрике зависит от граничного усло-
вия — корректность постановки задачи Дирихле.
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11.3.3 Методы решения задач для уравнений эллипти-
ческого типа

Перечислим основные методы, которые применяются для решения краевых
задач для уравнений эллиптического типа:

• метод функций Грина;

• метод разделения переменных Фурье;

• метод потенциалов;

• метод интегральных преобразований;

• метод конформных преобразований;

• специальные методы.

11.3.4 Метод функций Грина
Применим метод функций Грина для решения краевой задачи общего вида

{ 4u = f (x) , x ∈ Ω ⊂ R3

αu + β ∂u
∂n

∣∣
∂Ω

= ϕ (x) (11.70)

для уравнения Пуассона.
Определение. Функцией Грина задачи (11.70) называется обобщённая

функция G (x, ξ), удовлетворяющая краевой задаче
{ 4ξG = −δ (x− ξ) , x ∈ Ω

αG + β ∂G
∂n

∣∣
ξ∈∂Ω

= 0.
(11.71)

Здесь 4ξ ≡ ∂2

∂ξ2
1
+ ∂2

∂ξ2
2
+ ∂2

∂ξ2
3
, ξ — текущая, x — фиксированная точка области

Ω.

Интегральное представление решений краевой задачи.

Взяв во второй формуле Грина в качестве функции u (ξ) решение краевой
задачи (11.70), а в качестве функции v (ξ) — функцию Грина G (x, ξ), по-
лучим с учётом (11.71) интегральное представление решения задачи через
граничные значения решения и производных:

u (x) =
∫∫
∂Ω

(
G (x, ξ) ∂u

∂n (ξ)− u (ξ) ∂G(x,ξ)
∂nξ

)
dSξ−

− ∫∫∫
Ω

G (x, ξ)4u (ξ) dΩξ.
(11.72)

Рассмотрим отдельно следующие случаи.

1. Задача Дирихле

u (x) = −
∫∫

∂Ω

ϕ (ξ)
∂G (x, ξ)

∂nξ
dSξ −

∫∫∫

Ω

G (x, ξ) f (ξ) dΩξ. (11.73)
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2. Задача Неймана
{ 4u = f

∂u
∂n

∣∣
∂Ω

= ϕ

{ 4G = −δ
∂G
∂n

∣∣
∂Ω

= 0

u (x) =
∫∫

∂Ω

G (x, ξ)ϕ (ξ) dSξ −
∫∫∫

Ω

G (x, ξ) f (ξ) dΩξ.

3. Третья краевая задача (β (x) 6= 0)
{ 4u = f

αu + β ∂u
∂n

∣∣
∂Ω

= ϕ

{ 4G = −δ
αG + β ∂G

∂n

∣∣
∂Ω

= 0

u (x) =
∫∫

∂Ω

1
β (ξ)

G (x, ξ)ϕ (ξ) dSξ −
∫∫∫

Ω

G (x, ξ) f (ξ) dΩξ.

Здесь мы использовали тождество

G
∂u

∂n
− u

∂G

∂n
= G

(
ϕ

β
− αu

β

)
+ u

αG

β
=

1
β

Gϕ

Таким образом, зная функцию Грина краевой задачи, можно сразу вы-
писать решение любой из краевых задач в виде интеграла, включающего
в себя функцию Грина, её производные и данные задачи — неоднородный
член уравнения и граничные условия. Поэтому важно уметь находить саму
функцию Грина.

Метод мнимых источников построения функции Грина.

Одним из методов нахождения функции Грина (11.71) является метод
изображений (мнимых источников), основанный на следующем выделе-
нии особенности в функции Грина.

Учитывая доказанную выше лемму, будем искать функцию G (x, ξ) в
виде

G (x, ξ) =
1

4πrxξ
+ v (ξ) , (11.74)

где x — фиксированная точка области Ω ⊂ R3, v (ξ) — гармоническая в
области функция, служащая решением краевой задачи

{ 4v = 0, ξ ∈ Ω,

αv + β ∂v
∂n

∣∣
ξ∈∂Ω

= − 1
4π

(
α 1

rxξ
+ β ∂

∂n

(
1

rxξ

))
.

Иногда удается найти решение этой последней задачи из некоторых сообра-
жений симметрии, основанных, по существу, на физической интерпретации
её решения. Последняя заключается в следующем. Рассмотрим полное элек-
тростатическое поле в области Ω, граница которой \заземлена " , то есть
окружена проводящей поверхностью, поддерживаемой при нулевом потен-
циале, при условии, что в точку x области помещён заряд q = − 1

4π . По-
тенциал этого поля есть не что иное как функция Грина G (x, ξ). С другой
стороны, первый член в представлении функции Грина (11.74) это потенци-
ал, создаваемый самим зарядом q. Следовательно, функция v (ξ) является
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не чем иным как потенциалом, наводимым в области зарядами, индуциро-
ванными на поверхности границы области зарядом q. Идея метода изоб-
ражений заключается в том, чтобы заменить эти индуцированные заряды
другими \мнимыми " зарядами, расположенными вне замыкания области
Ω̄, которые создавали бы на поверхности области потенциал равный

− 1
4π

(
α

1
rxξ

+ β
∂

∂n

(
1

rxξ

))
.

Потенциал внутри области, который будут создавать эти мнимые заряды,
совпадает с функцией v (ξ), так как у этих гармонических внутри области
функций совпадают их граничные значения. Подбор таких мнимых зарядов
удаётся в ряде случаев произвести, исходя из присущей задаче геометриче-
ской симметрии.

Приведем примеры подобного подбора.
Пример 1.Решение задачи Дирихле в верхнем полупространстве.
Пусть Ω ≡ {(x1, x2, x3) : x3 > 0}. Рассмотрим следующую краевую за-

дачу первого рода для уравнения Лапласа
{ 4u = 0, x3 > 0

u|x3=0 = ϕ.

Ищем функцию Грина в виде (11.74). Для потенциала индуцированных
зарядов v при этом имеем задачу

{ 4v = 0, ξ3 > 0
v|ξ3=0 = − 1

4πrxξ
.

Возьмём в качестве мнимого источника заряд q = − 1
4π , расположенный

в точке, симметричной точке x ≡ (x1, x2, x3) относительно плоскости ξ3 = 0,
то есть в точке x∗ ≡ (x1, x2,−x3). Так как на границе области его потенциал
равен

− 1
4πrx∗ξ

= − 1
4πrxξ

,

то в самой области он совпадает с искомой функцией v. В итоге

G (x, ξ) =
1
4π

(
1

rxξ
− 1

rx∗ξ

)
,

а из формулы (11.73) получаем решение задачи

u (x) = −
∫∫

Ω

ϕ
∂G

∂n
dSξ =

x3

2π

∫∫

R2

ϕ (ξ1, ξ2) dξ1dξ2[
(x1 − ξ1)

2 + (x2 − ξ2)
2 + x2

3

]3/2
.

Пример 2. Решение задачи Дирихле внутри шара (n = 3).
В данной задаче Ω ≡ {x : |x| < a}. Рассмотрим краевую задачу первого

рода { 4u = 0, x ∈ Ω,
u|x∈∂Ω = α (x) .

Определение. Точки x ∈ Ω и x∗ ∈ R3 \ Ω называются взаимно сим-
метричными относительно сферы ∂Ω ≡ {x : |x| = a}, если они лежат на
одном луче, выходящем из центра сферы O и
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roxrox∗ = a2.

Здесь, как обычно, rxy ≡ |x− y|.
Вновь ищем функцию Грина в виде (11.74). Для потенциала индуциро-

ванных зарядов v при этом имеем задачу
{ 4v = 0, ξ ∈ Ω

v|ξ∈∂Ω = − 1
4πrxξ

.

Убедимся в том, что решением последней задачи служит функция

v (ξ) =
q

rx∗ξ
,

где
q = − a

4π |x|
— постоянная величина — мнимый заряд, а точка x∗ симметрична точке x
относительно сферы.

В самом деле, эта функция удовлетворяет всюду в пространстве за ис-
ключением точки x∗ (и следовательно — всюду внутри сферы) уравнению
Лапласа, а на самой сфере

v (ξ)|ξ∈∂Ω = q
rx∗ξ

∣∣∣
ξ∈∂Ω

=
(− a

|x| )
4π( a

|x| rxξ) =

= − 1
4πrxξ

.

Заметим, что тождество rx∗ξ ≡ a
|x|rxξ, ξ ∈ ∂Ω вытекает из подобия тре-

угольников OXξ и OX∗ξ (см. рисунок).
Последние подобны по общему углу ∠XOξ и пропорциональности при-

легающих к нему сторон:
OX

Oξ
=

Oξ

OX∗ .

Таким образом,

G (x, ξ) =
1
4π

(
1

rxξ
+

q

rx∗ξ

)

и решение, как функция сферических координат, имеет вид

u (r, ϑ, ϕ) = − ∫∫
∂Ω

α∂G
∂n dS =

= a
4π

2π∫
0

dϕ′
π∫
0

dϑ′ α (ϑ′, ϕ′) (a2−r2) sin ϑ′

[a2−2ar cos γ+r2]3/2 ,

cos γ ≡ cosϑ cos ϑ′ + sin ϑ sin ϑ′ cos (ϕ− ϕ′) .

Это известная формула Пуассона.

11.3.5 Метод разделения переменных Фурье
Данный метод мы изложим на примере решения задачи Дирихле для урав-
нения Лапласа внутри шара Ω ≡ {x : |x| < a} ⊂ R3 (внутренняя задача) и
вне него (внешняя задача):

{ 4u = 0, x ∈ Ω
u|x∈∂Ω = f (x) ,
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или — в сферической системе координат —



4u = 1

r2
∂
∂r

(
r2 ∂u

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂u

∂θ

)
+

+ 1
r2 sin2 θ

∂2u
∂ϕ2 = 0, r < a (r > a)

u|r=a = f (θ, ϕ) .

(11.75)

Прежде чем приступать к решению следует ознакомиться с теорией
уравнений и функций Лежандра, которые тесно связаны с данной задачей
математической физики.

Уравнения и функции Лежандра (справка из теории обыкновен-
ных дифференциальных уравнений).

Уравнением Лежандра называется линейное дифференциальное уравнение
второго порядка

d

dx

[(
1− x2

)
y′

]
+ λy = 0, −1 ≤ x ≤ 1. (11.76)

Оно имеет ограниченные на отрезке [−1, 1] решения лишь при λ = n (n + 1) , n =
0, 1, 2, . . .. Одно из этих решений обозначается Pn (x) и называется много-
членом Лежандра порядка n. Как и следует из его названия, Pn (x) яв-
ляется многочленом от x порядка n. Второе, линейно независимое с ним
решение уравнения (11.76) обозначается обычно Qn (x) и (имея логарифми-
ческие особенности в точках x = ±1) многочленом не является. Свойства
всех этих функций хорошо изучены. Перечислим некоторые из них.

1. Формула Родриго:

Pn (x) =
1

2nn!
dn

dxn

[(
x2 − 1

)n
]
.

В частности, из этого выражения получаем

P0 (x) ≡ 1,
P1 (x) ≡ x,
P2 (x) ≡ 3

2x2 − 1
2 ,

. . .

2. Рекуррентные соотношения для многочленов Лежандра:

(n + 1) Pn+1 − (2n + 1) xPn + nPn−1 ≡ 0,
Pn (x) ≡ 1

2n+1

[
P ′n+1 (x)− P ′n−1 (x)

]
.

3. Взаимная ортогональность многочленов Лежандра:

〈Pn, Pk〉 =

1∫

−1

Pn (x)Pk (x) dx = δnk
2

2n + 1
,

где δnk — символ Кронекера.
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4. Полнота системы многочленов Лежандра: набор
{√

2n+1
2 Pn (x) , n = 1, 2, . . .

}

образует ортонормированный базис в евклидовом пространстве L2 [−1, 1].

5. Ограниченность:
|Pn (x)| ≤ 1 ∀x ∈ [−1, 1] .

Присоединённым уравнением Лежандра называется линейное диффе-
ренциальное уравнение второго порядка вида

d

dx

[(
1− x2

) dy

dx

]
+

(
λ− m2

1− x2

)
y = 0, −1 ≤ x ≤ 1. (11.77)

Здесь m — заданное целое число.
Ненулевое ограниченное на отрезке [−1, 1] решение этого уравнения су-

ществует лишь при λ = n (n + 1), n = 0, 1, . . .; 0 ≤ m ≤ n. Это решение —
присоединённую функцию Лежандра — P

(m)
n можно выразить через много-

член Лежандра степени n по формуле:

P (m)
n (x) ≡ (

1− x2
)m/2 dmPn (x)

dxm
,

из чего следует, что оно в общем случае многочленом не является.
Отметим также некоторые свойства присоединённых функций:

1. P
(0)
n (x) ≡ Pn (x), P

(m)
n (x) ≡ 0 при m > n,

2.
∥∥∥P

(m)
n

∥∥∥
2

= 2
2n+1

(n+m)!
(n−m)! ,

3.
{

P
(m)
n

}∞
n=m

— ортогональная замкнутая система (ортогональный ба-
зис) в евклидовом пространстве L2 [−1, 1] .

Приступим теперь к решению задачи (11.75) методом разделения пере-
менных. На первом шаге этого метода ищем решения уравнения Лапласа
с разделёнными переменными вида

u (r, θ, ϕ) = w (r)Y (θ, ϕ) .

После его подстановки в уравнение получаем тождество

d

dr

(
r2 dw

dr

)
Y +

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
w +

1
sin2 θ

∂2Y

∂ϕ2
w ≡ 0,

или — после разделения переменных —

d
dr

(
r2 dw

dr

)

w
≡ −

1
sin θ

∂
∂θ

(
sin θ ∂Y

∂θ

)
+ 1

sin2 θ
∂2Y
∂ϕ2

Y
≡ λ,

где λ — в силу независимости переменных — может быть лишь постоянной.
Отсюда получаем уравнения

d

dr

(
r2 dw

dr

)
− λw = 0, (11.78)
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1
sin2 θ

∂2Y

∂ϕ2
+

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ λY = 0. (11.79)

Определение. Ограниченное решение уравнения (11.79), удовлетворя-
ющее условию периодичности Y (θ, ϕ) ≡ Y (θ, ϕ + 2π), называется сфериче-
ской функцией.

Сферические функции также будем искать методом разделения пере-
менных:

Y (θ, ϕ) ≡ Θ(θ)Φ (ϕ) .

После подстановки подобной функции в (11.79) и разделения перемен-
ных получим уравнения

{
Φ′′ + µΦ = 0,
Φ(ϕ + 2π) ≡ Φ(ϕ) ,

(11.80)

1
sin θ

d

dθ

(
sin θ

dΘ
dθ

)
+

(
λ− µ

sin2 θ

)
Θ = 0, (11.81)

где µ — постоянное число. Решения уравнения (11.80), удовлетворяющие
условию периодичности с периодом 2π, существуют только при µ = m2, m =
0,±1, . . ., и имеют вид

Φ (ϕ) = Am cos mϕ + Bm sin mϕ.

Подставляя данное значение в уравнение (11.81) и производя в нём за-
мены переменных вида

t = cos θ, X (t) = Θ (θ) ,

получаем присоединённое уравнение Лежандра для функции X (t):

d

dt

[(
1− t2

) dX

dt

]
+

(
λ− m2

1− t2

)
X = 0.

Его нетривиальные ограниченные решения существуют лишь при λ =
n (n + 1) :

X(m)
n (t) = P (|m|)

n (t) , n = 0, 1, . . . ; 0 ≤ |m| ≤ n,

и потому нетривиальные решения уравнения (11.81) имеют вид

Θ(m)
n (θ) = P (m)

n (cos θ) ,

а нетривиальные решения уравнения (11.79) —

Y (m)
n (θ, ϕ) =

{
P

(m)
n (cos θ) cos mϕ, m = 0, 1, . . . , n

P
(|m|)
n (cos θ) sin mϕ, m = −1, . . . ,−n.

Используя свойства функций Лежандра, можно доказать, что множе-
ство функций

{
Y

(m)
n (θ, ϕ)

}
n=0,1,...; |m|≤n

образует ортогональный базис в
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евклидовом пространстве L2 (S) непрерывных на единичной сфере функ-
ций χ (θ, ϕ), 0 ≤ θ ≤ π, −∞ < ϕ < +∞, χ (θ, ϕ) ≡ χ (θ, ϕ + 2π) со скалярным
произведением

〈χ1, χ2〉 =

π∫

0

sin θ dθ

2π∫

0

dϕχ1 (θ, ϕ) χ2 (θ, ϕ) .

При этом ∥∥∥Y (m)
n

∥∥∥
2

L2(S)
= 2π

(1 + δ0m)
(2n + 1)

· (n + |m|)!
(n− |m|)! .

Подставляя λ = n (n + 1) в уравнение (11.78), получаем уравнение Эй-
лера:

r2 d2w

dr2
+ 2r

dw

dr
− n (n + 1) w = 0.

Его общее решение

w (r) = C1r
n + C2r

−n−1.

Условие ограниченности заставляет положить здесь C2 = 0 в случае внут-
ренней задачи Дирихле и, наоборот, C1 = 0 в случае внешней задачи.

В итоге получаем следующий бесконечный набор ограниченных нетри-
виальных решений уравнения Лапласа

umn (r, θ, ϕ) =

{
rnY

(m)
n (θ, ϕ) , r < a,

r−n−1Y
(m)
n (θ, ϕ) , r > a,

|m| ≤ n, n = 0, 1, . . .. Данные гармонические функции называются ша-
ровыми функциями. Можно показать, что они в действительности пред-
ставляют собой полиномы от декартовых переменных x, y. (гармонические
полиномы).

На втором шаге будем искать решение задачи (11.75) в виде ряда по
шаровым функциям

u (r, θ, ϕ) =
∞∑

n=0

n∑
m=−n

Amnumn (r, θ, ϕ) .

Неопределённые коэффициенты Amn находятся из граничных условий:

• для внутренней задачи

u (a, θ, ϕ) =
∑
n,m

AmnanY
(m)
n (θ, ϕ) = f (θ, ϕ) ⇔

⇔ Amn = 〈f,Y (m)
n 〉

an



Y

(m)
n




2
;

• для внешней задачи

u (a, θ, ϕ) =
∑
n,m

Amna−n−1Y
(m)
n (θ, ϕ) = f (θ, ϕ) ⇔

⇔ Amn =
an+1〈f,Y (m)

n 〉


Y
(m)

n




2
.
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11.3.6 Метод потенциалов

В основе данного метода лежит понятие потенциала, который представляет
собой несобственный кратный интеграл специального вида. Напомним ос-
новные положения теории несобственных кратных интегралов в простран-
стве функций от трёх независимых переменных50.

Несобственные кратные интегралы (справка из курса математи-
ческого анализа).

Рассмотрим функцию F (ξ), определённую и непрерывную во всех точках
ограниченной области Ω ⊂ R3 за исключением, может быть, точки x0, кото-
рую будем называть особой точкой данной функции. Предположим также,
что для любой окрестности O особой точки существует интеграл

∫∫∫

Ω\O

F (ξ) dξ.

Определение.Пусть {Oε}— произвольное семейство окрестностей точ-
ки x0, для которого diamOε → 0 при ε → +0. Если предел

lim
ε→+0

∫∫∫

Ω\Oε

F (ξ) dξ = J (11.82)

существует и не зависит от выбора семейства {Oε}, то говорят, что несоб-
ственный интеграл ∫∫∫

Ω

F (ξ) dξ (11.83)

сходится и равен J .
В курсе математического анализа доказывается, что в случае неотрица-

тельной (или неположительной) функции F для сходимости несобственного
интеграла (11.83) достаточно существования какого-либо одного семейства
окрестностей, для которого существует предел (11.82). Это утверждение
значительно упрощает исследование сходимости несобственных интегралов
для знакопостоянных функций. Достаточно подобрать удачное семейство
окрестностей, для которого предел (11.82) существует, и сходимость несоб-
ственного интеграла доказана. С другой стороны, то что предел не суще-
ствует, гарантирует расходимость несобственного интеграла.

Пример:
∫∫∫
|ξ|<1

dξ
|ξ|α = lim

ε→+0

∫∫∫
ε≤|ξ|<1

dξ
|ξ|α =

= lim
ε→+0

2π∫
0

dϕ
π∫
0

sin θ dθ
1∫
ε

r2 dr
rα =

= 4π lim
ε→+0

1∫
ε

r2−α dr =
{ ∞, α ≥ 3,

4π
3−α , α < 3.

50Для случая ограниченной области интегрирования.
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Следовательно, данный несобственный интеграл сходится при α < 3 и
расходится при α ≥ 3.

Для несобственных кратных интегралов верна теорема о мажоранте: из
того, что

∫∫∫
ϕdξ сходится и справедлива оценка |F (ξ)| ≤ ϕ (ξ) ∀ξ следует

сходимость интеграла
∫∫∫

F dξ.
Отсюда и из приведённого выше примера получается следующий кон-

кретный признак сходимости: если внутри единичного шара |F (ξ)| ≤ C/rα, α <
3, то интеграл ∫∫∫

|ξ|<1

F (ξ) dξ

сходится.

Несобственные кратные интегралы, зависящие от параметров. Рас-
смотрим функцию F (x, ξ), x ∈ R3, ξ ∈ Ω ⊂ R3 , которая непрерывна по
ξ всюду в ограниченной области Ω, за исключением, может быть, точки
x, которая (в случае её попадания в область Ω) является особой точкой
функции. Рассмотрим несобственный интеграл

J (x) ≡
∫∫∫

Ω

F (x, ξ) dξ (11.84)

как функцию точки x, предполагая что он сходится ∀x ∈ Ω и существует
как обычный кратный интеграл Римана при x /∈ Ω.

Введем понятие равномерной сходимости интеграла (11.84), для нагляд-
ности сравнивая его с понятием обычной сходимости интеграла.

Определение. 1) Интеграл (11.84) сходится в точке x = x0, если для
любого ε > 0 найдется δ = δ (ε) > 0 такое, что для всякой окрестности O
точки x0, диаметр которой не превосходит δ,

∣∣∣∣∣∣

∫∫∫

O

F (x0, ξ) dξ

∣∣∣∣∣∣
< ε;

2) Интеграл (11.84) равномерно сходится в точке x = x0, если для лю-
бого ε > 0 найдется δ = δ (ε) > 0 такое, что для всякой окрестности O
точки x0, диаметр которой не превосходит δ, и для всякого x, |x− x0| < δ
справедливо неравенство

∣∣∣∣∣∣

∫∫∫

O

F (x, ξ) dξ

∣∣∣∣∣∣
< ε.

Очевидно, что из равномерной сходимости интеграла следует его (обыч-
ная) сходимость в данной точке. Обратное, как можно показать на приме-
рах, неверно. Можно доказать также, что если функция F (x, ξ) непрерывна
по x в точке x0 при любом фиксированном ξ 6= x0 и интеграл (11.84) равно-
мерно сходится в этой точке, то функция J (x) непрерывна в x0. Далее, для
возможности дифференцирования несобственного интеграла по x в точке
x0 под его знаком достаточно, чтобы сам интеграл в этой точке сходился,
а интеграл от производной сходился равномерно.
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Объемный потенциал.

Определение. Пусть ρ (ξ) непрерывная, ограниченная в ограниченной об-
ласти Ω ⊂ R3 функция. Интеграл

u (x) ≡
∫∫∫

Ω

ρ (ξ) dξ

rxξ
(11.85)

называется объёмным потенциалом (по области Ω с плотностью заряда ρ).

Свойства объёмного потенциала (о.п.).

1. Функция u (x) определена и непрерывна всюду в пространстве R3.

Доказательство. При x0 /∈ Ω интеграл (11.85) является собствен-
ным; его непрерывность по параметру вытекает из соответствующего
свойства римановых интегралов. Пусть x0 ∈ Ω̄. Докажем, что в этом
случае интеграл (11.85) равномерно сходится в данной точке.

Имеем очевидную оценку
∣∣∣∣
ρ (ξ)
rx0ξ

∣∣∣∣ ≤
C

r1
x0ξ

откуда в силу вышеприведённого признака сходимости несобственных
кратных интегралов (для α = 1) следует сходимость интеграла (11.85).
Пусть далее |x− x0| < δ, O - окрестность точки x0, diam O < δ. Тогда

∣∣∣∣
∫∫∫
O

ρdξ
rxξ

∣∣∣∣ ≤ C
∫∫∫
O

dξ
rxξ

≤

≤ ∫∫∫
K2δ(x)

dξ
rxξ

= 4πC r2

2

∣∣∣
2δ

0
= 8πCδ2 < ε

при δ <
√

ε
8πC . Здесь K2δ (x) ⊃ O — шар радиуса 2δ с центром в точке

x.

2. Функция u (x) непрерывно дифференцируема всюду в R3.

Доказательство. Если точка x не принадлежит замыканию области
Ω, то в соответствии с правилами дифференцирования римановых ин-
тегралов

∂u
∂xi

= ∂
∂xi

∫∫∫
Ω

ρ(ξ)dξ
rxξ

=
∫∫∫
Ω

ρ (ξ) ∂
∂xi

1
rxξ

dξ =

=
∫∫∫
Ω

ρ (ξ) (ξi−xi)
r3

xξ
dξ ≡ J1 (x) .

Если же точка x лежит в Ω̄, то аналогично предыдущему пункту убеж-
даемся в равномерной сходимости несобственного интеграла J1 (x),
что является достаточным условием дифференцирования под знаком
несобственного интеграла.

3. Функция u (x) является гармонической вне замыкания области Ω, то
есть вне области расположения объёмных зарядов.
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Доказательство. Достаточно дважды продифференцировать крат-
ный риманов интеграл:

4u (x) =
∫∫∫

Ω

ρ (ξ)4
(

1
rxξ

)

︸ ︷︷ ︸
≡0

dξ ≡ 0.

4. Внутри области Ω функция u (x) удовлетворяет уравнению Пуассона

4u = −4πρ (x)

(без доказательства)51.

Следствие. Частным решением уравнения Пуассона

4u = f (x)

является
u (x) = − 1

4π

∫∫∫

Ω

f (ξ)
rxξ

dξ

5. Объёмный потенциал \исчезает" в бесконечности: u (x) → 0 при |x| →
∞ .

Доказательство. Имеем по теореме о среднем для интегралов

|u (x)| =
∣∣∣∣
∫∫∫
Ω

ρ
rxξ

dξ

∣∣∣∣ ≤
∫∫∫
Ω

|ρ(ξ)|
rxξ

dξ =

= 1
rξ∗x

∫∫∫
Ω

|ρ (ξ)| dξ = C
rξ∗x

→
|x|→∞

0.

Поверхностные потенциалы

Определение. Поверхность S ⊂ R3 называется поверхностью Ляпунова,
если

1. в каждой её точке ξ существует касательная плоскость с вектором
нормали ñξ;

2. для каждой её точки ξ найдется такая окрестность, что прямая, про-
ходящая параллельно вектору нормали ~nξ через произвольную точку
этой окрестности, пересекает поверхность лишь в данной точке52;

3. для угла γ между векторами нормали в точках ξ и ξ1 справедлива
оценка

γ ≤ Crδ
ξξ1

,

где rξξ1 — расстояние между точками, C, δ — постоянные, 0 < δ ≤
1, C > 0.

51Приведем, впрочем, формальное доказательство этого факта с помощью обобщённых
функций:

4u = 4 �ρ ∗ 1
r

�
= ρ ∗ 4

�
1
ρ

�

= ρ ∗ (−4πδ) = −4πρ.

52Это позволяет локально описывать поверхность в виде графика функции z = f (x, y).
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В дальнейшем область пространства, примыкающая к поверхности со
стороны положительного направления нормали, назвается exterior (e), а
аналогичная область с обратной стороны поверхности — interior (i).

Определение. Пусть S — ограниченная поверхность Ляпунова в R3,
µ (ξ) — ограниченная непрерывная на S функция.

Интеграл

v (x) =
∫∫

S

µ (ξ) dSξ

rxξ

называется потенциалом простого слоя с поверхностной плотностью заря-
да µ (ξ).

Свойства потенциала простого слоя (п.п.с.).

1. П.п.с. всюду определён в R3;

2. П.п.с. всюду непрерывен в R3;

3. Градиент п.п.с. везде существует и непрерывен вне поверхности; на
самой поверхности нормальная производная ∂v

∂n имеет скачок 4πµ (x):

(
∂v
∂n

)
e
≡ lim

ξ→x
ξ∈e

∂v
∂n = ∂v

∂n − 2πµ (x) ,

(
∂v
∂n

)
i
≡ lim

ξ→x
ξ∈i

∂v
∂n = ∂v

∂n + 2πµ (x) .

4. Всюду вне поверхности п.п.с. является гармонической функцией;

5. П.п.с. исчезает на бесконечности:

lim
|x|→∞

v (x) = 0.

Определение. Пусть S — двусторонняя ограниченная поверхность Ля-
пунова, ν (ξ) — непрерывная ограниченная на S функция. Интеграл53

w (x) ≡
∫∫

S

ν (ξ)
∂

∂n

(
1

rxξ

)
dSξ (11.86)

называется потенциалом двойного слоя с поверхностной плотностью ν (ξ).

Свойства потенциала двойного слоя (п.д.с.).

1. Физический смысл п.д.с.

Рассмотрим потенциал, создаваемый в пространстве конечным дипо-
лем, состоящим из зарядов ±e, находящихся в точках ξ2 и ξ1, соответ-
ственно:

53Дифференцирование под знаком интеграла производится по переменной ξ в направ-
лении нормали к границе в этой точке.
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µ

x
−e

e

ξ1

ξ2

−→n

В точке x пространства суммарный потенциал равен

Wh (x) =
e

rxξ2

− e

rxξ1

. (11.87)

Пусть расстояние h между зарядами неограниченно уменьшается, а
сами заряды растут так, чтобы дипольный момент ν ≡ eh оставался
постоянным. В пределе (11.87) переходит в т.н. потенциал точечного
диполя:

W (x) = lim
h→0

e
(

1
rxξ2

− 1
rxξ1

)
=

= lim
h→0

eh ∂
∂n

(
1

rxξ

)∣∣∣
ξ=ξ∗

= ν ∂
∂n

(
1

rxξ

)
,

(11.88)

где ~n — направление дипольного момента (от отрицательного к по-
ложительному заряду). Сравнивая (11.88) и (11.86), можно прийти
к следующей интерпретации потенциала двойного слоя: это потенци-
ал, создаваемый в пространстве слоем диполей, ориентированных по
нормали к поверхности и “размазанных” по ней с поверхностной плот-
ностью ν (ξ). Последнее означает, что суммарный дипольный момент
бесконечно малой площадки поверхности dSξ равен ν (ξ) dSξ.

2. Вторая форма представления п.д.с.
Пусть x — фиксированная точка пространства, лежащая вне поверх-
ности, ξ — текущая точка поверхности, r̃ — радиус-вектор, направлен-
ный из точки x в точку ξ.
Имеем

∂r̃
∂n = ñ,

r2 = 〈r̃, r̃〉 ⇒ r ∂r
∂n =

〈
r̃, ∂r̃

∂n

〉 ⇒
∂r
∂n =

〈
r̃
r , ~n

〉
= − cos ϕ,

где ϕ — угол между вектором нормали к поверхности в точке ξ и
вектором −r̃. Отсюда

∂
∂n

(
1
r

)
= − 1

r2
∂r
∂n = cos ϕ

r2 ,
∂

∂n

(
1
r

)
dSξ = cos ϕ dSξ

r2 ≡ dωxξ = ± |dωxξ| .
Величина |dωxξ| имеет простой геометрический смысл — это телес-
ный угол, под которым элемент поверхности dSξ виден из точки x.
Дифференциал dωxξ = |dωxξ|, если из точки x видна внешняя сторона
поверхности, и dωxξ = − |dωxξ| в противном случае.
В итоге получаем ещё одно представление для потенциала двойного
слоя:

w (x) =
∫∫

S

ν (ξ) dωxξ.
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3. П.д.с. определён всюду в R3.

4. П.д.с. непрерывен всюду в пространстве, за исключением точек по-
верхности, где он терпит разрыв первого рода:

wi (x) ≡ lim
ξ→x
ξ∈i

w (ξ) = w (x)− 2πν (x) ,

we (x) ≡ lim
ξ→x
ξ∈e

w (ξ) = w (x) + 2πν (x) ,

we − wi = 4πν (x) .

5. Вне поверхности п.д.с. является гармонической функцией.

6. П.д.с. исчезает на бесконечности.

Гауссов потенциал.

В том частном случае, когда ν (ξ) ≡ ν0 = const потенциал двойного слоя
называется гауссовым:

w (x) = ν0

∫∫

S

dωxξ.

Для замкнутой ограниченной поверхности, обладающей тем свойством,
что любой луч пересекает её конечное число раз, гауссов потенциал легко
вычисляется:

w (x) =




−4πν0, x ∈ Ω,
−2πν0, x ∈ ∂Ω,
0, x /∈ Ω̄.

Для сферической поверхности это легко вытекает из второго представления
п.д.с.. Для произвольной поверхности достаточно заметить, что телесный
угол |dωxξ|, под которым виден элемент поверхности не зависит от самой
поверхности, а величина dωxξ под знаком интеграла попеременно на раз-
ных кусках поверхности, которую пересекает соответствующий луч, равна
± |dωxξ|, так что в итоге в сумме остаётся − |dωxξ|.

Замечание. В случае плоской области Ω ⊂ R2 потенциалы вводятся
соответственно по формулам:

u (x) =
∫∫

Ω

ρ (ξ) ln
1

rxξ
dξ,

v (ξ) =
∫

C

µ (ξ) ln
1

rxξ
dlξ,

w (x) =
∫
C

ν (ξ) ∂
∂n

(
1

rxξ

)
dlξ =

=
∫
C

ν (ξ) cos ϕ
rxξ

dlξ =
∫
C

ν (ξ) dωxξ.

Здесь |dωxξ| — линейный угол, под которым элемент дуги dlξ виден из
точки x. Свойства потенциалов в плоской области вполне аналогичны свой-
ствам соответствующих потенциалов в трёхмерных областях. Укажем от-
личия:
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1. потенциалы не исчезают на бесконечности;

2. скачки производной п.п.с. и п.д.с. на дуге C вдвое меньше, чем в
пространственном случае на поверхности S, и равны соответственно
−2πµ (x) и 2πν (x).

Применение потенциалов для решения краевых задач.

Использование потенциалов для решения краевых задач основано на их
свойствах, и заключается в представлении решения рассматриваемой зада-
чи в форме некоторого потенциала с заранее неизвестной плотностью за-
ряда. После подстановки этого потенциала в уравнение получаем с учётом
граничных условий интегральное уравнение для плотности заряда. В ряде
случаев решить интегральное уравнение оказывается проще, чем исходную
краевую задачу.

Рассмотрим ряд примеров.
Пример 1. Задача Дирихле для уравнения Пуассона в пространствен-

ной области: { 4u = f (x) , x ∈ Ω ⊂ R3

u|∂Ω = α (x) .

Ищем решение задачи u (·) ∈ C2 (Ω) ∩ C
(
Ω̄

)
в виде суммы функций

u = u1 + u2, где 4u1 = f , а
{ 4u2 = 0,

u2|∂Ω = α (x)− u1 (x) ≡ α̃ (x) .

В качестве u1 можно взять, например, объёмный потенциал

u1 (x) = − 1
4π

∫∫∫

Ω

f (ξ)
rxξ

dξ

(см. свойство 4 объёмных потенциалов).
Функцию u2 внутри области Ω ищем в виде потенциала двойного слоя,

расположенного по границе области

u2 (x) = w (x) ≡
∫∫

∂Ω

ν (ξ)
∂

∂n

(
1

rxξ

)
dSξ.

Граничное условие для функции u2 в силу её непрерывности в замыка-
нии области даёт:

u2 (x) = lim
ξ→x
ξ∈i

u2 (ξ) = lim
ξ→x
ξ∈i

w (ξ) ≡
≡ wi (x) = w (x)− 2πν (x) = α̃ (x) ∀x ∈ ∂Ω

(см. свойство 4 потенциала двойного слоя). Отсюда получаем интегральное
уравнение ∫∫

∂Ω

ν (ξ) dωxξ − 2πν (x) = α̃ (x)

для определения неизвестной плотности дипольного слоя.
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Пример 2. Задача Неймана для уравнения Лапласа в пространствен-
ной области: { 4u = 0, x ∈ Ω

∂u
∂n

∣∣
∂Ω

= β.

Решение задачи u (·) ∈ C2 (Ω) ∩ C1
(
Ω̄

)
внутри области ищем в виде

потенциала простого слоя, сосредоточенного на поверхности:

u (x) = v (x) ≡
∫∫

∂Ω

µ (ξ)
1

rxξ
dSξ.

Из граничного условия получаем: ∀x ∈ ∂Ω

∂u
∂n (x) = lim

ξ→x
ξ∈i

∂u
∂n (ξ) = lim

ξ→x
ξ∈i

∂v
∂n (ξ) ≡

≡ (
∂v
∂n

)
i
(x) = ∂v

∂n (x) + 2πµ (x) = β (x) .

Отсюда имеем интегральное уравнение
∫∫

∂Ω

µ (ξ)
∂

∂nx

(
1

rxξ

)
dSξ + 2πµ (x) = β (x)

для определения неизвестной плотности заряда µ. Отметим, что дифферен-
цирование под знаком интеграла производится по нормали к поверхности
в точке x.

Пример 3. Задача Дирихле для уравнения Лапласа в круге:
{ 4u (x) = 0, x ∈ R2, |x| < R,

u||x|=R = α (x) .

Как и в первом примере, ищем решение в виде потенциала двойного
слоя

u (x) = w (x) ≡
∫

C

ν (ξ) dωxξ.

Для плотности дипольного слоя получаем из граничных условий инте-
гральное уравнение (см. сделанные выше замечания о свойствах потенциа-
лов в плоском случае):

∫

C

ν (ξ) dωxξ − πν (x) = α (x) .

Для элемента плоского угла dωxξ легко (учитывая, что точка x лежит
на окружности) получить по теореме синусов

dωxξ =
cosϕdlξ

rxξ
= −dlξ

2R
,

следовательно, интегральное уравнение принимает вид

1
2R

∫

C

ν (ξ) dlξ + πν (x) = −α (x) . (11.89)
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Будем искать решение этого вырожденного интегрального уравнения
Фредгольма 2-го рода (см. раздел 13.1) в виде суммы

ν (x) = A− α (x)
π

,

где A — постоянная. После подстановки данной функции в (11.89) получаем

1
2πR

∫

C

α (ξ) dlξ − πA + α (x)− πA = α (x) ,

откуда
A = 1

4π2R

∫
C

α (ξ) dlξ,

ν (x) = 1
π

[
1

4πR

∫
C

α (ξ) dlξ − α (x)
]

,

u (x) =
∫
C

ν (ξ) dωxξ = 1
π

∫
C

[
1

4πR

∫
C

α (ξ) dlξ − α (ξ)
]

dωxξ =

= 1
4π2R

∫
C

α (ξ) dlξ

∫

C

dωxξ

︸ ︷︷ ︸
−2π

− 1
π

∫
C

α (ξ) dωxξ =

= − 1
π

∫
C

(
cos ϕ
rxξ

+ 1
2R

)
α (ξ) dlξ = − 1

π

∫
C

(
2rxξR cos ϕ+r2

xξ

2Rr2
xξ

)
α (ξ) dlξ.

Переходя в последнем интеграле к полярной системе координат (ρ, θ),
получим окончательное представление для решения задачи

u (ρ, ψ) = 1
2π

2π∫
0

(R2−ρ2)ᾱ(θ) dθ

R2+ρ2−2Rρ cos(θ−ψ) ,

ᾱ (θ) ≡ α (R cos θ, R sin θ)

(формула Пуассона).
Пример 4. Задача Дирихле для уравнения Лапласа в верхнем полупро-

странстве: { 4u (x) = 0, x ∈ Ω ≡ {x3 > 0} ,
u |x3=0= α (x) .

Решение задачи ищем в виде потенциала двойного слоя

u (x) =
∫∫

∂Ω

ν (ξ) dωxξ =
∫∫

R2

ν (ξ1, ξ2)
cos ϕ

r2
xξ

dξ1dξ2.

Имеем
cos ϕ =

ξ3 − x3

rxξ

∣∣∣∣
ξ3=0

= − x3

rxξ
,

поэтому cosϕ = 0 при x3 = 0 и соответствующее интегральное уравнение
вырождается:

∫∫
R2

ν (ξ1, ξ2)
cos ϕ

r2
xξ︸ ︷︷ ︸
≡0

dξ1dξ2 − 2πν (x) = α (x) ⇔

⇔ ν (x) = −α(x)
2π , x ∈ ∂Ω.
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Поэтому

u (x) =
∫∫

∂Ω

ν (ξ) dωxξ =
x3

2π

∫∫

R2

α (ξ1, ξ2) dξ1dξ2[
(x1 − ξ1)

2 + (x2 − ξ2)
2 + x2

3

]3/2
.
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Глава 12

Классификация линейных
интегральных уравнений

Принято делить интегральные уравнения на линейные и нелинейные. Среди
последних выделяют отдельные уравнения, называемые обычно по имени
автора: уравнение Урысона1, уравнение Гаммерштейна2 и т.д. Линейные
уравнения делятся по родам.

Общий вид линейного интегрального уравнения (уравнения Фредголь-
ма3) для скалярной функции скалярного аргумента

D (x) y (x) +

b∫

a

K (x, s) y (s) ds = f (x) , x ∈ [a, b] , (12.1)

где y : [a, b] → R — неизвестная функция, f (x) — заданная функция (неод-
нородный член уравнения), K (x, s) — заданная функция — ядро уравнения.
В случае f (x) ≡ 0 уравнение называется однородным, в противном случае —
неоднородным. Частный случай уравнения Фредгольма, когда K (x, s) ≡ 0
при s > x, носит название уравнения Вольтерра́4:

D (x) y (x) +

x∫

a

K (x, s) y (s) ds = f (x) , x ∈ [a, b] . (12.2)

Уравнение (12.1) имеет

• первый род, если D (x) ≡ 0 :

b∫

a

K (x, s) y (s) ds = f (x) , x ∈ [a, b] ; (12.3)

1Советский математик (1898-1924).
2Немецкий математик (1888-1945).
3Шведский математик (1866-1927).
4Ударение на последний слог - итальянский математик (1860-1940).
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• второй род, если D (x) ≡ const 6= 0 :

y (x) +

b∫

a

K (x, s) y (s) ds = f (x) , x ∈ [a, b] ; (12.4)

• третий род, если D (x) 6≡ const :

D (x) y (x) +

b∫

a

K (x, s) y (s) ds = f (x) , x ∈ [a, b] . (12.5)



Глава 13

Уравнения Фредгольма
второго рода

Рассмотрим следующее интегральное уравнение Фредгольма второго рода

y (x)− λ

b∫

a

K (x, s) y (s) ds = f (x) , x ∈ [a, b] . (13.1)

Здесь λ — заданное комплексное число. Ядро1 данного уравнения K (x, s)
и неоднородный член f (x) непрерывны соответственно на замкнутых мно-
жествах [a, b]× [a, b] и [a, b].

Решение ищется в классе всех непрерывных на отрезке [a, b] функций
y (x).

13.1 Уравнения с вырожденным ядром

Так называются уравнения, в которых ядро является вырожденным, то
есть имеет вид

K (x, s) ≡
n∑

i=1

ai (x) bi (s) , (13.2)

где
{
ai (x) , i = 1, n

}
,
{
bi (x) , i = 1, n

}
— заданные наборы непрерывных на

отрезке [a, b] функций, один из которых, первый для определённости, будем
считать линейно независимым.

Подставляя (13.2) в (13.1), убеждаемся в том, что решения вырожден-
ного уравнения следует искать в виде2

y (x) = λ

n∑

i=1

Ciai (x) + f (x) = λ
〈

~C,~a (x)
〉

+ f (x) (13.3)

1Неточно: ядром в данном случае является −λK (x, s).
2При λ = 0 формула (13.3) даёт единственное решение уравнения y = f (x). Далее

считаем λ 6= 0.
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где ~C ≡ Col {C1, . . . , Cn} — неизвестный вектор. Подставляя (13.3) в (13.1),
получаем

λ
n∑

i=1

Ciai (x) + f (x)− λ
b∫

a

n∑
i=1

ai (x) bi (s) ·

·
(

λ
n∑

j=1

Cjaj (s) + f (s)

)
ds = f (x)

или

λ

n∑

i=1

ai (x)



Ci −

b∫

a

bi (s)


λ

n∑

j=1

Cjaj (s) + f (s)


 ds



 = 0.

Отсюда в силу линейной независимости набора функций
{
ai (x) , i = 1, n

}
получаем уравнения

Ci = λ
n∑

j=1

Cjαij + βi ⇔

⇔
n∑

j=1

(δij − λαij)Cj = βi,

где

αij ≡
b∫

a

bi (s) aj (s) ds, βi ≡
b∫

a

bi (s) f (s) ds.

В матричной форме эта линейная система имеет вид

A (λ) ~C = ~β,

где A (λ) ≡ I−λα = ‖δij − λαij‖i,j=1,n. Если детерминант D (λ) ≡ detA (λ) 6=
0, то система имеет единственное решение ~C = A−1 (λ) ~β, а решение инте-
грального уравнения —

y (x) = f (x) + λ
〈

~C,~a
〉

=

= f (x) + λ
n∑

i,j=1

A−1
ij (λ)βjai (x) =

= f (x) + λ
b∫

a

< (x, s, λ) f (s) ds,

где

< (x, s, λ) ≡
n∑

i,j=1

A−1
ij (λ) ai (x) bj (s)

— резольвентная функция3. Если же D (λ) = 0, что возможно лишь для ко-
нечного множества комплексных значений λ ∈ S ≡ {λ1, λ2, . . . , λk, k ≤ n}4,
то существование решения линейной системы зависит от вектора ~β. Исчер-
пывающий ответ на этот вопрос дают теоремы Фредгольма, которые будут
изложены далее.

Таким образом, интегральные уравнения с вырожденными ядрами сво-
дятся к линейным алгебраическим системам и, в этом смысле, являются

3Или просто резольвента - \разрешающая " .
4Спектр собственных чисел однородного интегрального уравнения.
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простейшими среди интегральных уравнений. В то же время, поскольку
любое непрерывное ядро может быть сколь угодно точно в равномерной
метрике аппроксимировано вырожденным ядром, вырожденные уравнения
представляют значительный интерес.

13.2 Существование решения уравнений вто-
рого рода

Вводя в рассмотрение интегральный оператор A : C [a, b] → C [a, b] вида

A [y] (x) = λ

b∫

a

K (x, s) y (s) ds,

запишем уравнение (13.1) в операторной форме:

y = A [y] + f. (13.4)

Прежде чем сформулировать и доказать основные утверждения данного
раздела напомним некоторые широко известные понятия и теоремы функ-
ционального анализа.

Сжимающие операторы (справка из функционального анализа).

Пусть B — полное нормированное пространство (пространство Банаха5 —
банахово пространство). Оператор

A : B → B

называется сжимающим (сжатием), если существует число γ ∈ (0, 1) (по-
стоянная сжатия) такое, что

‖A [x]‖ ≤ γ ‖x‖ ∀x ∈ B.

Теорема. Если оператор A : B → B непрерывен и некоторая его степень
An является сжатием, то уравнение

y = A [y] + f,

где f — заданный элемент пространства B, имеет единственное в B реше-
ние. Это решение можно получить методом последовательных приближе-
ний:

y = lim
n→∞

yn,

yn+1 = A [yn] + f, n = 0, 1, . . . ,

используя произвольное начальное приближение y0 ∈ B.
Применим данную теорему к интегральному уравнению (13.4).
Теорема. При любом λ, |λ| < (M (b− a))−1, где M ≡ max

x,s
|K (x, s)|

уравнение Фредгольма (13.4) имеет единственное непрерывное на отрезке
5Польский математик (1892-1945).
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[a, b] решение. Это решение может быть найдено методом последовательных
приближений

yn+1 (x) = λ

b∫

a

K (x, s) yn (s) ds + f (x) , n = 0, 1, . . . ,

начиная с произвольного начального приближения y0 (·) ∈ C [a, b]. Решение
может быть записано в резольвентной форме:

y (x) = f (x) + λ

b∫

a

< (x, s, λ) f (s) ds,

где < — аналитическая по λ в круге |λ| < (M (b− a))−1 резольвентная
функция.

Доказательство. Имеем очевидную оценку

‖A [y]‖ = max
x∈[a,b]

|A [y] (x)| = max
x∈[a,b]

∣∣∣∣∣∣
λ

b∫

a

K (x, s) y (s) ds

∣∣∣∣∣∣
≤

≤ |λ|M (b− a) max
x∈[a,b]

|y (x)| ≡ γ ‖y‖ .

Так как γ < 1, то оператор A является сжимающим, и потому уравне-
ние имеет в C [a, b] единственное решение, которое, к тому же, может быть
получено методом последовательных приближений.

Имеем

yn+1 = A [yn] + f = A [A [yn−1] + f ] + f = . . . =

= An+1 [y0] +
n∑

k=0

Ak [f ] →
n→∞

∞∑
k=0

Ak [f ]

(сходимость ряда вытекает из оценки
∥∥An+1 [y0]

∥∥ ≤ γn ‖y0‖). Далее,

A [f ] (x) = λ
b∫

a

K (x, s) f (s) ds,

A2 [f ] (x) = λ
b∫

a

K (x, s)λ

(
b∫

a

K (s, t) f (t) dt

)
ds =

= λ2
b∫

a

K2 (x, t) f (t) dt,

K2 (x, t) ≡
b∫

a

K (x, s)K (s, t) ds.

Аналогично

An [f ] (x) = λn
b∫

a

Kn (x, t) f (t) dt,

Kn (x, t) =
b∫

a

K (x, s) Kn−1 (s, t) ds.
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Следовательно,

∞∑
k=0

Ak [f ] (x) = f (x) +
∞∑

k=1

Ak [f ] (x) =

= f (x) + λ
b∫

a

( ∞∑
k=1

λn−1Kn (x, t)
)

f (t) dt ≡

≡ f (x) + λ
b∫

a

< (x, t, λ) f (t) dt.

Резольвента

< (x, t, λ) =
∞∑

k=1

λn−1Kn (x, t)

является аналитической функцией в круге |λ| < (M (b− a))−1 и может быть
аналитически продолжена на всю комплексную плоскость за исключением
отдельных значений λi, которые являются собственными числами однород-
ного интегрального уравнения.

13.3 Существование решения уравнения Воль-
терра

Теорема. При любом λ уравнение Вольтерра

y (x) = λ

x∫

a

K (x, s) y (s) ds + f (x)

имеет единственное решение. Это решение всегда может быть найдено ме-
тодом последовательных приближений

yn+1 (x) = λ

x∫

a

K (x, s) yn (s) ds + f (x) , n = 0, 1, . . . , (13.5)

исходя из произвольного начального приближения y0 (x), и записано в ре-
зольвентной форме

y (x) = f (x) + λ

x∫

a

< (x, s, λ) f (s) ds,

где резольвентная функция < (x, t, λ) является аналитической на всей ком-
плексной плоскости.

Доказательство. Покажем, что некоторая степень оператора

A [y] ≡ λ

x∫

a

K (x, s) y (s) ds
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является сжатием. Имеем

|A [y]| (x) =
∣∣∣∣λ

x∫
a

K (x, s) y (s) ds

∣∣∣∣ ≤ |λ|M (x− a) ‖y‖ ,

∣∣A2 [y]
∣∣ (x) = |A [A [y]]| (x) ≤ |λ|

∣∣∣∣
x∫
a

|K (x, s)| |A [y]| (s) ds

∣∣∣∣ ≤

≤ |λ|2 M2 ‖y‖
x∫
a

(s− a) ds = |λM |2 (x−a)2

2! ,

, . . . ,

‖Am [y]‖ = max
x
|Am [y]| (x) ≤ (|λ|M(b−a))m

m! ‖y‖ ≡ γm ‖y‖ ,

где

γm =
Lm

m!
→

m→∞
0 (L ≡ |λ|M (b− a) , M ≡ max |K|) .

Поэтому некоторая достаточно высокая степень оператора A является
сжатием, что и доказывает теорему.

Пример. Решим различными способами уравнение Вольтерра

y (x) =

x∫

0

(x− s) y (s) ds + x2. (13.6)

Способ 1. Дифференцируя (13.6) дважды, получаем дифференциальное
уравнение

y′′ = y + 2.

Отсюда, учитывая, что y′ (0) = y (0) = 0, получаем

y (x) = 2 (chx− 1) .

Способ 2. Применим к уравнению (13.6) метод последовательных при-
ближений (13.5). Пусть y0 (x) ≡ 0. Тогда

y1 (x) ≡
x∫
0

(x− s) y0 (s) ds + x2 ≡ x2,

y2 (x) ≡
x∫
0

(x− s) y1 (s) ds + x2 ≡ 2
(

x2

2! + x4

4!

)
,

, . . . ,

yn+1 (x) ≡
x∫
0

(x− s) yn (s) ds + x2 ≡ 2
(

x2

2! + x4

4! + . . . + x2n

(2n)!

)
,

, . . . ,
y (x) = lim

n→∞
yn (x) = 2 (chx− 1) .

Способ 3. Запишем решение в резольвентной форме

y (x) = f (x) + λ
x∫
0

< (x, s, λ) f (s) ds =

= x2 + λ
x∫
0

< (x, s, λ) s2 ds,

< (x, s, λ) ≡
∞∑

n=1
λn−1Kn (x, s) .
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Итерированные ядра Kn находятся по формулам

K1 (x, s) ≡ x− s,

K2 (x, s) =
b∫

a

K (x, t) K1 (t, s) dt =
x∫
s

(x− t) (t− s) dt = (x−s)3

3! ,

, . . . ,

Kn (x, s) = (x−s)2n−1

(2n−1)! .

Поэтому

< (x, s, λ) ≡
∞∑

n=1
λn−1Kn (x, s) =

∞∑
n=1

(
√

λ(x−s))2n−1

√
λ(2n−1)!

= sh
√

λ(x−s)√
λ

,

y (x) = x2 +
x∫
0

< (x, s, 1) s2ds = x2 +
x∫
0

sh (x− s) s2ds = 2 (chx− 1) .

13.4 Численные методы решения интегральных
уравнений

• Метод последовательных приближений:

yn+1 (x) = λ

x∫

a

K (x, s) yn (s) ds + f (x) , n = 0, 1, . . .

• Метод сведения к вырожденному уравнению:

K (x, s) =
n∑

i=1

ai (x) bi (s) + Rn (x) ,

где остаток Rn (x) может быть произвольно мал в равномерной метри-
ке за счёт повышения порядка n соответствующей линейной системы.

• Метод сеток: замена интеграла в уравнении одной из квадратурных
формул для выбранной сетки {xi}n

i=1 ⊂ [a, b] с последующим решени-
ем линейной системы для нахождения сеточной функции, служащей
приближением решения уравнения.

13.5 Теоремы Фредгольма для интегральных
уравнений второго рода

Рассмотрим произвольное неоднородное интегральное уравнение Фредголь-
ма второго рода

y (x)− λ

b∫

a

K (x, s) y (s) ds = f (x) (НУ).

Соответствующее ему однородное уравнение имеет вид

y (x)− λ

b∫

a

K (x, s) y (s) ds = 0 (ОУ).
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Уравнение, полученное из (ОУ) перестановкой аргументов в ядре, назы-
вается союзным (или сопряжённым) с ним:

y (x)− λ

b∫

a

K (s, x) y (s) ds = 0 (СОУ).

Определение. Число λ ∈ C называется собственным числом одно-
родного уравнения (ОУ), если при нём это уравнение имеет нетривиальное
решение — собственную функцию (ОУ).6

Первая теорема Фредгольма. При любом λ, не являющимся соб-
ственным числом (ОУ), неоднородное уравнение (НУ) имеет единственное
решение.

(без доказательства)
Вторая теорема Фредгольма. (ОУ) и (СОУ) имеют одни и те же

собственные числа. Если λ — собственное число, то (ОУ) и (СОУ) имеют
одинаковое (конечное) число линейно независимых решений7.

(без доказательства)
Третья теорема Фредгольма. Если λ — собственное число (ОУ), то

(НУ) имеет решение тогда и только тогда, когда неоднородный член этого
уравнения f (x) ортогонален всем собственным функциям (СОУ), отвеча-
ющим этому λ:

〈ϕk, f〉 =

b∫

a

ϕk (x) f (x) dx = 0 ∀k = 1, N.

Доказательство (только необходимости). Имеем

y (x) = λ
b∫

a

K (x, s) y (s) ds + f (x) ,

ϕk (x) = λ
b∫

a

K (s, x)ϕk (s) ds.

Поэтому

〈y, ϕk〉 =
b∫

a

y (x)ϕk (x) ds =
b∫

a

f (x)ϕk (x) dx+

+λ
b∫

a

ϕk (x)
b∫

a

K (x, s) y (s) dsdx = 〈f, ϕk〉+

+
b∫

a

y (s)λ

b∫

a

K (x, s)ϕk (x) dx

︸ ︷︷ ︸
≡ϕk(s)

ds = 〈f, ϕk〉+ 〈y, ϕk〉

⇒ 〈f, ϕk〉 = 0.

Замечание. Общее решение неоднородного уравнения имеет вид

y (x) = y0 (x) +
N∑

k=1

Ckψk (x) ,

6Из определения следует, что собственное число λ 6= 0.
7В отличие от собственных чисел собственные функции ОУ и СОУ в общем случае

различны.
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где y0 (x) — (частное) решение (НУ), {ψk (x)}k=1,N — линейно независи-
мый набор решений (ОУ), N — максимальное число линейно независимых
решений (ОУ).
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Глава 14

Спектральная теория
уравнений Фредгольма с
симметричными ядрами

Определение.Ядро интегрального уравнения называется симметричным,
если оно удовлетворяет тождеству

K (x, s) ≡ K (s, x) .

Теорема. Однородное интегральное уравнение с симметричным ядром
имеет хотя бы одно собственное число

(без доказательства).

14.0.1 Свойства собственных чисел и собственных функ-
ций интегральных уравнений с симметричными
ядрами

1. Если yk, k = 1, N — собственные функции, отвечающие одному и тому
же собственному числу λ, то произвольная их линейная комбинация
либо тождественно равна нулю, либо является собственной функцией,
отвечающей тому же собственному числу λ.

2. Собственные функции, отвечающие различным собственным числам,
взаимно ортогональны.

Доказательство. Пусть λ1 ↔ y1, λ2 ↔ y2,

y1,2 (x) = λ1,2

b∫

a

K (x, s) y1,2 (s) ds

После умножения этих уравнений на y2,1 (x) /λ1,2 и интегрирования
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по x, получаем в силу симметрии ядра

(
1
λ2
− 1

λ1

)
〈y1, y2〉 =

b∫
a

y2 (x) dx
b∫

a

K (x, s) y1 (s) ds−

−
b∫

a

y1 (x) dx
b∫

a

K (x, s)︸ ︷︷ ︸
≡K(s,x)

y2 (s) ds = 0.

Отсюда, так как λ1 6= λ2, получаем 〈y1, y2〉 = 0, что и требовалось
доказать.

3. Все собственные числа вещественны.

Доказательство. Допустим, что λ — комплексное собственное число,
λ 6= λ̄. Применяя операцию комплексного сопряжения к обеим частям
однородного интегрального уравнения, получаем, что соответствую-
щая собственная функция отвечает сразу двум различным собствен-
ным числам. Но тогда по предыдущему пункту она ортогональна сама
себе:

〈y, y〉 =

b∫

a

|y (x)|2 dx = 0 ⇒ y (x) ≡ 0,

что противоречит условию нетривиальности собственной функции. Сле-
довательно, все собственные числа вещественны.

4. Любой ограниченный промежуток прямой содержит конечное (воз-
можно пустое) множество собственных чисел.

Доказательство.Пусть в некотором ограниченном промежутке [A,B]
содержится бесконечный набор собственных чисел {λn}. Соответству-
ющий набор собственных функций {ϕn} можно считать ортонорми-
рованным. Разложим ядро уравнения K (x, s) при фиксированном x в
обобщённый ряд Фурье по ортонормированной системе {ϕn (x)}:

K (x, s) ∼
∞∑

n=1
cn (x)ϕn (s) ,

cn (x) = 〈K (x, s) , ϕn (s)〉 =
b∫

a

K (x, s)ϕn (s) ds = ϕn(x)
λn

.

По неравенству Бесселя1

∞∑
n=1

c2
n (x) =

∞∑
n=1

ϕ2
n (x)
λ2

n

≤
b∫

a

K2 (x, s) ds.

Интегрируя последнее неравенство по x и учитывая нормировку соб-
ственных функций, находим

∞∑
n=1

1
λ2

n

≤
b∫

a

b∫

a

K2 (x, s) dsdx.

1Немецкий астроном (1784-1846).
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Таким образом, ряд в левой части неравенства сходится, и потому его
общий член

1
λ2

n

→ 0 ⇒ λn →∞,

что противоречит исходному предположению.

Следствие. Собственные числа интегрального уравнения можно про-
нумеровать в порядке роста их абсолютных значениd́:

|λ1| ≤ |λ2| ≤ . . . ≤ |λn| ≤ . . .

Если спектр бесконечен, то |λn| →
n→∞

∞.

5. Любому собственному числу отвечает конечное число линейно неза-
висимых собственных функций2.

Доказательство. Пусть собственному числу λ отвечает бесконечная
система линейно независимых собственных функций. Считая её ор-
тонормированной3, разложим ядро уравнения K (x, s) при фиксиро-
ванном x в обобщённый ряд Фурье по ортонормированной системе
{ϕn (s)}:

K (x, s) ∼
∞∑

n=1
cn (x) ϕn (s) ,

cn (x) = 〈K (x, s) , ϕn (s)〉 = ϕn(x)
λ .

По неравенству Бесселя

∞∑
n=1

c2
n (x) =

∞∑
n=1

(
ϕn(x)

λ

)2

=

= 1
λ2

∞∑
n=1

ϕ2
n (x) ≤

b∫
a

K2 (x, s) ds.

Отсюда ∀p

p

λ2
=

1
λ2

b∫

a

p∑
n=1

ϕ2
n (x) dx ≤

b∫

a

b∫

a

K2 (x, s) dxds,

что, очевидно, невозможно. Следовательно, исходное предположение
неверно.

6. Спектр уравнения конечен тогда и только тогда, когда ядро вырож-
дено.

Достаточность утверждения очевидна. Доказательство необходимости
опускаем.

Следствие. Спектр уравнения с невырожденным ядром бесконечен,
причём |λn| →

n→∞
∞.

2Иными словами, линейная оболочка множества собственных функций, отвечающих
любому собственному числу - собственное подпространство - конечномерна.

3Любую линейно независимую систему можно подвергнуть процедуре ортогонализа-
ции и получить из неё ортогональную систему функций, являющихся линейными ком-
бинациями исходных функций.
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7. Теорема Гильберта-Шмидта4. Если функция F (x) истокопред-
ставима,

F (x) =

b∫

a

K (x, s)h (s) ds,

где K (x, s) — невырожденное симметричное ядро, h (x) — кусочно-
непрерывная функция источника, то она разлагается в равномерно
и абсолютно сходящийся ряд Фурье по ортонормированной системе
собственных функций однородного интегрального уравнения (ОУ):

F (x) =
∞∑

n=1
Fnϕn (x) ,

Fn ≡ 〈F, ϕn〉 =
b∫

a

F (x)ϕn (x) dx.

(без доказательства).
В качестве примера применения данной теоремы приведём представ-
ление решения неоднородного уравнения Фредгольма в виде ряда по
собственным функциям однородного уравнения. Пусть в уравнении

y (x) = λ

b∫

a

K (x, s) y (s) ds + f (x)

число λ не принадлежит спектру однородного уравнения. Тогда по
теореме Гильберта-Шмидта истокопредставимая функция

b∫

a

K (x, s) y (s) ds =
∞∑

k=1

Ckyk (x) .

Поэтому

y (x) = f (x) + λ

∞∑

k=1

Ckyk (x)

и после подстановки данного выражения в уравнение имеем

f (x) + λ
∞∑

k=1

Ckyk (x) = f (x) + λ
b∫

a

K (x, s)
[
f (s) + λ

∞∑
k=1

Ckyk (s)
]

ds =

= f (x) + λ
∞∑

k=1

fk
yk(x)

λk
+ λ2

∞∑
k=1

Ck
yk(x)

λk
,

Ck = fk

λk
+ λCk

λk
⇒ Ck = fk

λk−λ ⇒
y (x) = f (x) + λ

∞∑
k=1

fkyk(x)
λk−λ .

Здесь fk = λkBk, Bk - коэффициенты в разложении истокопредста-
вимой функции

b∫

a

K (x, s) f (s) ds =
∞∑

n=1

Bnyn (x) .

4Гильберт Давид (1862-1943), Шмидт Эрхард (1876-1959)- немецкие математики.



Глава 15

Задача Штурма-Лиувилля и
интегральные уравнения

15.1 Функция Грина краевой задачи

Спектральная теория интегральных уравнений является в определённом
смысле более общей теорией по сравнению со спектральной теорией диф-
ференциальных операторов. В частности, все основные результаты, полу-
ченные нами для задачи Штурма-Лиувилля в разделе 11.1.5 могут быть
выведены из результатов настоящей главы.

Рассмотрим краевую задачу
{

L (y) = f (x) , x ∈ (0, l)
y (0) = y (l) = 0,

(15.1)

где

L (y) ≡ q (x) y − d

dx

(
p (x)

dy

dx

)

— дифференциальный оператор из раздела 11.1.5.
Определение.Функцией Грина1 задачи (15.1) называется решение кра-

евой задачи {
L (G) = δ (x− z) , x ∈ (0, l)
G (0, z) = G (l, z) = 0,

где z — фиксированная точка интервала (0, l).

15.1.1 Свойства функции Грина

1. G (x, z) симметрична относительно перестановки аргументов:

G (z1, z2) ≡ G (z2, z1) ∀z1, z2

Доказательство. Воспользуемся самосопряжённостью оператора L.
Пусть y1 (x) ≡ G (x, z1), y2 (x) ≡ G (x, z2), где z1,2 ∈ (0, l).

1Грин Джордж (1793-1841) - английский математик и физик.
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Тогда
〈L (y1) , y2〉 = 〈L (y2) , y1〉 ⇔

〈δ (x− z1) , G (x, z2)〉 = 〈δ (x− z2) , G (x, z1)〉 ⇔
G (z1, z2) = G (z2, z1) .

2. G (x, z) непрерывна по (x, z), а G′x (x, z) непрерывна при x 6= z и имеет
разрыв первого рода при x = z.

(без доказательства)

3. Теоремы Гильберта (1-ая и 2-ая): функция y (x) является решением
краевой задачи (15.1) тогда и только тогда, когда её можно предста-
вить в виде интеграла

y (x) =

l∫

0

G (x, ξ) f (ξ) dξ

(без доказательства)

Следствие. Функция y (x) является собственной функцией задачи
Штурма-Лиувилля2, отвечающей собственному числу λ,

{
L (y) = λy,
y (0) = y (l) = 0,

тогда и только тогда, когда она является собственной функцией инте-
грального уравнения

y (x) = λ

l∫

0

G (x, ξ) y (ξ) dξ.

Из последнего замечания вытекает возможность вывода свойств спектра
задачи Штурма-Лиувилля из соответствующих свойств спектра интеграль-
ного уравнения с симметричным ядром. В качестве примера этого получим
теорему Стеклова, доказанную нами в разделе 11.1.5 как следствие теоремы
Гильберта-Шмидта.

Пусть f (·) ∈ C2 (0, l), f (0) = f (l) = 0. Обозначим h ≡ L (f). Тогда по
первой теореме Гильберта

f (x) =

l∫

0

G (x, ξ) h (ξ) dξ,

а по теореме Гильберта-Шмидта (примененной к истокопредставимой функ-
ции f (·)) данная функция разлагается в ряд

f (x) =
∞∑

k=1

Ckyk (x)

2Штурм Жан Шарль Франсуа (1803-1855), Лиувилль Жозеф (1809-1882) - француз-
ские математики.
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по собственным функциям интегрального уравнения

y (x) = λ

l∫

0

G (x, ξ) y (ξ) dξ,

который сходится абсолютно и равномерно. Учитывая сделанное выше за-
мечание о связи данного интегрального уравнения с задачейШтурма-Лиувилля,
получаем отсюда теорему Стеклова3: любая функция f (·) ∈ C2 (0, l), f (0) =
f (l) = 0 разлагается в равномерно и абсолютно сходящийся ряд по соб-
ственным функциям задачи Штурма-Лиувилля.

КОНЕЦ КУРСА4 (около 30 лекций)

3Стеклов Владимир Андреевич (1864-1926) - русский математик.
4Ура!!
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Вопросы к экзаменам

.1 Вопросы к коллоквиуму по вариационному
исчислению

1. Простейшая задача вариационного исчисления (A). Вывод необходи-
мых условий эстремума (краевая задача Эйлера, условия Лежандра).
Интегралы уравнения Эйлера.

2. Основная лемма вариационного исчисления.

3. Принцип Ферма, задача о брахистохроне.

4. Вариационная задача на классе векторных функций (B).

5. Вариационная задача на классе функций со старшими производными
(C).

6. Вариационная задача на классе функций многих переменных (E). Вы-
вод уравнений колебаний отрезка струны.

7. Изопериметрическая вариационная задача (F ). Двойственные вариа-
ционные задачи.

8. Задача Лагранжа (G). Вывод уравнений геодезических линий на по-
верхности.

9. Задача Лагранжа в понтрягинской форме (G1). Функция Понтрягина.

10. Задача Понтрягина (оптимального управления) (H). Принцип макси-
мума Понтрягина. Задача быстродействия (на примере).

11. Вариационные задачи на классах кривых с подвижными границами
(I1,I2,I3). Условия трансверсальности.

12. Достаточные условия C1-локального экстремума. Вторичная экстре-
мальная задача. Уравнение Якоби. Сопряжённые точки. Аналитиче-
ская и геометрическая формулировки достаточных условий экстрему-
ма.
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.2 Вопросы к экзамену по методам математи-
ческой физики

.2.1 Дифференциальные уравнения
( [10], Гл. 2 §3, гл. 3 §1-3, гл. 4 § 1-5)

1. Каноническая форма записи дифференциальных уравнений в част-
ных производных 2-го порядка с двумя независимыми переменными.
Характеристические линии.

2. Классификация уравнений 2-го порядка с n независимыми перемен-
ными.

3. Корректность постановки задачи математической физики. Пример Ада-
мара.

4. Уравнения Хевисайда. Вывод, преобразования, различные типы гра-
ничных условий.

5. Метод бегущих волн решения уравнений гиперболического типа. Фор-
мула Даламбера. Решение неоднородной задачи. Эадача о распростра-
нении краевого режима. Колебания отрезка струны.

6. Обобщённые функции: определения и основные свойства. Примене-
ние обобщённых функций в задачах гиперболического типа. Фунда-
ментальное решение волнового уравнения, обобщённая задача Коши,
вывод формулы Даламбера методами теории обобщённых функций

7. Преобразование Фурье: определения и основные свойства. Примене-
ние преобразования Фурье для решения задачи Коши для волнового
уравнения.

8. Метод стоячих волн решения смешанных задач для уравнений гипер-
болического типа.

9. Задача Штурма-Лиувилля: определения и основные свойства, теоре-
мы о собственных числах и функциях, экстремальные свойства соб-
ственных чисел. Теорема Стеклова.

10. Метод Фурье в многомерных задачах гиперболического типа. Колеба-
ния прямоугольной и круглой мембран.

11. Теорема о максимуме и минимуме решения однородного уравнения
теплопроводности. Корректность постановки задачи Дирихле для урав-
нения теплопроводности.

12. Решение задачи Коши для уравнения теплопроводности методом ин-
тегрального преобразования Фурье.

13. Решение смешанной задачи для уравнения теплопроводности методом
преобразования Лапласа.

14. Решение смешанной задачи о нагреве стержня методом разделения
переменных. Функция Грина краевой задачи.
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15. Задача об остывании круглого цилиндра. Уравнения и функции Бес-
селя: определения и минимум свойств.

16. Решение задачи Коши для уравнения теплопроводности методом раз-
деления переменных.

17. Представление решений основных краевых задач для уравнения Пуас-
сона с помощью функции Грина.

18. Метод мнимых источников построения функций Грина в эллиптиче-
ских задачах — задачи Дирихле в верхнем п/п и внутри шара.

19. Определение и свойства гармонических функций. Теорема о макси-
муме и минимуме гармонической в области функции. Корректность
постановки задачи Дирихле для уравнения Пуассона.

20. Метод разделения переменных в эллиптических задачах (на примере
задачи Дирихле для уравнения Лапласа в пространстве). Уравнения и
функции Лежандра: определения и основные свойства. Сферические
и шаровые функции.

21. Потенциалы в эллиптических задачах: объёмный, простого и двойного
слоев. Гауссов потенциал.

22. Применение потенциалов для сведения краевых задач к интегральным
уравнениям (задача Дирихле в верхнем полупространстве).

.2.2 Интегральные уравнения
([11],Гл. 4,6-9).

1. Классификация линейных интегральных уравнений.

2. Интегральные уравнения с вырожденным ядром.

3. Существование решения уравнения Фредгольма с малым ядром.

4. Существование решения уравнения Вольтерра.

5. Теоремы Фредгольма.

6. Уравнения с симметричными ядрами. Свойства спектра. Теорема Гильберта-
Шмидта.

7. Сведение задачи Штурма-Лиувилля к интегральному уравнению с
симметричным ядром. Теоремы Гильберта. Вывод теоремы Стекло-
ва из теоремы Гильберта-Шмидта.
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Предметный указатель

Брахистохрона, 13
Бесселя

неравенство, 111
Брахистохрона, 45, 50, 58

Вариационная задача
Дидоны, 24
вторичная, 54
двойственная, 26
Дидоны, 26
для функций многих перемен-

ных, 21
- достаточные условия экстре-

мума, 53
изопериметрическая, 24
Лагранжа, 28
Лагранжа в понтрягинской фор-

ме, 29
на классе векторных функций,

14
Понтрягина
со свободными границами, 43,

46, 48
со старшими производными,

20
со

Волна
бегущая, 84
прямая, отраженная, инверти-

рованная, 91
стоячая, 94, 113

Грина
формула, 21

Задача
быстродействия, 35
быстродействия в вязкой сре-

де, 37
вторичная экстремальная, 54
математической физики, 77

корректно поставленная, 78
Коши, 77, 138
Коши для волнового уравне-

ния, 85
Коши обобщенная, 101
краевая, 77
Дирихле, 138
Неймана, 138
краевая третьего рода, 138
Дирихле, 156
третья краевая, 157
Неймана, 157
о мягкой посадке космическо-

го аппарата, 30
о колебаниях отрезка струны,

93
о распространении краевого ре-

жима, 90
смешанная, 78
Штурма-Лиувилля, 113, 115,

127, 191
Задача Коши

для волнового уравнения, 107
Закон

Нернста, 137
Ньютона 1-ый, 16
Ньютона 2-ой, 17
Снеллиуса, 13, 18
Фурье, 137

Интеграл
импульса, 12
кратный несобственный, 164
Пуассона, 143
энергии, 12

Интегральное преобразование, 105
Бесселя, 105
Лапласа, 105, 109, 144
Меллина, 105
Фурье, 105, 142

Интегральное преобразование
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Фурье, 106
Интегральное преобразование

синус, косинус, 105

Класс
корректности, 78
оригиналов, изображений, 104

Колебания
круглой мембраны, 130
прямоугольной мембраны, 128

Координаты
фазовые управляемого объек-

та, 30

Лагранжа
уравнение, 16, 26, 28
функция, 25

Лемма
основная вариационного исчис-

ления, 9
Линия

геодезическая, 28
геодезическая на сфере, 29
переключения, 36
телеграфная, без искажений,

83
характеристическая, 66, 70
цепная, 19
циклоида, 14

Метод
бегущих волн, 83
геометрической оптики, 17
последовательных приближе-

ний, 182
потенциалов, 164
спуска, 88
функций Грина, 157
функций Грина, 156
разделения
разделения переменных (Фу-

рье), 145
разделения переменных (Фу-

рье), 160

Неравенство
Бесселя, 111, 188
изопериметрическое, 24

Носитель функции, 95
Ньютона

1-ый закон, 16
2-ой закон, 17

Обобщенная
координата, 16
функция, 31

Ограничение
понтрягинское, 33

Оператор
Даламбера, 101
интегральный, 105, 181
сжимающий, 181

Определение
вторичной
локального экстремума, 53
сопряженной точки, 55
функционала, 3

Параметры
управляющие, 30

Плоскость
фазовая, 86

Поверхность
интегральная, 66
Ляпунова, 167

Показатель
преломления среды, 17

Поле экстремалей, 57
Понтрягина

принцип максимума, 34
функция, 30, 34

Потенциал
гауссов, 170
двойного слоя, 170
диполя, 169
объемный, 166
простого слоя, 168

Пример
Адамара, 78

Принцип
Гамильтона, 16
максимума Л.С.Понтрягина, 34

Пространство
Банаха, 181
евклидово, 110
нормированное, 111
основных и обобщенных функ-

ций, 95

Равенство
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Парсеваля-Стеклова, 112
Резонанс, 126
Решение

обобщенное, 86
фундаментальное, 102

Ряд
Фурье, 94

Обобщенная функция, 100
Свертка, 100, 103
Связь

голономная, 28
дифференциальная, 28
неголономная, 28

Система
характеристическая, 66

Система элементов
ортогональная, нормированная,

полная, 111
Собственная функция, 115
Собственное число, 115
Сопряженная

система уравнений, 35
точка, 55
функция, 34

Спектр
собственных чисел, 188

Среда
однородная, 17
стратифицированная, 18

Теорема
взаимности (в теплопроводно-

сти), 148
взаимности
Гильберта (1-ая и 2-ая), 192
Гильберта-Шмидта, 190
о
о
Стеклова, 120

Теорема взаимности
в теории колебаний, 126

Теоремы
Фредгольма, 186

Тип
гиперболический, 76
уравнения параболический, 75
эллиптико- (гиперболо-) пара-

болический, 75
уравнения смешанный , 73

ультрагиперболический, 76
эллиптический, 75

Точка
переключения, 36

Точки
симметричные относительно окруж-

ности, 159

Уравнение
Бесселя, 122, 132
в частных производных, 63
волновое, 23
Вольтерра, 177, 183
второго порядка, 69
Гамильтона-Якоби, 60
Гельмгольца, 152
геодезической линии, 29
гиперболическое, 70, 76
гиперболо-параболическое, 75
движения, 16, 30
диффузии, 137
квазилинейное, 65, 74
квазилинейное, 69
колебаний отрезка струны, 22
колебаний
Колмогорова, 138
Лагранжа, 28
Лагранжа, 26
Лагранжа-Пуассона, 27
Лапласа, 151
Лежандра, 160
Лежандра, присоединенное, 122
линейное, 65
лучевое, 17
математической физики, 64
однородное, 185
параболическое, 71, 75
первого порядка, 65
полулинейное, 65
Пуассона, 151, 167
с вырожденным ядром, 179
сопряженное, 185
сопряженное, 35
телеграфное, 89
Трикоми, 73
ультрагиперболическое, 76
неоднородное, 185
второго рода, 178
первого рода, 177
третьего рода, 178
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характеристическое, 66, 70
Шредингера, 152
Эйлера, 44
Эйлера векторное, 15
эллиптико-параболическое, 75
эллиптическое, 72, 75
Якоби, 55

Уравнение интегральное
Фредгольма, 177

Уравнения
классическое решение, 63
порядок, 63
телеграфные (Хевисайда), 82

Условие
достаточное экстремума, 56, 57
естественное граничное, 45
краевое (граничное), 77
Лежандра усиленное, 55
начальное, 77
ортогональности, 50
трансверсальности, 44, 46, 48,

49
Якоби, усиленное, 55

Форма
квадратичная, 75
уравнения каноническая, 70

Формула
Остроградского-Гаусса, 152

Формула
Грина, 21, 153
Даламбера, 85, 103, 107
Даламбера расширенная, 87
Кирхгофа, 88
Пуассона, 88, 159
Родриго, 160
смещения, 106

Функция
Хевисайда, 103

Фундаментальное решение
уравнения теплопроводности,

143
Функционал

Больца, 43
действия, 16

Обобщенная функция
дельта-функция, 96
регулярная,

Функци
Понтрягина, 30

Функция
Бесселя, 122, 132
Бесселя
Гамильтона, 59
гармоническая, 154
Грина, 124, 147, 156, 191
истокопредставимая, 190
Лагранжа, 25
Лежандра, 122
Лежандра присоединенная, 160
обобщенная, 31, 95
Понтрягина, 34
продолженная, 91
резольвентная, 180
релейная, 36
синтеза, синтезирующая, 36
собственная, 115
сопряженная, 34
сферическая, 162
управляющая (управление), 30
финитная, 95
Ханкеля, 134
Хевисайда, 92
цилиндрическая, 132
шаровая, 163

Характеристика, 66
волнового уравнения, 86

Характеристический треугольник,
86

Число
собственное, 187

Эйлера
краевая задача, 53
уравнение, 11, 44
уравнение векторное, 15
уравнений система , 15
системы уравнений интегра-

лы, 16

Ядро, 105
вырожденное, 179
интегрального уравнения, 177
симметричное, 187


