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1. Кусочно-постоянные потенциалы

Рассмотрим решение стационарного уравнения Шрёдингера с кусочно-

постоянным потенциалом, пользуясь разбиением решения на чётную и нечёт-

ную составляющие.

1.1. Произвольный кусочно-постоянный потенциал

Рассмотрим задачу на нахождение собственных значений энергии в урав-

нении Шрёдингера, составив 𝑈(𝑥) как кусочно-постоянный потенциал:

𝑈1

𝑈2

𝑈3

𝑈4

1 2 3 4
𝑥

𝑈

Рис. 1. Пример кусочно-постоянного потенциала 𝑈(𝑥)

На каждом участке такого потенциала работает уравнение Шрёдингера.

𝐻̂Ψ(𝑥) = 𝐸Ψ(𝑥)

Это стационарное уравнение Шрёдингера: его параметром является энер-

гия 𝐸. Запишем гамильтониан:

𝐻̂ =
𝑝2

2𝑚
+ 𝑈(𝑥̂) = − ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑈(𝑥̂)

Замечание.Как нетрудно заметить, гамильтониан записан в 𝑥–представлении,

то есть 𝑥̂ = 𝑥, 𝑝𝑥 = −𝑖ℏ 𝜕
𝜕𝑥 . Если потребуется, ничего не мешает перейти в

𝑝–представление:

𝑝𝑥 = 𝑝𝑥, 𝑥̂ = 𝑖ℏ
𝜕

𝜕𝑝𝑥
, Ψ(𝑝) =

1√
2𝜋ℏ

∫︁
Ψ(𝑥) exp

(︁
−𝑖𝑝

ℏ
𝑥
)︁
𝑑𝑥

Вернёмся к уравнению Шрёдингера. Подставим расписанный гамильто-
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ниан в уравнение:

[︂
− ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑈(𝑥)

]︂
Ψ(𝑥) = 𝐸Ψ(𝑥)

Пронумеруем постоянные участки потенциала. На каждом таком 𝑗-том участ-

ке потенциала
𝜕2Ψ𝑗

𝜕𝑥2
+

2𝑚

ℏ2
[𝐸 − 𝑈𝑗]

⏟  ⏞  
𝑘2𝑗

Ψ𝑗(𝑥) = 0

Или это же уравнение в более простом виде:

Ψ′′
𝑗 + 𝑘2𝑗Ψ𝑗 = 0

Решение этого уравнения нам знакомо:

Ψ𝑗 = 𝑐𝑗 exp(𝑖𝑘𝑗𝑥) + 𝑑𝑗 exp(−𝑖𝑘𝑗𝑥)

где 𝑐𝑗, 𝑑𝑗 – константы, определяемые из условий «сшивки» решений и зану-

ляемости волновой функции на бесконечности. Полученное кусочно-гладкое

решение «сшивается» на границах постоянности 𝑆𝑗:

Ψ𝑗

⃒⃒
𝑆𝑗

= Ψ𝑗+1

⃒⃒
𝑆𝑗

Ψ′
𝑗

⃒⃒
𝑆𝑗

= Ψ′
𝑗+1

⃒⃒
𝑆𝑗

1.2. Движение в потенциальной яме

Рассмотрим задачу в потенциальной яме

0

𝑈0

0

1 12

𝑥

𝑈

Рис. 2. Потенциальная яма

Разобьём пространство на две области: первая будет вне потенциальной
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ямы, вторая – в яме. Решение уравнений Шрёдингера будем искать отдельно

для двух областей.

Ψ′′
𝑥𝑥 + 𝑘21Ψ = 0, 𝑘21 =

2𝑚

ℏ2
𝐸, при

{︃
𝑥 > 𝑎

𝑥 < −𝑎
(1)

Ψ′′
𝑥𝑥 + 𝑘22Ψ = 0, 𝑘22 =

2𝑚

ℏ2
(𝐸 + |𝑈0|), при− 𝑎 ≤ 𝑥 ≤ 𝑎

Стоит сказать, что при 𝐸 > 0 движение инфинитное, а спектр волновой

функции непрерывен.

При 𝐸 < 0 движение финитное с дискретным спектром. Следовательно

𝑘21 < 0 и решением уравнения (1) будет являться:

Ψ = 𝐷𝑒−κ𝑥 +𝐷1𝑒
+κ𝑥,

где введено обозначение κ2 = −𝑘21 = 2𝑚
ℏ2 |𝐸|

Значит, вне потенциальной ямы волновая функция или экспоненциально

спадает или убывает. Из физических соображений, не может быть бесконеч-

ного роста, поэтому коэффициент 𝐷1 = 0 при 𝑥 > 0 и 𝐷 = 0 при 𝑥 < 0.

Дальше будет решаться задача о дискретном спектре (𝐸 < 0).

Из-за выбора начала координат 𝑈(𝑥) = 𝑈(−𝑥), то есть функция будет

четной. А значит уравнение

Ψ′′
𝑥𝑥(𝑥) + 𝑈(𝑥)Ψ(𝑥) = 0

инвариантно относительно замены 𝑥→ −𝑥.
Решением этого уравнения будет суперпозиция чётных и нечётных вол-

новых функций. Формализуется это введением оператора чётности 𝑃 :

𝑃Ψ(𝑥) =
𝑑𝑒𝑓

Ψ(−𝑥)

Этот оператор меняет 𝑥 → −𝑥. Решим уравнение на собственные функции

оператора 𝑃 :

𝑃Ψ = 𝑝Ψ (2)

Подействуем на уравнение (2) оператором 𝑃 ещё раз

𝑃 2Ψ =
𝑑𝑒𝑓

1̂Ψ = 𝑝2Ψ
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Отсюда 𝑝 = ±1. Тогда у нас получаются уравнения:

𝑃Ψ(𝑥) = Ψ(𝑥)

𝑃Ψ(−𝑥) = −Ψ(𝑥)

Также оператор перестановки коммутирует с оператором Гамильтона, а зна-

чит чётность и нечётность сохраняются во времени. То есть, если при 𝑡 = 0

была задана чётная функция, то она так и останется чётной. Значит, можно

решать исходные уравнение на положительной полупрямой, а затем продол-

жать на отрицательную полупрямую.

1.2.1 Четные решения

{︃
Ψ′′

𝑥𝑥 − κ2Ψ = 0, при 𝑥 > 𝑎

Ψ′′
𝑥𝑥 + 𝑘2Ψ = 0, при 0 < 𝑥 < 𝑎

где

−𝑘21 = κ2 =
2𝑚

ℏ2
|𝐸|, 𝑘2 =

2𝑚

ℏ2
(|𝑈0| − |𝐸|)

Все дискретные уровни должны лежать выше минимума потенциала 𝑈0.

Запишем решения уравнения внутри и снаружи ямы при 𝑥 > 0:

Ψвнутри = 𝐶 cos 𝑘𝑥

Ψснаружи = 𝐷𝑒−κ(𝑥−𝑎)

Теперь следует согласовать два этих решения на границе. Сделать это можно

приравняв Ψвнутри(𝑎) = Ψ(𝑎)снаружи и Ψ(𝑎)′внутри = Ψ′
снаружи(𝑎). То есть

{︃
𝐶 cos 𝑘𝑎 = 𝐷

−𝑘𝐶 sin 𝑘𝑎 = −κ𝐷

Из этого уравнения следует, что

𝑘 · tg 𝑘𝑎 = κ (3)

Уравнение (3) является трансцендентным. Мы будем решать его графически.
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Но прежде введём некоторые переобозначения.

𝑧 = κ𝑎 =

√︂
2𝑚

ℏ2
|𝐸|𝑎

𝑦 = 𝑘𝑎 =

√︂
2𝑚

ℏ2
(|𝑈0| − |𝐸|)𝑎

𝑧2 + 𝑦2 =
2𝑚

ℏ2
|𝑈0|𝑎2 = 𝑤2

Тогда уравнение (3) примет вид:

𝑦 · tg 𝑦 =
√︀
𝑤2 − 𝑦2

𝑦

𝑦 · tg 𝑦

Рис. 3. График функции 𝑦 · tg(𝑦) =
√︀
𝑤2 − 𝑦2

Функция 𝑧 = 𝑦 · 𝑡𝑔(𝑦) - чётная, так как является произведением двух

нечётных функций 𝑦 и 𝑡𝑔(𝑦). Правая же часть исследуемого равенства 𝑧 =√︀
𝑤2 − 𝑦2 является верхней полуокружностью радиуса 𝑤.

Нас интересуют уровни энергии 𝐸, при которых имеются решения. В

нашем случае они характеризуются координатой 𝑧 точек пересечения полу-

окружности и 𝑦 · tg(𝑦), так как 𝑧 = κ𝑎 ∼
√︀
|𝐸|.

Как очевидно из рисунка 3, при любом сколь угодно малом значении 𝑤 бу-

дет существовать хотя бы один уровень энергии. При дальнейшем увеличении

значения 𝑤 будут появляться новые уровни энергии, связанные с пересече-

нием полуокружности со следующими ветвями 𝑦 · tg(𝑦) (см. рис. 5). Исходя
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из уравнения, определяющего 𝑤,

𝑤2 = 𝑧2 + 𝑦2 =
2𝑚

ℏ2
|𝑈0| · 𝑎2

увеличение 𝑤 соответствует увеличению глубины потенциальной ямы 𝑈0.

Таким образом, для чётной серии решений имеем распределение энерге-

тических уровней в зависимости от глубины потенциальной ямы (см. рис. 4).

При малых 𝑤 тангенс можно разложить в ряд, показав, что |𝐸| ∼ 𝑤2 ∼ |𝑈0|2.
Следующие корни появляются при 𝑤 ≥ 𝑛𝜋.

𝑈0

|𝐸|

Рис. 4. График |𝐸|(𝑈0) (четная се-
рия)

𝑦

𝑦 · tg 𝑦

Рис. 5. Расщепление уровней

Изобразим график волновой функции Ψ(𝑥). Изначально имеем: косинус

в отрезке [−𝑎, 𝑎], и спадающие экспоненты вне этого отрезка. В точках 𝑎, −𝑎
решения сшиты. Вид решения в отрезке [−𝑎, 𝑎] будет зависеть от глубины

потенциальной ямы 𝑈0.

При 𝑤 < 𝜋 имеет место решение нулевой моды. При увеличении 𝑤 > 𝜋 от

нулевого уровня энергии «отщепляется» новый уровень (см. рис. 5), появля-

ются решения, соответствующие первой, второй и последующим модам (см.

рис. 7).
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2

4

𝑥

Ψ(𝑥)

Рис. 6. Нулевая мода Ψ(𝑥)

−6 −4 −2 2 4 6

1

2

3

𝑥

Ψ(𝑥)

Рис. 7. Первая мода Ψ(𝑥)

Заметим, что число нулей возрастает не постепенно. Где состояние с одним

нулём? Почему нули появляются парами? Дело в том, что мы рассмотрели

только чётную серию, но при этом существует также нечётная серия.

1.2.2 Нечётные решения

Аналогичным образом подойдём к решению для нечётных функций. В

этом случае {︃
Ψ2 = 𝑐 · sin 𝑘𝑥, 𝑥 < 𝑎

Ψ1 = 𝑑 · 𝑒−κ(𝑥−𝑎), 𝑥 > 𝑎

Сшиваем на границе, учитывая граничные условия:

{︃
𝑐 · sin 𝑘𝑎 = 𝑑

𝑐𝑘 · cos 𝑘𝑎 = −κ𝑑
⇒ ctg 𝑘𝑎 = −κ

Вводя те же переменные, для нечётной серии получаем

𝑦 · 𝑐𝑡𝑔(𝑦) = −
√︀
𝑤2 − 𝑦2

Решаем так же графически.

Разложим в ряд Тейлора в окрестности ноля: 𝑦 · 𝑐𝑡𝑔(𝑦)|𝑦=0 =⇒ 1. Правая

часть 𝑧 = −
√︀
𝑤2 − 𝑦2 - это нижняя полуокружность радиуса 𝑤. Нас интере-

суют пересечения этой полуокружности с графиком 𝑦 · 𝑐𝑡𝑔(𝑦).
Теперь решения появляются только при 𝑤 ≥ 𝜋

2 , а новые уровни появля-

ются каждые 𝑤 = 𝜋
2 + 𝜋𝑛.

10
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𝑦

𝑦 · ctg 𝑦

Рис. 8. График 𝑦 · 𝑐𝑡𝑔(𝑦) = −
√︀
𝑤2 − 𝑦2

Создающаяся картина энергетических уровней показана на рисунке 9.

𝑈0

|𝐸|

Рис. 9. График |𝐸|(𝑈0) (чётная серия сплошным, нечётная пунктиром)

Волновая функция в нечётном случае будет иметь моды, так же как это

было и в чётном случае. 1-я нечётная мода будет иметь 1 ноль, следующая,

вторая, будет иметь 3 нуля, и так далее.
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Рис. 10. Нулевая мода Ψ(𝑥)
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Рис. 11. Первая мода Ψ(𝑥)

Таким образом устроены моды конечного спектра. Количество уровней

определяется глубиной ямы. При постепенном её увеличении будут появлять-

ся, чередуясь, чётные и нечётные моды синуса и косинуса. В случае беско-

нечной потенциальной ямы спектр энергий будет бесконечным.
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2. Гармонический осциллятор

2.1. Классический гармонический осциллятор

Вспомним, что было в классике. Запишем уравнение Ньютона для грузика

на пружинке, перемещающегося без трения по горизонтальной оси 𝑥:

𝑚𝑥̈+ 𝑘𝑥 = 0 ⇒ 𝑥̈+ 𝜔2𝑥 = 0, где 𝜔2 =
𝑘

𝑚
.

Хорошо известны решения такого уравнения:

𝑥 = 𝑐1 cos𝜔𝑡+ 𝑐2 sin𝜔𝑡 = 𝐴 cos(𝜔𝑡+ 𝜙0)

Запишем гамильтониан такой физической системы:

𝐻̂ =
𝑚𝑥̇2

2
+
𝑘𝑥2

2
=

𝑝2

2𝑚
+
𝑘𝑥2

2

2.1.1 Переход от классического уравнения к квантовому

А теперь сделаем переход к квантовой механике, заменив все физические

величины – операторами:

𝐻̂ =
𝑝2

2𝑚
+
𝑚𝜔2𝑥̂2

2
, (4)

где в 𝑥-представлении:

𝑝 = −𝑖ℏ∇, 𝑝𝑥 = −𝑖ℏ 𝜕
𝜕𝑥
. (5)

Мы будем решать стационарное уравнение Шрёдингера, которое полу-

чается в случае, когда энергия имеет определённое решение, и говорят, что

система имеет стационарные состояния. В этом случае нестационарное урав-

нение Шрёдингера имеет вид

𝑖ℏΨ̇(𝑥, 𝑡) = 𝐻̂Ψ(𝑥, 𝑡) = 𝐸Ψ(𝑥, 𝑡),
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и оно может быть непосредственно проинтегрировано по времени, и тогда

Ψ(𝑥, 𝑡) = exp

(︂
−𝑖𝐸

ℏ
𝑡

)︂
· 𝜓(𝑥).

При этом для 𝜓(𝑥) выполняется так называемое стационарное уравнение

Шрёдингера:

𝐻̂𝜓(𝑥) = 𝐸𝜓(𝑥). (6)

2.1.2 Введение безразмерных переменных

Подставив выражения для гамильтониана осциллятора (4) и импульса (5)

в стационарное уравнениеШрёдингера (6), получим уравнение гармоническо-

го осциллятор в следующем виде:

(︂
− ℏ2

2𝑚

𝜕2

𝜕𝑥2
+
𝑚𝜔2𝑥2

2

)︂
𝜓(𝑥) = 𝐸𝜓(𝑥)

Прежде чем решать его, приведём его к безразмерному виду, пользуясь

следующими соображениями.

Слева произведение скобки на 𝜓(𝑥), справа произведение 𝐸 ·1 ·𝜓(𝑥). Зна-
чит, если мы в левой части из скобок вынесем множитель размерности энер-

гии, то оставшаяся скобка будет одной размерности с 1, значит, безразмерная.

Простейшим вариантом, конечно, будет вынести ℏ𝜔:

ℏ𝜔
(︂
− ℏ
2𝑚𝜔

𝜕2

𝜕𝑥2
+
𝑚𝜔𝑥2

2ℏ

)︂
𝜓(𝑥) = 𝐸𝜓(𝑥)

Теперь можем ввести характерный масштаб:

𝑙2q =
ℏ
𝑚𝜔

И тогда
ℏ𝜔
2

[︂
−𝑙2𝑞

𝜕2

𝜕𝑥2
+
𝑥2

𝑙2𝑞

]︂
𝜓(𝑥) = 𝐸𝜓(𝑥)

Введем безразмерные переменные:

𝜀 =
𝐸

ℏ𝜔
, 𝜉 =

𝑥

𝑙𝑞
⇒ 𝜕

𝜕𝜉
=

𝜕

𝜕𝑥

𝜕𝑥

𝜕𝜉
=

𝜕

𝜕𝑥
· 𝑙𝑞,

𝜕2

𝜕𝜉2
=

𝜕2

𝜕𝑥2
· 𝑙2𝑞

14
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Тогда уравнение гармонического осциллятора в безразмерных координатах

[︂
−1

2

𝜕2

𝜕𝜉2
+
𝜉2

2

]︂
𝜓 = 𝜀𝜓 (7)

2.1.3 Безразмерный импульс и уравнение Эрмита

Попробуем сказать, как будет выглядеть безразмерный импульс 𝑝𝑏 ≡ 𝑝𝑥,𝑏:

𝑝𝑥 = −𝑖ℏ 𝜕
𝜕𝑥

= −𝑖ℏ
𝑙𝑞

𝜕

𝜕𝜉

Заметим, что размерный импульс должен представляться в виде безразмер-

ного импульса, помноженного на размерную константу - единицу импульса.

Из этого соображения очевидно, что

𝑝𝑏 = −𝑖 𝜕
𝜕𝜉
,

а единица импульса в наших безразмерных переменных 1𝑝 = ℏ
𝑙𝑞
=

√
𝑚ℏ𝜔.

Итак, в нашем безразмерном уравнении следующая система единиц:

Единица длины: 1𝜉 = 𝑙𝑞 =

√︂
ℏ
𝑚𝜔

Единица импульса: 1𝑝 =
ℏ
𝑙𝑞

=
√
𝑚ℏ𝜔

Единица энергии: 1𝜀 = ℏ𝜔

Тогда уравнение осциллятора можно записать в виде, известном как урав-

нение Эрмита: (︂
𝑝2𝑏
2
+
𝜉2

2

)︂
𝜓 = 𝜀𝜓 (8)

2.1.4 Коммутатор [𝑝𝑥, 𝑥̂] в безразмерных переменных

Найдем коммутатор проекции импульса и координаты в безразмерных

переменных. Вспомним, что
√
𝑚ℏ𝜔 · 𝑝𝑏 = 𝑝𝑥, а

√︁
ℏ
𝑚𝜔 · 𝜉 = 𝑥̂ = 𝑥. Будем

использовать известный результат:

𝑝𝑥𝑥̂− 𝑥̂𝑝𝑥 = −𝑖ℏ
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Подставим выражения для безразмерных переменных:

√
𝑚ℏ𝜔 · 𝑝𝑏

√︂
ℏ
𝑚𝜔

𝜉 −
√︂

ℏ
𝑚𝜔

𝜉 ·
√
𝑚ℏ𝜔 · 𝑝𝑏 = −𝑖ℏ

Вынесем общий множитель за скобку и сократим:

√
𝑚ℏ𝜔

√︂
ℏ
𝑚𝜔

(𝑝𝑏𝜉 − 𝜉𝑝𝑏) = −𝑖ℏ ⇒ 𝑝𝑏𝜉 − 𝜉𝑝𝑏 = −𝑖

2.2. Метод ВКБ

2.2.1 Решение осциллятора при больших 𝜉

Будем искать решение уравнения (7) при больших значениях 𝜉. Тогда мы

можем пренебречь 𝜀: (︂
𝜕2

𝜕𝜉2
− 𝜉2

)︂
𝜓 = 0 (9)

Решением этого уравнения является функция 𝜓 = exp
{︁
−𝜉2

2

}︁
. Кроме подста-

новки, доказать, что эта функция действительно является решением этого

уравнения можно воспользовавшись методом Вентцеля-Крамерса-Бриллюэна.

Пусть у нас есть уравнение

𝜓′′ + 𝑘2(𝑥)𝜓 = 0 (10)

Будем искать решение в виде Ψ = 𝐴(𝑥) exp{𝑖𝜃(𝑥)}. После подстановки реше-
ния в (10) получим:

[︀
𝐴′′ + 2𝑖𝜃′𝐴′ + 𝑖𝐴𝜃′′ − 𝐴 · (𝜃′)2 + 𝑘2(𝑥)𝐴

]︀
exp{𝑖𝜃} = 0

Разделим действительную и мнимую части (мнимую ещё умножили на 𝐴).

Тогда можно заметить, что второе уравнение системы представляет собой

производную 𝜕𝐴(𝑥)2𝜃′(𝑥)
𝜕𝑥 :

{︃
𝐴′′ − 𝐴(𝜃′)2 + 𝑘2(𝑥)𝐴 = 0

2𝜃′𝐴′𝐴+ 𝐴2𝜃′′ = 0 = 𝜕{𝐴(𝑥)2𝜃′(𝑥)}
𝜕𝑥
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В нашем приближении больших 𝜉 справедливо соотношение

⃒⃒
⃒⃒𝐴

′′

𝐴

⃒⃒
⃒⃒≪ 𝜃′2. Тогда

в первом уравнении системы пренебрежём 𝐴′′ и получим:

𝜃′ = ±𝑘(𝑥)

Возвращаясь к уравнению (9), можем сказать, что 𝜃′ = ±𝑖𝜉 и 𝜃 = ±𝑖𝜉22 .
Данное решение является приближенным.

2.2.2 Условие квантования энергии

Как было показано выше, 𝜃 = ±𝑖𝜉22 , тогда решение имеет вид

𝜓 = 𝑒−
𝜉2

2 ⇒ 𝜓′ = −𝜉𝑒− 𝜉2

2 , 𝜓′′ = −𝑒− 𝜉2

2 + 𝜉2𝑒−
𝜉2

2

Подставим эти производные в уравнение (9). Тогда получим

����

𝜉2𝑒−
𝜉2

2 − 𝑒−
𝜉2

2 −����

𝜉2𝑒−
𝜉2

2 = −𝑒− 𝜉2

2 = 0

Заметим, что оставшийся член −𝑒− 𝜉2

2 , вообще говоря, не равен нулю. Однако

при выполнении условия 𝜉 ≫ 1 этим членом можно пренебречь.

Будем искать решение в виде 𝜓 = 𝜒(𝜉)𝑒−
𝜉2

2 , где 𝜒(𝜉) - новая функция.

Чтобы волновая функция спадала на бесконечности в ноль, 𝜒(𝜉) должна

стремиться к бесконечности медленнее экспоненты:

𝜒(𝜉)

𝑒
𝜉2

2

→ 0, когда 𝜉 → ∞

Аналогично предыдущим расчётам, найдём первую и вторую производные

𝜓′ = 𝜒′𝑒−
𝜉2

2 − 𝜉𝜒𝑒−
𝜉2

2 , 𝜓′′ = 𝜒′′𝑒−
𝜉2

2 − 2𝜉𝜒′𝑒−
𝜉2

2 − 𝜒𝑒−
𝜉2

2 + 𝜉2𝜒𝑒−
𝜉2

2

и подставим в уравнение (9), но при этом уже не будем считать 𝜀 = 0:

𝜒′′ − 2𝜉𝜒′ − 𝜒+ 2𝜀𝜒 = 0 (11)

Это уравнение содержит 𝜒 только в первой степени. Будем искать его реше-

ние в виде ряда 𝜒(𝜉) =
∑︀
𝐶𝑛𝜉

𝑛. Заметим, что при 𝜉 → 0 решение в виде ряда
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регулярно. Найдём производные

𝜒′ =
∑︁

𝑛𝐶𝑛𝜉
𝑛−1, 𝜒′′ =

∑︁
𝑛(𝑛− 1)𝐶𝑛𝜉

𝑛−2

и подставим их в уравнение (11)

∑︁
𝑛(𝑛− 1)𝐶𝑛𝜉

𝑛−2 − 2
∑︁

𝑛𝐶𝑛𝜉
𝑛−1𝜉 −

∑︁
𝐶𝑛𝜉

𝑛 + 2𝜀
∑︁

𝐶𝑛𝜉
𝑛 = 0

Чтобы свернуть это выражение в одну сумму, сделаем замену индексов для

разных слагаемых. Так можно делать, потому что индексы у суммы – немые.

𝑛−2=𝑘⏞  ⏟  ∑︁
𝑛(𝑛− 1)𝐶𝑛𝜉

𝑛−2−2

𝑛=𝑘⏞  ⏟  ∑︁
𝑛𝐶𝑛𝜉

𝑛−
𝑛=𝑘⏞  ⏟  ∑︁

𝐶𝑛𝜉
𝑛 + 2𝜀

∑︁
𝐶𝑛𝜉

𝑛 = 0

И тогда выражение преобразуется к более простому виду:

∞∑︁

𝑘=0

[(𝑘 + 2)(𝑘 + 1)𝐶𝑘+2 − (2𝑘 − 2𝜀+ 1)𝐶𝑘]𝜉
𝑘 = 0

Заметим, что 𝜉𝑘 представляет собой полный базис пространства, и для того,

чтобы ∀𝜉,∑︀∞
𝑘=0[...] = 0, нужно чтобы все коэффициенты под суммой [...] = 0,

т.е.

(𝑘 + 2)(𝑘 + 1)𝐶𝑘+2 − (2𝑘 − 2𝜀+ 1)𝐶𝑘 = 0

откуда можно получить рекуррентное соотношение

𝐶𝑘+2 =
2𝑘 − 2𝜀+ 1

(𝑘 + 2)(𝑘 + 1)
𝐶𝑘. (12)

Из соотношения видно, что существуют отдельные чётная и нечётная по-

следовательности, соответствующие начальным коэффициентам 𝐶0 (для чёт-

ных) и 𝐶1 (для нечётных).

𝐶0 → 𝐶2, 𝐶4, 𝐶6, . . .

𝐶1 → 𝐶3, 𝐶5, 𝐶7, . . .

Это соответствует тому, что общее решения уравнения второго порядка

зависит от двух констант, являющихся первыми членами ряда.

Чтобы решение было правильным, ряд должен кончиться (оборваться),
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то есть, начиная с некоторого 𝑘 = 𝑘𝑚𝑎𝑥 = 𝑁 , числитель в выражении (12)

должен обратиться в ноль:

2𝑁 − 2𝜀+ 1 = 0 ⇒ 𝜀 = 𝑁 +
1

2
, 𝑁 = 0, 1, 2, 3, . . .

По сути, мы нашли собственные числа (спектр энергии), представляющие

собой эквидистантный ряд (13). Теперь мы можем искать волновые функции,

соответствующие разным собственным числам.

𝐸𝑛 = ℏ𝜔
(︂
𝑁 +

1

2

)︂
(13)

2.3. Полиномы и функции Эрмита

Вспомним ключевые результаты, полученные в разделе 2.2. Мы записали

уравнение Шрёдингера для гармонического осциллятора (движение части-

цы в потенциале 𝑥2), вывели соответствующее ему безразмерное уравнение

– уравнение Эрмита и рассмотрели его решение в виде 𝜒(𝜉) · exp
(︀
−𝜉2/2

)︀
,

где 𝜒 разложили в ряд. В силу уравнения Эрмита получили рекуррентное

соотношение коэффициентов ряда (12). Из необходимости равенства нулю

на бесконечности волновой функции мы потребовали обращение в ноль ряда

начиная с некоторого члена, из чего получили квантование энергии осцилля-

тора 𝜀 (13).

2.3.1 Моды уравнения Эрмита

Волновую функцию, отвечающую собственному числу 𝜀 = 𝑁 + 1
2 , приня-

то называть модой 𝑁 -го порядка. Попробуем вывести выражение для моды

нулевого порядка (так называемое вакуумное состояние), а также 1–3 поряд-

ков.

Нулевая мода 𝑁 = 0. Нулевой моде отвечает энергия 𝜀 = 1
2 +𝑁 = 1

2 . Для

чётной моды разрешена только чётная серия коэффициентов (нечётная серия

разойдётся, для неё нет условия обрыва). Коэффициент 𝐶0 произвольный, а

𝐶2 в силу условия обрыва уже отсутствует:

𝐶2 =
2𝑘 − 2𝜀+ 1

(𝑘 + 2)(𝑘 + 1)
𝐶0 =

2 · 0− 2 · 1
2 + 1

(0 + 2)(0 + 1)
𝐶0 = 0
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Отсюда находится и решение нулевой моды:

Ψ0 =
0∑︁

𝑘=0

𝐶𝑘𝜉
𝑘 · 𝑒− 𝜉2

2 = 𝐶0 · exp
{︂
−𝜉

2

2

}︂

Первая мода 𝑁 = 1. Первой моде отвечает энергия 𝜀 = 1
2 + 1 = 3

2 . Для

нечетной моды разрешена только нечётная серия коэффициентов, значит

𝐶0 = 𝐶2 = . . . = 0, коэффициент 𝐶1 произвольный, а 𝐶3 в силу условия

обрыва уже отсутствует. Тогда

Ψ1 = 𝐶1𝜉 · exp
{︂
−𝜉

2

2

}︂

Вторая мода 𝑁 = 2. Второй моде отвечает энергия 𝜀 = 1
2 + 2 = 5

2 . Нечёт-

ные коэффициенты не рассматриваем (аналогично предыдущим моды).

Коэффициент 𝐶0 произвольный, 𝐶4 зануляется в силу обрыва на 𝑁 = 2,

а 𝐶2 выразим через 𝐶0:

𝐶2 =
2𝑘 − 2𝜀+ 1

(𝑘 + 2)(𝑘 + 1)
𝐶0 =

2 · 0− 2 · 5
2 + 1

(0 + 2)(0 + 1)
𝐶0 = −2𝐶0

Отсюда

Ψ2 =
2∑︁

𝑘=0

𝐶𝑘𝜉
𝑘 · 𝑒− 𝜉2

2 = 𝐶0

(︀
1− 2𝜉2

)︀
· exp

{︂
−𝜉

2

2

}︂

Третья мода 𝑁 = 3. Третей моде отвечает энергия 𝜀 = 1
2 + 3 = 7

2 . Чёт-

ные коэффициенты не рассматриваем, коэффициент 𝐶1 произвольный, 𝐶5

зануляется в силу обрыва на 𝑁 = 3, а 𝐶3 выразим через 𝐶1:

𝐶3 =
2𝑘 − 2𝜀+ 1

(𝑘 + 2)(𝑘 + 1)
𝐶1 =

2 · 1− 2 · 7
2 + 1

(1 + 2)(1 + 1)
𝐶1 = −2

3
𝐶1

Отсюда

Ψ3 =
3∑︁

𝑘=1

𝐶𝑘𝜉
𝑘 · 𝑒− 𝜉2

2 = 𝐶1

(︂
𝜉 − 2

3
𝜉2
)︂
· exp

{︂
−𝜉

2

2

}︂

Перед экспонентой в любом случае будет стоять какие-то полиномы. Эти
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полиномы называют полиномами Эрмита и обозначают буквой 𝐻𝑘.

Ψ𝑘(𝜉) ∼ 𝐻𝑘(𝜉) exp
{︀
−𝜉2/2

}︀

𝜉

Ψ

Рис. 12. Нулевая мода (N=0)

𝜉

Ψ

Рис. 13. Первая мода (N=1)

𝜉

Ψ

Рис. 14. Вторая мода (N=2)

𝜉

Ψ

Рис. 15. Третья мода (N=3)

На рис. 12-15 изображены графики зависимости Ψ0(𝜉), Ψ1(𝜉), Ψ2(𝜉) и

Ψ3(𝜉). Из них можно сделать вывод, что количество нулей волновой функции

совпадает с номером моды (на графиках нули отмечены маркерами).

Единственное, что мы не сделали — не нашли общую формулу (для 𝐻𝑘).

Это можно сделать, получив общее решение уравнения 11, например, с помо-

щью метода Лапласа, который применим к дифференциальным уравнениям,

содержащим аргумент в степени не выше первой. Мы в этом разделе этого

делать не будем, а сделаем в следующем с помощью операторного метода.

2.3.2 Нормировка 𝐻0

Когда мы искали моды, перед волновой функцией оставался коэффициент

𝐶0 или 𝐶1. Мы можем найти его из условия нормировки волновой функции.

Сделаем это на примере нормировки Ψ0, для Ψ1 аналогично и рассматривать

не будем.
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Предположим, что 𝑋 – нормировочный множитель и 𝑋2
∞∫︀

−∞

⃒⃒
Ψ2

0

⃒⃒
d𝜉 = 1.

Тогда в силу известного определённого интеграла Пуассона

∞∫︁

−∞

exp
{︀
−𝜉2

}︀
d𝜉 =

√
𝜋

Нетрудно получить ответ:

Ψ0 =
1
4
√
𝜋
exp
{︀
−𝜉2/2

}︀

2.4. Операторное решение уравнения Эрмита

Вернёмся к уравнению (8). Для простоты теперь будем обозначать без-

размерный оператор 𝑝𝑏 ≡ 𝑝, а безразмерный оператор координаты 𝜉 ≡ 𝜉.

Для решения уравнения также наложим условие, что волновая функция

ограничена сверху некоторым конечным числом 𝑀 при любых 𝜉:

𝑝2 + 𝜉2

2
Ψ(𝜉) = 𝜀Ψ(𝜉),

{︂
|Ψ(𝜉)| < 𝑀

⃒⃒
⃒⃒ ∀𝜉
}︂

(14)

Займёмся операторной алгеброй и будем рассматривать 𝑝 и 𝜉 просто как

операторы. Их алгебра задаётся соотношением:

𝑝𝜉 − 𝜉𝑝 = −𝑖 (15)

2.4.1 Понижение порядка уравнения

Рассмотрим переход от уравнения второго порядка к комплексному урав-

нению первого порядка на примере классического осциллятора.

Это действительное уравнение второго порядка, но его можно свести к
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двум комплексным уравнениям первого порядка:

𝑥′′ + 𝜔2𝑥 = 0

𝑥′′ + 𝑖𝜔𝑥′⏟  ⏞  
𝑢′

−𝑖𝜔𝑥′ + 𝜔2𝑥 = 0

𝑢′ − 𝑖𝜔(𝑥′ + 𝑖𝜔𝑥)

𝑢′ − 𝑖𝜔𝑢 = 0

Мы можем решить уравнение первого порядка, найти 𝑢, а затем подста-

вить его в уравнение

𝑥′ + 𝑖𝜔𝑥 = 𝑢

и решить это неоднородное уравнение первого порядка тривиальным инте-

грированием. Так решается уравнение классического осциллятора в книге

Ландау и Ливщица «Теоретическая механика».

2.4.2 Операторы рождения 𝑎̂ и уничтожения 𝑎̂+

Оказывается, в квантовой механике возможна точно такая же процедура

понижения порядка уравнения, только её нужно проводить на операторах.

Для этого вводят новые операторы:

𝜉 =
𝑎+ 𝑎+√

2
, 𝑝 =

𝑎− 𝑎+

𝑖
√
2

(16)

Операторы 𝜉, 𝑝 эрмитовы (то есть самосопряжены), а операторы 𝑎, 𝑎+ вза-

имно сопряжены друг с другом, где 𝑎+ обозначает эрмитово сопряжение 𝑎.

Операторы 𝑎, 𝑎+, очевидно, не эрмитовы, так как 𝑎 ̸= 𝑎+. Если бы было

равенство, то получилось бы 𝑝 = 0, что означает неверность замены опера-

торов.

Проверим эрмитовость 𝜉:

𝜉+ =

(︂
𝑎+ 𝑎+√

2

)︂+

=
𝑎+ + (𝑎+)+√

2
=
𝑎+ + 𝑎√

2
= 𝜉

Аналогично доказывается эрмитовость 𝑝. В нём числитель поменяет знак, но

это уравновешивается сменой знака 𝑖 в знаменателе: 𝑖+ = −𝑖. Значит, такое
представление 𝜉 и 𝑝 возможно: оно не нарушает их эрмитовости, а как мы
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помним, все физические операторы эрмитовы.

Отметим, что оператор 𝑎+ называют оператором рождения (или повыше-

ния), а 𝑎 оператором уничтожения (или понижения). Смысл этих названий

мы поймём позже, рассмотрев их свойства.

Коммутатор [𝑎, 𝑎+]. Займёмся вычислением такого коммутатора. Он по-

надобится дальше в выкладках. Подставим замену (16) в выведенный ком-

мутатор 𝑝 и 𝜉 (15):

𝑎− 𝑎+√
2𝑖

· 𝑎+ 𝑎+√
2

− 𝑎+ 𝑎+√
2

· 𝑎− 𝑎+√
2𝑖

= −𝑖 (17)

(𝑎− 𝑎+)(𝑎+ 𝑎+)− (𝑎+ 𝑎+)(𝑎− 𝑎+) = 2

𝑎𝑎− 𝑎+𝑎+ 𝑎𝑎+ − 𝑎+𝑎+ − (𝑎𝑎+ 𝑎+𝑎− 𝑎𝑎+ − 𝑎+𝑎+) = 2

𝑎𝑎+ − 𝑎+𝑎 = 1

Получили, что операторы 𝑎 и 𝑎+ коммутируют на 1. Заменим все операторы

в уравнении Эрмита (14):

𝑝2 + 𝜉2

2
=

(𝑎− 𝑎+)(𝑎− 𝑎+)

2
√
2
√
2𝑖2

+
(𝑎+ 𝑎+)(𝑎+ 𝑎+)

2
√
2
√
2

=

=
1

4

[︀
(𝑎+ 𝑎+)(𝑎+ 𝑎+)− (𝑎− 𝑎+)(𝑎− 𝑎+)

]︀
=

=
1

4

[︀
𝑎𝑎+ 𝑎+𝑎+ 𝑎𝑎+ 𝑎+𝑎+ − (𝑎𝑎− 𝑎+𝑎− 𝑎+ + 𝑎+𝑎+)

]︀
=

1

2
(𝑎+𝑎+ 𝑎𝑎+)

Напомним, что в отличии от обыкновенной алгебры, порядок операторов

нельзя менять, для них не выполняется свойство коммутативности 𝑎𝑏 = 𝑏𝑎.

Поэтому, раскрывая скобки и приводя подобные, нужно следить за порядком

членов.

Применяем коммутационное соотношение:

1

2
(𝑎+𝑎+ 𝑎𝑎+) =

1

2
(2𝑎+𝑎+ 1) = 𝑎+𝑎+

1

2
=
𝑝2 + 𝜉2

2
(18)

Заметим, что тут у нас стоит сумма оператора и числа. Вообще говоря, ма-

тематики бы поставили перед 1
2 единичный оператор, чтобы вся сумма была

оператором: но в квантовой механике принято его не писать и подразумевать

из контекста.

24



Квантовая механика Лекции В.В. Курина 2018-2019

2.4.3 Уравнение Эрмита в новых операторах

Итак,мы решили уравнение Эрмита с помощью производных, разложения

в ряд, иначе говоря - с помощью аппарата матанализа. Теперь попробуем ре-

шить его с помощью операторной алгебры, не решая нигде дифференциаль-

ных уравнений, кроме последнего этапа. При этом алгебра операторов нам

задана коммутационными соотношениями.

Итак, используя полученное нами соотношение (18), запишем уравнение

Эрмита через операторы 𝑎, 𝑎+:

(︂
𝑎+𝑎+

1

2

)︂
Ψ(𝜉) = 𝜀Ψ(𝜉)

Или перепишем его в более компактном виде, попутно введя новую перемен-

ную 𝛼:

𝑎+𝑎Ψ = (𝜀− 1

2
)

⏟  ⏞  
𝛼

Ψ ⇒ 𝑎+𝑎Ψ = 𝛼Ψ (19)

2.4.4 Смысл операторов 𝑎, 𝑎+ и свойства 𝛼

Перепишем в дираковских обозначениях уравнение (19):

𝑎+𝑎 |Ψ𝛼⟩ = 𝛼 |Ψ𝛼⟩

Это по сути задача на собственные функции Ψ𝛼 и собственные значения

𝛼 оператора 𝑎+𝑎.

Так как функция Ψ обозначает у нас волновую функцию, а дираковская

скобка тоже обозначает волновую функцию, то обозначение |Ψ𝛼⟩ избыточно,
и в дальнейшем мы будем обозначать его просто как |𝛼⟩ . То есть, примем

соглашение, по которому мы просто нумеруем (параметризуем) собственные

функции соответствующими собственными числами. Такое обозначение, на-

пример, принято в лекциях Фейнмана. Итак, мы имеем, по определению

|Ψ𝛼⟩ ≡ |𝛼⟩ .

Итак, теперь все, что мы рассматривали раньше, свелось к задаче

𝑎+𝑎 |𝛼⟩ = 𝛼 |𝛼⟩ . (20)
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Исследуем свойства этого уравнения.

Неотрицательность собственных чисел 𝛼. Чтобы доказать этот факт,

домножим уравнение (20) слева на левый вектор (бра-скобку) ⟨𝛼|:

⟨𝛼|𝑎+𝑎|𝛼⟩ = 𝛼 ⟨𝛼|𝛼⟩

Если волновая функция нормируемая, то можно отнормировать её на еди-

ницу: ⟨𝛼|𝛼⟩ = 1. В этом предположении сразу получаем, что в правой части

уравнения стоит 𝛼, умноженное на положительное число. Осталось доказать,

что в левой оно тоже положительно.

Посмотрим внимательно на левую часть уравнения. Можем ли мы пред-

положить, что 𝑎 действует только на правую скобку, а 𝑎+ только на левую?

Можем, это позволяет нам сделать ассоциативный закон1. Умножение опе-

раторов не коммутативно, но ассоциативно! Этот факт нетрудно доказать,

если записать операторы в матричной форме.

Теперь мы можем записать уравнение так:

⟨𝛼| 𝑎+ · 𝑎 |𝛼⟩ = 𝛼 ⟨𝛼|𝛼⟩

Слева стоит произведение двух абстрактных векторов. Заметим, что в силу

определения эрмитова сопряжения

⟨𝛼| 𝑎+ =
(︀
𝑎 |𝛼⟩

)︀+

Если мы обозначим вектор |𝜒⟩ = 𝑎 |𝛼⟩, то слева у нас, оказывается, стоит

скалярное произведение, естественно неотрицательное:

⟨𝜒|𝜒⟩ ≥ 0

Таким образом, 𝛼 как коэффициент пропорциональности между двумя

неотрицательными числами тоже число неотрицательное.

1Напомним на примере арифметики, что это за свойство: 3 · (5 · 8) = (3 · 5) · 8
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Смысл 𝑎 как оператора уничтожения. Подействуем на уравнение (20)

оператором 𝑎 слева. В правой части 𝑎 · 𝛼 |𝛼⟩ = 𝛼𝑎 |𝛼⟩, т.к. 𝛼 – число:

𝑎𝑎+𝑎 |𝛼⟩ = 𝛼𝑎 |𝛼⟩

Сделаем замену в силу коммутационного соотношения (17):

(𝑎+𝑎+ 1)𝑎 |𝛼⟩ = 𝛼𝑎 |𝛼⟩ ⇒ 𝑎+𝑎 𝑎 |𝛼⟩⏟ ⏞ 
|𝛽⟩

= (𝛼− 1)𝑎 |𝛼⟩

Здесь мы можем считать |𝛽⟩ собственными функциями оператора 𝑎+𝑎, и срав-
ним с уравнением (20)

𝑎+𝑎 |𝛽⟩ = (𝛼− 1) |𝛽⟩ ⇔ 𝑎+𝑎 |𝛼⟩ = 𝛼 |𝛼⟩

Из этого сопоставления очевидно, что должно быть верно |𝛽⟩ ∼ |𝛼− 1⟩ (ра-
венство не пишем, так как ничего не знаем о нормировке), а значит

𝑎 |𝛼⟩ ∼ |𝛼− 1⟩

То есть, действуя оператором 𝑎, мы понизили номер волновой функции – это

и есть смысл названия «оператор уничтожения» (или понижения).

Целость собственных чисел 𝛼. Выше мы доказали, что номера волновой

функции у нас могут быть только неотрицательными. Рассмотрим последо-

вательное применение оператора 𝑎 𝑛 раз к |𝛼⟩:

𝑎𝑛 |𝛼⟩ ∼ |𝛼− 𝑛⟩

Но мы помним, что |𝛼− 𝑛⟩ ≡ |Ψ𝛼−𝑛⟩, а значит

𝛼− 𝑛 > 0

Так как мы можем применять оператор уничтожения сколь угодно раз, нуж-

но, чтобы при некотором номере 𝑛 номер волновой функции 𝛼−𝑛 занулился,
и тогда все последующие номера будут разрешены: они будут просто нулями.

Иначе они станут отрицательными, а мы уже доказали, что это не так.

Значит, 𝛼 = 𝑛, а отсюда вывод – 𝛼 целое.

27



Квантовая механика Лекции В.В. Курина 2018-2019

Вспомним, что такое у нас 𝛼:

𝜀− 1

2
= 𝛼 = 𝑛

А это же и есть квантование осциллятора, которое мы получали в предыду-

щей лекции! Теперь мы получили его, не производя никаких дифференциро-

ваний, разложений в ряд и тому подобного:

𝜀 = 𝑛+
1

2
, 𝑛 = 0, 1, 2, . . . ,

Дальше везде вместо 𝛼 мы будем писать 𝑛, подразумевая что теперь мы

знаем, что собственные числа целые.

Смысл 𝑎+ как оператора рождения. Подействуем на уравнение (20)

оператором 𝑎+ слева. В правой части 𝑎+(𝑛 |𝑛⟩) = 𝑛𝑎+ |𝑛⟩, так как 𝑛 - число:

𝑎+𝑎+𝑎 |𝑛⟩ = 𝑛𝑎+ |𝑛⟩

Сделаем замену в силу коммутационного соотношения (17):

𝑎+(𝑎𝑎+ − 1) |𝑛⟩ = 𝑛𝑎+ |𝑛⟩

Откуда перегруппировкой слагаемых получается уравнение

𝑎+𝑎𝑎+ |𝑛⟩ = (𝑛+ 1)𝑎+ |𝑛⟩

Аналогично, как мы это проделывали с понижающим оператором, назовём

новую собственную функцию |𝛽⟩ = 𝑎+ |𝑛⟩ и сравним с уравнением (20):

𝑎+𝑎 |𝛽⟩ = (𝑛+ 1) |𝛽⟩ ⇔ 𝑎+𝑎 |𝑛⟩ = 𝑛 |𝑛⟩

Отсюда |𝛽⟩ ∼ |𝑛+ 1⟩, и
𝑎+ |𝑛⟩ ∼ |𝑛+ 1⟩

То есть, действуя оператором 𝑎+, мы повысили номер волновой функции.

Поэтому этот оператор называют повышающим, или оператором рождения.
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2.4.5 Нахождение собственных чисел. Оператор 𝑛̂

Вернёмся опять к уравнению (20) и домножим его на левую скобку ⟨𝑛|:

⟨𝑛| 𝑎+𝑎 |𝑛⟩ = 𝑛 ⟨𝑛|𝑛⟩

Разделим действие операторов: 𝑎+ действует на левую скобку, 𝑎 на правую

(возможность так делать мы обосновали при доказательстве неотрицатель-

ности 𝛼) и вставим между такими векторами единичный оператор:

⟨𝑛| 𝑎+

∑︀
𝑘

|𝑘⟩ ⟨𝑘|

↓
1̂ 𝑎 |𝑛⟩ = 𝑛 ⟨𝑛|𝑛⟩

При этом сумму мы можем вынести за скобки:

∑︁

𝑘

⟨𝑛|𝑎+|𝑘⟩ ⟨𝑘|𝑎|𝑛⟩ = 𝑛 ⟨𝑛|𝑛⟩

Покажем, что в этой сумме только одно слагаемое не ноль. Действительно,

используя понижающее свойство 𝑎 и повышающее 𝑎+ мы можем записать,

что ∑︁

𝑘

⟨𝑛|𝑘 + 1⟩ ⟨𝑘|𝑛− 1⟩ ∼ 𝑛 ⟨𝑛|𝑛⟩

Так как ⟨𝑘|𝑚⟩ = 0 при 𝑘 ̸= 𝑚, сумма упрощается до одного слагаемого

𝑘 = 𝑛− 1. Теперь вернёмся обратно к формуле с операторами:

⟨𝑛|𝑎+|𝑛− 1⟩ ⟨𝑛− 1|𝑎|𝑛⟩ = 𝑛 ⟨𝑛|𝑛⟩ (21)

Покажем, что если предположить, что волновая функция нормирована, ⟨𝑚|𝑛⟩ =
𝛿𝑚𝑛, то отсюда следует

⃒⃒
⟨𝑛|𝑎+|𝑛− 1⟩

⃒⃒2
= | ⟨𝑛− 1|𝑎|𝑛⟩|2 = 𝑛

Действительно, заметим, что и первый и второй множители – матричные

элементы операторов 𝑎, 𝑎+. Пусть 𝐴 – матрица оператора 𝑎: тогда формула

(21) перепишется в виде

𝐴+
𝑛,𝑛−1 · 𝐴𝑛−1,𝑛 = 𝑛
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Но на языке матриц 𝐴+ = (𝐴*)𝑇 =
(︀
𝐴𝑇
)︀*
. Преобразуем сначала первый

множитель:

𝐴+
𝑛,𝑛−1 · 𝐴𝑛−1,𝑛 = 𝐴*

𝑛−1,𝑛 · 𝐴𝑛−1,𝑛 = |𝐴𝑛−1,𝑛|2 = 𝑛

Теперь преобразуем второй множитель:

𝐴+
𝑛,𝑛−1 · 𝐴𝑛−1,𝑛 = 𝐴+

𝑛,𝑛−1 · 𝐴+𝑇*
𝑛−1,𝑛 = 𝐴+

𝑛,𝑛−1 · 𝐴+*
𝑛,𝑛−1 =

⃒⃒
𝐴+

𝑛,𝑛−1

⃒⃒2
= 𝑛

Действительно, если теперь вернуться к нотации Дирака, получим нужное

выражение: ⃒⃒
⟨𝑛|𝑎+|𝑛− 1⟩

⃒⃒2
= | ⟨𝑛− 1|𝑎|𝑛⟩|2 = 𝑛

Извлекаем корень из этих выражений:

⟨𝑛|𝑎+|𝑛− 1⟩ = √
𝑛, ⟨𝑛− 1|𝑎|𝑛⟩ = √

𝑛 (22)

Сравнивая полученные выражения с ранее выведенными формулами, описы-

вающими действие операторов повышения и понижения, получим собствен-

ные числа обоих операторов:

𝑎+ |𝑛− 1⟩ = √
𝑛 |𝑛⟩ , 𝑎 |𝑛⟩ = √

𝑛 |𝑛− 1⟩

Оператор числа частиц 𝑛̂. Подействуем на второе выражение операто-

ром 𝑎+:

𝑎+𝑎 |𝑛⟩ = √
𝑛𝑎+ |𝑛− 1⟩ = 𝑛 |𝑛⟩ (23)

Оператор 𝑛̂ ≡ 𝑎+𝑎 часто называют оператором числа частиц. Если уравне-

ние (23) помножить слева на вектор ⟨𝑛|, то можно будет понять, что собой

представляет этот оператор в матричном виде:

⟨𝑛| 𝑛̂ |𝑛⟩ = 𝑛

Напомним, что если мы сопоставляем матрицу оператору 𝑛̂, то в левой скобке

стоит номер строки, в правой номер столбца, а все скалярное произведение

задаёт значение матричного элемента на пересечении этих столбца и строки.

Таким образом, мы можем записать матрицу оператора. Заметим, что она
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диагональная:

𝑛̂ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 . . .

⎞
⎟⎟⎟⎠

Построим также матрицы операторов уничтожения и рождения, исходя

из выведенных выше формул (22) ⟨𝑛|𝑎+|𝑛− 1⟩ = √
𝑛, ⟨𝑛− 1|𝑎|𝑛⟩ = √

𝑛:

𝑎̂ =

⎛
⎜⎜⎜⎜⎜⎝

0
√
1 0 0 . . .

0 0
√
2 0 . . .

0 0 0
√
3 . . .

0 0 0 0 . . .

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
, 𝑎̂+ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .√
1 0 0 0 . . .

0
√
2 0 0 . . .

0 0
√
3 0 . . .

0 0 0 . . . . . .

⎞
⎟⎟⎟⎟⎟⎠

2.4.6 Собственные функции уравнения Эрмита

Вернёмся к установленному нами ранее уравнению (20), задающему урав-

нение Эрмита в бракет-нотации:

𝑎+𝑎 |𝑛⟩ = 𝑛 |𝑛⟩

Мы установили, что собственные числа оператора 𝑛̂ = 𝑎+𝑎 целые. Для того,

чтобы ряд собственных функций обрывался и не было отрицательного индек-

са (мы доказали, что это запрещено), необходимо существование наименьше-

го состояния с нулевым индексом. Оно называется вакуумным состоянием:

𝑎 |0⟩ = 0 (24)

Чтобы найти следующее состояние, нужно подействовать оператором рожде-

ния на предыдущее состояние, не забыв про нормировку:

|1⟩ = 𝑎+ |0⟩ · 1√
1
, |2⟩ = 𝑎+ |1⟩ · 1√

2
, . . . |𝑛⟩ = 𝑎+ |𝑛− 1⟩ · 1√

𝑛

Ну и вообще говоря, отсюда очевидным образом следует и общая формула:

|𝑛⟩ = 1√
𝑛!

(︀
𝑎+
)︀𝑛 |0⟩ (25)
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Мы нашли и собственные числа, и собственные функции – все, ни разу ничего

не продифференцировав и не проинтегрировав. Это называется алгебраиче-

ским методом.

Теперь установим соответствие между старым подходом и новым подхо-

дом. Вспомним, как мы ранее вводили операторы рождения и уничтожения,

и проведем операцию обратного перехода от оператора 𝑎 к 𝑝 и 𝜉:

𝜉 =
𝑎+ 𝑎+√

2
, 𝑝 =

𝑎− 𝑎+√
2𝑖

⇒ 𝑎 =
𝜉 + 𝑖𝑝√

2

Учтя, что 𝑝 = −𝑖 𝜕𝜕𝜉 , получим оператор 𝑎 в координатном представлении.

Аналогично получается оператор 𝑎+.

𝑎 =
1√
2

(︂
𝜉 +

𝜕

𝜕𝜉

)︂
, 𝑎+ =

1√
2

(︂
𝜉 − 𝜕

𝜕𝜉

)︂

Теперь можем перейти от braket-записи уравнения вакуумного состояния

(24) к уравнению в координатном представлении

1√
2

(︂
𝜉 +

𝜕

𝜕𝜉

)︂
Ψ0(𝜉) = 0

Тут уже придётся дифференцировать, никуда не деться. Но заметим, что

нам нужно решать уже не уравнение Эрмита 2-го порядка, а гораздо более

простое уравнение первого порядка, которое решается всегда:

𝜉Ψ+
𝜕Ψ

𝜕𝜉
= 0 ⇒ 𝜉 d𝜉 = −dΨ

Ψ
⇒ Ψ0 = 𝐶1 · exp

{︂
−𝜉

2

2

}︂
,

где константа из нормировки получается 𝐶1 = 𝜋−1/4.

Чтобы получить следующую функцию, нужно подействовать на преды-

дущую оператором 𝑎+, и вообще говоря, как мы уже вывели в (25), если

подействовать оператором рождения 𝑛 раз, получим Ψ𝑛:

⟨𝜉|𝑛⟩ = Ψ𝑛(𝜉) =
1

𝜋1/4
√
𝑛! · 2𝑛

{︂
𝜉 − 𝜕

𝜕𝜉

}︂𝑛

exp

{︂
−𝜉

2

2

}︂

Мы получили все собственные функции путём рекуррентного вычисления, и

вообще говоря, вычислили все полиномы Эрмита.

Таким способом решал задачу Гейзенберг, на год раньше Шрёдингера.
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2.5. Вычисление средних

Рассмотрим практический пример вычисления средних значений, пользу-

ясь матричным представлением операторов.

2.5.1 Определение средней координаты

Найдём 𝜉. По определению среднего:

𝜉 = ⟨𝑛|𝜉|𝑛⟩ =
∫︁

Ψ*
𝑛(𝜉) 𝜉Ψ𝑛(𝜉) d𝜉 = 0

Можно значительно упростить задачу, если смотреть среднее значение опе-

ратора в матричном виде. Существенно, что такое среднее составляется как

сумма, каждое из слагаемых которой содержит множитель - соответствую-

щий элемент главной диагонали матрицы оператора. Значит, если на главной

диагонали нули, то среднее ноль. В нашем случае:

𝜉 =
𝑎+ 𝑎+√

2
=

1√
2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

0
√
1 0 0 . . .

0 0
√
2 0 . . .

0 0 0
√
3 . . .

0 0 0 0 . . .

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .√
1 0 0 0 . . .

0
√
2 0 0 . . .

0 0
√
3 0 . . .

0 0 0 . . . . . .

⎞
⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Очевидно, здесь после суммирования матриц на главной диагонали остаются

нули, а значит, среднее 𝜉 = 0.

2.5.2 Определение средней потенциальной энергии

Будем вычислять среднее 𝜉2

2 , пользуясь матричными соображениями. Для

начала, раскроем квадрат 𝜉2

2 , помня о том, что операторы не коммутативны:

𝜉2

2
=

(𝑎+ 𝑎+)2

4
=

1

4

(︀
𝑎𝑎+ 𝑎𝑎+ + 𝑎+𝑎+ 𝑎+𝑎+

)︀

Заметим, что некоторые слагаемые в среднем дадут ноль, так как у них нули

на главной диагонали матрицы. Это 𝑎𝑎 и 𝑎+𝑎+. Рассмотрим на примере 𝑎𝑎:

𝑎𝑎 |𝑛⟩ ∼ |𝑛− 2⟩ ⇒ ⟨𝑛− 2| 𝑎𝑎 |𝑛⟩ ∼ 1
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Другие матричные элементы, кроме на строке 𝑛 − 2 и столбце 𝑛, занулятся

в силу ⟨𝑚|𝑛⟩ = 𝛿𝑚𝑛. Значит, на диагонали действительно нули. Аналогично

с 𝑎+𝑎+. Тогда среднее упрощается:

𝜉2

2
=

1

4
⟨𝑛| 𝑎𝑎+ + 𝑎+𝑎 |𝑛⟩

Воспользуемся коммутационным соотношением (17):

1

2

(︀
𝑎𝑎+ + 𝑎+𝑎

)︀
= 𝑎+𝑎+

1

2
⇒ 1

2
⟨𝑛| 𝑎𝑎+ + 𝑎+𝑎 |𝑛⟩ = ⟨𝑛| 𝑎+𝑎 |𝑛⟩+ 1

2

А так как в силу (23) можем подставить 𝑎+𝑎 |𝑛⟩ = 𝑛 |𝑛⟩, то

𝜉2

2
=

1

2

(︂
⟨𝑛| 𝑎+𝑎 |𝑛⟩+ 1

2

)︂
=

1

2

(︂
𝑛+

1

2

)︂
=
𝜀

2
.
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3. Орбитальный момент

Эмми Нётер установила связь между законами сохранения и с соответ-

ствующими им свойствами какой-либо симметрии. В квантовой механике эта

связь приобретает особенно прозрачный смысл.

3.1. Законы сохранения в квантовой механике

Рассмотрим, как появляется связь закона сохранения и свойства симмет-

рии на примере нестационарного уравнения Шрёдингера:

𝑖ℏΨ̇ = 𝐻̂Ψ (26)

3.1.1 Трансляция времени

Запишем производную волновой функции по определению производной:

Ψ̇ = lim
Δ𝑡→0

Ψ(𝑡+∆𝑡)−Ψ(𝑡)

∆𝑡
=

Ψ(𝑡+ 𝛿𝑡)−Ψ(𝑡)

𝛿𝑡
,

где введено обозначение 𝛿𝑡 – бесконечно малый сдвиг во времени (операция

сдвига во времени называется трансляцией времени).

Так как 𝛿𝑡 мало, можем разложить Ψ(𝑡+ 𝛿𝑡) в ряд Тейлора. А так как 𝛿𝑡

ещё и бесконечно мало, то разложить можем только до первого члена, учтя

в силу (26), что 𝜕Ψ
𝜕𝑡 = 𝐻̂

𝑖ℏΨ(𝑡):

Ψ(𝑡+ 𝛿𝑡) = Ψ(𝑡) + 𝛿𝑡
𝜕Ψ

𝜕𝑡
=

{︂
1 +

𝛿𝑡

𝑖ℏ
𝐻̂

}︂

↑
Оператор бесконечно малого

сдвига во времени 𝐺̂𝛿𝑡

Ψ(𝑡)

Если физическая система инвариантна относительно трансляции времени,

то в ней сохраняется 𝐻̂.

Для дальнейших рассуждений вспомним, как вводится оператор произ-

водной по времени в квантовой механике. Выведем его:

⟨𝐴̇⟩ = ⟨Ψ|𝐴̇|Ψ⟩+
⟨
Ψ̇
⃒⃒
⃒𝐴
⃒⃒
⃒Ψ
⟩
+
⟨
Ψ
⃒⃒
⃒𝐴
⃒⃒
⃒Ψ̇
⟩
= ⟨Ψ|

(︂
𝜕𝐴

𝜕𝑡
+
𝑖

ℏ
(𝐻𝐴− 𝐴𝐻)

)︂
|Ψ⟩
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Отсюда, очевидно, следует

𝐴̇ =
𝜕𝐴

𝜕𝑡
+
𝑖

ℏ
[𝐴,𝐻]

В классической физике сохранение 𝐻 означает, что 𝐻̇ = 0. Соотнесём это

определение с выведенным равенством:

𝐻̇ =
�
�
��S

S
SS

𝜕𝐻

𝜕𝑡
+
𝑖

ℏ
[𝐻,𝐻]

𝐻 не может явным образом зависеть от времени, иначе о сохранении просто

говорить нельзя. Но коммутатор [𝐻,𝐻] очевидно равен нулю, значит, равна

нулю и вся сумма, и мы получили сохранение 𝐻̂.

3.1.2 Трансляция пространства

Мы рассмотрели, как вводится трансляция времени и соответствующий

оператор бесконечно малого сдвига во времени. Согласно теореме Нётер, если

система инвариантна относительно трансляции в пространстве, то сохраня-

ется импульс.

Оператор импульса - это оператор бесконечно малой трансляции коор-

динаты. Разложим волновую функцию в ряд Тейлора в окрестности 𝑥, для

начала в одномерном случае:

Ψ(𝑥+ 𝑎) = Ψ(𝑥) + 𝑎
𝜕Ψ(𝑥)

𝜕𝑥
+ . . .+

𝑎𝑛

𝑛!

𝜕𝑛Ψ

𝜕𝑥𝑛

Или, в операторной форме:

Ψ(𝑥+ 𝑎) =

(︂
1 + 𝑎

𝜕

𝜕𝑥
+ . . .+

𝑎𝑛

𝑛!

𝜕𝑛

𝜕𝑥𝑛

)︂
Ψ(𝑥)

Скобка представляет собой разложение экспоненты в ряд Тейлора. С учетом

этого, получаем

Ψ(𝑥+ 𝑎) = exp

(︂
𝑎
𝜕

𝜕𝑥

)︂
Ψ(𝑥) = exp

(︂
𝑖

ℏ
𝑝𝑎

)︂

↑
Оператор конечного сдвига

в пространстве 𝑇𝑎

Ψ(𝑥)
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Перейдём к рассмотрению бесконечно малого приращения координаты 𝛿𝑎.

Тогда можем ограничиться двумя членами разложения и получить оператор

бесконечно малого сдвига в пространстве, учтя, что 𝑝 = −𝑖ℏ 𝜕
𝜕𝑥 :

Ψ(𝑥+ 𝛿𝑎) =

(︂
1 + 𝛿𝑎

𝜕

𝜕𝑥

)︂
Ψ(𝑥) =

(︂
1 +

𝑖

ℏ
𝛿𝑎 𝑝

)︂

↑
Оператор бесконечно малого

сдвига в пространстве 𝑇𝛿𝑎

Ψ(𝑥)

Для нашего трёхмерного пространства несложно догадаться, какой вид

будет иметь оператор сдвига, по аналогии с одномерным случаем:

Ψ(𝑟⃗ + 𝛿𝑎⃗) = (1 + 𝛿𝑎⃗∇)Ψ(𝑥) =

(︂
1 +

𝑖

ℏ

(︁
𝛿𝑎⃗ , ˆ⃗𝑝

)︁)︂

↑
Оператор бесконечно малого

сдвига в пространстве 𝑇𝛿𝑎⃗

Ψ(𝑥)
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3.1.3 Вращение пространства

Рассмотрим преобразование поворота в пространстве. Как можно в общем

случае описать поворот вектора в трёхмерном пространстве? Прибавить к

нему некоторый бесконечно малый перпендикулярный вектор:

𝑟⃗ ′ = 𝑟⃗ + 𝛿𝑟⃗

Если он будет не перпендикулярен, то появится сдвиг в пространстве, а если

не мал, то это не будет поворотом: при повороте длина (модуль) вектора

должна сохраняться.

x

y

z

~n

φ

θ ~r

δ~r

δ~ϕ

Рис. 16. Преобразование поворота

Если мы введём ось 𝑛⃗ (см. рис. 16), вокруг которой будем осуществлять

вращение вектора 𝑟⃗, то поворот можно описать с помощью нового вектора

𝛿𝜙⃗ = 𝑛⃗ 𝛿𝜙:

𝛿𝑟⃗ = [𝛿𝜙⃗× 𝑟⃗ ]

Займёмся выражением оператора бесконечно малого поворота, разложив
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в ряд волновую функцию повёрнутого аргумента:

Ψ(𝑟⃗ + 𝛿𝑟⃗ ) = Ψ(𝑟⃗ ) + 𝛿𝑟⃗∇Ψ(𝑟⃗ ) = (1 + 𝛿𝑟⃗∇)Ψ(𝑟⃗ ) =

=

{︂
1 +

(︀
[𝛿𝜙⃗× 𝑟⃗ ] · ∇

)︀}︂
Ψ(𝑟⃗ )

Заметим, что в скобках стоит смешанное произведение, для которого выпол-

няется свойство циклической перестановки:

(︁
𝑎⃗,
[︁
𝑏⃗× 𝑐⃗

]︁)︁
=
(︁
𝑐⃗,
[︁
𝑎⃗× 𝑏⃗

]︁)︁
=
(︁
𝑏⃗, [⃗𝑐× 𝑎⃗ ]

)︁

Тогда

Ψ(𝑟⃗ + 𝛿𝑟⃗ ) =

{︂
1 + 𝛿𝜙⃗ ·

[︁
𝑟⃗ × ∇⃗

]︁}︂
Ψ(𝑟⃗ )

Введём по определению оператор момента импульса (орбитального момента):

ˆ⃗
𝐿 = [𝑟⃗ × 𝑝 ] = −𝑖ℏ

[︁
𝑟⃗ × ∇⃗

]︁

Тогда можем снова переписать выражение для поворота:

Ψ(𝑟⃗ + 𝛿𝑟⃗ ) =

{︂
1 +

𝑖

ℏ
𝛿𝜙⃗ · ˆ⃗𝐿

}︂

↑
Оператор бесконечно малого

поворота в пространстве 𝑅̂𝛿𝜙⃗

Ψ(𝑟⃗ ) (27)

3.2. Коммутационные соотношения

Будем измерять момент импульса в единицах ℏ (𝑝 = ℏ𝑘) (вспомним, ℏ —

это квант действия). Вводится безразмерный орбитальный момент 𝑙⃗:

𝐿⃗ = ℏ⃗𝑙

Откуда, учтя что 𝑘⃗ = −𝑖∇, получаем

𝑙⃗ =
[︁
𝑟⃗ × 𝑘⃗

]︁
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Раскроем векторное произведение:

𝑙̂ = [𝑟⃗ × 𝑘⃗ ] = −𝑖

⃒⃒
⃒⃒
⃒⃒
⃒

𝑥⃗0 𝑦⃗0 𝑧⃗0
𝑥 𝑦 𝑧
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

⃒⃒
⃒⃒
⃒⃒
⃒
=

⃒⃒
⃒⃒
⃒⃒
⃒

𝑥⃗0 𝑦⃗0 𝑧⃗0
𝑥 𝑦 𝑧

𝑘𝑥 𝑘𝑦 𝑘𝑧

⃒⃒
⃒⃒
⃒⃒
⃒

Раскроем покоординатно проекции импульса, расписав определитель:

𝑙𝑥 = 𝑦𝑘𝑧 − 𝑧𝑘𝑦

𝑙𝑦 = 𝑧𝑘𝑥 − 𝑥𝑘𝑧

𝑙𝑧 = 𝑥𝑘𝑦 − 𝑦𝑘𝑥

3.2.1 Коммутатор проекций момента импульса

Найдём коммутатор [𝑙𝑥, 𝑙𝑦], учтя, что 𝑦, 𝑥, 𝑘𝑧 коммутируют:

𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥 = (𝑦𝑘𝑧 − 𝑧𝑘𝑦)(𝑧𝑘𝑥 − 𝑥𝑘𝑧)− (𝑧𝑘𝑥 − 𝑥𝑘𝑧)(𝑦𝑘𝑧 − 𝑧𝑘𝑦) = (28)

= 𝑦𝑘𝑧 𝑧𝑘𝑥 −�����𝑦𝑘𝑧 𝑥𝑘𝑧 − 𝑧����𝑘𝑦 𝑧𝑘𝑥 + 𝑧𝑘𝑦 𝑥𝑘𝑧−
−(𝑧𝑘𝑥 𝑦𝑘𝑧 − 𝑧�����𝑘𝑥 · 𝑧𝑘𝑦 −������𝑥𝑘𝑧 · 𝑦𝑘𝑧 + 𝑥𝑘𝑧 𝑧𝑘𝑦) =

= 𝑦𝑘𝑧 𝑧𝑘𝑥 − 𝑥𝑘𝑧 𝑧𝑘𝑦 + 𝑧𝑘𝑦 𝑥𝑘𝑧 − 𝑧𝑘𝑥 𝑦𝑘𝑧

Посмотрим, как действует первое слагаемое на Ψ, учтя что оператор произ-

ведения раскрывается как производная произведения (𝑘𝑧 ∼ 𝜕
𝜕𝑧 ), а 𝑘𝑧𝑧 = −𝑖:

𝑦𝑘𝑧 𝑧𝑘𝑥Ψ = 𝑦 · 𝑘𝑧(𝑧𝑘𝑥Ψ) = 𝑦 · 𝑘𝑧
↓
𝑧 𝑘𝑥Ψ+ 𝑦 · 𝑘𝑧𝑧

↓
(𝑘𝑥Ψ)=

= −𝑖𝑦𝑘𝑥 + 𝑧𝑦 · 𝑘𝑧𝑘𝑥Ψ

Для второго слагаемого можно получить аналогичную формулу заменой в

последней формуле 𝑦 → 𝑥, 𝑥→ 𝑦:

𝑥𝑘𝑧 𝑧𝑘𝑦Ψ = −𝑖𝑥𝑘𝑦 + 𝑧𝑥 · 𝑘𝑧𝑘𝑦Ψ
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Подставим получившийся результат в (28), учтя коммутируемость некоторых

операторов:

(𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥)Ψ = (𝑦𝑘𝑧 𝑧𝑘𝑥 − 𝑥𝑘𝑧 𝑧𝑘𝑦 + 𝑧𝑘𝑦 𝑥𝑘𝑧 − 𝑧𝑘𝑥 𝑦𝑘𝑧)Ψ =

= −𝑖(𝑦𝑘𝑥 − 𝑥𝑘𝑦)Ψ +
hhhhhhh𝑧𝑦 · 𝑘𝑧 𝑘𝑥Ψ−

�������𝑧𝑥 · 𝑘𝑧 𝑘𝑦Ψ+
�������𝑧𝑥 · 𝑘𝑦 𝑘𝑧Ψ−hhhhhhh𝑧𝑦 · 𝑘𝑥 𝑘𝑧Ψ =

= −𝑖(𝑦𝑘𝑥 − 𝑥𝑘𝑦)Ψ

Или, вспомнив что последнее выражение можно переписать через 𝑙𝑧:

𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥 = 𝑖𝑙𝑧

Отсюда циклической перестановкой 𝑥→ 𝑦 → 𝑧 → 𝑥 получим ещё два комму-

тационных соотношения, и в итоге получаем важный результат - операторы

проекций момента импульса между собой не коммутируют:

⎧
⎪⎨
⎪⎩

𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥 = 𝑖𝑙𝑧

𝑙𝑦𝑙𝑧 − 𝑙𝑧𝑙𝑦 = 𝑖𝑙𝑥

𝑙𝑧𝑙𝑥 − 𝑙𝑥𝑙𝑧 = 𝑖𝑙𝑦

(29)

Вспомним, если операторы коммутируют, у них общая система собственных

функций, и операторы в этом базисе диагональны ⇒ величины имеют опре-

делённое значение (одновременно измеримы).

3.2.2 Коммутатор проекции волнового вектора и координаты

Вспомним коммутационное соотношение для проекции импульса и коор-

динаты:

𝑝𝑥𝑥− 𝑥𝑝𝑥 = −𝑖ℏ
Заметим, что так как 𝑘 = −𝑖∇ = 𝑝

ℏ , то

𝑘𝑥𝑥− 𝑥𝑘𝑥 = −𝑖

В силу того, что оператор нельзя переставлять только с тем объектом, на

который он действует, будут выполнятся соотношения вида

𝑘𝑦𝑥− 𝑥𝑘𝑦 = 0
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В данном случае 𝑘𝑦 ∼ 𝜕
𝜕𝑦 , а производная по 𝑦 на 𝑥 не действует. Аналогич-

ные равенства выполнятся и для других сочетаний коммутатора какой-либо

проекции и координаты. Можно записать коммутатор в общем виде через

символ Кронекера:

𝑘𝑖𝑥𝑘 − 𝑥𝑗𝑘𝑖 = −𝑖𝛿𝑖𝑗, 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧

3.2.3 Коммутатор квадрата момента импульса и его проекции

Введём оператор квадрата момента импульса:

𝑙2 = 𝑙2𝑥 + 𝑙2𝑦 + 𝑙2𝑧

Займёмся поиском коммутатора [𝑙2, 𝑙𝑧]. Заметим, что [𝑙2𝑧, 𝑙𝑧], очевидно, ра-

вен нулю, и тогда:

[𝑙2, 𝑙𝑧] = (𝑙2𝑥 + 𝑙2𝑦 + �
�A
A𝑙
2
𝑧)𝑙𝑧 − 𝑙𝑧(𝑙

2
𝑥 + 𝑙2𝑦 + �

�A
A𝑙
2
𝑧) = 𝑙2𝑥𝑙𝑧 − 𝑙𝑧𝑙

2
𝑥 + 𝑙2𝑦𝑙𝑧 − 𝑙𝑧𝑙

2
𝑦 (30)

Для вычисления [𝑙2𝑥, 𝑙𝑧] нужно пользоваться алгеброй, которая задаётся

коммутационными соотношениями (29).

Для этого проделаем некоторые арифметические действия для приведе-

ния к виду, содержащем в явном виде уже известные коммутационные соот-

ношения:

𝑙2𝑥𝑙𝑧 − 𝑙𝑧𝑙
2
𝑥 = 𝑙𝑥𝑙𝑥𝑙𝑧

Добавили и вычли⏞  ⏟  
−𝑙𝑥𝑙𝑧𝑙𝑥 + 𝑙𝑥𝑙𝑧𝑙𝑥−𝑙𝑧𝑙2𝑥 = (31)

= 𝑙𝑥(𝑙𝑥𝑙𝑧 − 𝑙𝑧𝑙𝑥) + 𝑙𝑥𝑙𝑧𝑙𝑥 − 𝑙𝑧𝑙
2
𝑥 =

= 𝑙𝑥 (𝑙𝑥𝑙𝑧 − 𝑙𝑧𝑙𝑥)⏟  ⏞  
−𝑖𝑙𝑦

+(𝑙𝑥𝑙𝑧 − 𝑙𝑧𝑙𝑥)⏟  ⏞  
−𝑖𝑙𝑦

𝑙𝑥 = −𝑖(𝑙𝑥𝑙𝑦 + 𝑙𝑦𝑙𝑥)

Аналогично можно получить коммутатор [𝑙2𝑦, 𝑙𝑧]:

𝑙2𝑦𝑙𝑧 − 𝑙𝑧𝑙
2
𝑦 = 𝑙𝑦 (𝑙𝑦𝑙𝑧 − 𝑙𝑧𝑙𝑦)⏟  ⏞  

𝑖𝑙𝑥

+ 𝑙𝑦𝑙𝑧𝑙𝑦 − 𝑙𝑧𝑙
2
𝑦⏟  ⏞  

(𝑙𝑦𝑙𝑧−𝑙𝑧𝑙𝑦)𝑙𝑦=𝑖𝑙𝑥𝑙𝑦

= 𝑖(𝑙𝑦𝑙𝑥 + 𝑙𝑥𝑙𝑦) (32)

Сложив уравнения (31) и (32), получим правую часть уравнения для комму-
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татора [𝑙2, 𝑙𝑧] (30):

[𝑙2, 𝑙𝑧] = 𝑙2𝑥𝑙𝑧 − 𝑙𝑧𝑙
2
𝑥 + 𝑙2𝑦𝑙𝑧 − 𝑙𝑧𝑙

2
𝑦 = −𝑖(𝑙𝑥𝑙𝑦 + 𝑙𝑦𝑙𝑥) + 𝑖(𝑙𝑦𝑙𝑥 + 𝑙𝑥𝑙𝑦) = 0

Получили важный результат2: любая проекция момента импульса и оператор

квадрата момента коммутируют, а значит, имеют общую систему функций.

3.2.4 Понижающий и повышающий операторы орбитального мо-

мента

Когда мы решали задачу о гармоническом осцилляторе, нам было удоб-

но ввести операторы рождения и уничтожения3. Аналогично можно ввести

повышающие и понижающие операторы. Тогда, вместо операторов 𝑙𝑥 и 𝑙𝑦
мы получим новые операторы 𝑙±. Часто вводят понижающий и повышающий

операторы момента импульса:

𝑙± = 𝑙𝑥 ± 𝑖𝑙𝑦

Повышающий и понижающий операторы не эрмитовы (так как в них вхо-

дит мнимая единица):

𝑙++ = 𝑙−, 𝑙+− = 𝑙+ (33)

Напомним, что оператор называется эрмитовым, когда выполняется следую-

щее соотношение: 𝑙+𝑥 = 𝑙*𝑇𝑥 = 𝑙𝑥.

Замечание. Это напоминает нам поляризацию в общей физике (рис. 17):

Линейная поляризация записывается через вектора в одной фазе:

2Тот же результат можно получить другим, более простым способом. Чтобы не повторяться, попробуем
вычислить коммутатор [𝑙𝑥, 𝑙

2]:

𝑙𝑥𝑙
2 − 𝑙2𝑙𝑥 = 𝑙𝑥𝑙

2
𝑦 + 𝑙𝑥𝑙

2
𝑧 +�

�Z
Z𝑙𝑥𝑙
2
𝑥 − 𝑙2𝑦𝑙𝑥 − 𝑙2𝑧𝑙𝑥 −�

�Z
Z𝑙

2
𝑥𝑙𝑥

Подействовав на уравнение (28) оператором 𝑙𝑦 справа и слева, получим систему уравнений и сложим её:

{︃
𝑙𝑥𝑙

2
𝑦 − 𝑙𝑦𝑙𝑥𝑙𝑦 = 𝑖𝑙𝑧𝑙𝑦

𝑙𝑦𝑙𝑥𝑙𝑦 − 𝑙2𝑦𝑙𝑥 = 𝑖𝑙𝑦𝑙𝑧
⇒ 𝑙𝑥𝑙

2
𝑦 − 𝑙2𝑦𝑙𝑥 = 𝑖(𝑙𝑧𝑙𝑦 + 𝑙𝑦𝑙𝑧)

Аналогичным способом, действуя на нужное уравнение слева и справа (но не циклической перестановкой!),
получается уравнение:

𝑙𝑥𝑙
2
𝑧 − 𝑙2𝑧𝑙𝑧 = −𝑖(𝑙𝑦𝑙𝑧 + 𝑙𝑧𝑙𝑦)

Но подставив два последних полученных выражения в выражение для коммутатора, получим, что ком-
мутатор равен нулю.

3Заметим, что они были не эрмитовы
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Ex
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Рис. 17. Круговая поляризация: вектор вращается

𝑥⃗0 cos𝜔𝑡+ 𝑦⃗0 cos𝜔𝑡

Рассмотрим теперь круговую поляризацию. Круговой называют поляриза-

цию, в которой вектор напряжённости с течением времени поворачивается

на плоскости (𝑥, 𝑦), не изменяя своей длины. Параметрически окружность

задаётся так: {︃
𝑥 = cos 𝜃

𝑦 = sin 𝜃

В случае комплексных переменных, мы можем записать окружность как:

𝑧 = 𝑥+ 𝑖𝑦 = cos 𝜃 + 𝑖 sin 𝜃 = 𝑒𝑖𝜃

Тогда мы можем круговую поляризацию записать так:

𝐸⃗ = Re{(𝑥⃗0 ± 𝑖𝑦⃗0)𝑒
𝑖𝜔𝑡}

Комплексное сопряжение поменяет направление вращения вектора 𝐸⃗ и даст

левую круговую поляризацию. Собственно, это и есть аналогия c (33).

Теперь рассмотрим следующие коммутационные соотношения:

[𝑙𝑧, 𝑙±], [𝑙+, 𝑙−].
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Вычислим первый коммутатор (при вычислении использовались соотно-

шения (29)).

[𝑙𝑧, 𝑙+] = 𝑙𝑧(𝑙𝑥 + 𝑖𝑙𝑦)− (𝑙𝑥 + 𝑖𝑙𝑦)𝑙𝑧 = 𝑙𝑧𝑙𝑥 − 𝑙𝑥𝑙𝑧⏟  ⏞  
𝑖𝑙𝑦

+𝑖 (𝑙𝑧𝑙𝑦 − 𝑙𝑦𝑙𝑧)⏟  ⏞  
−𝑖𝑙𝑥

=

= 𝑖𝑙𝑦 + 𝑖(−𝑖𝑙𝑥) = 𝑙𝑥 + 𝑖𝑙𝑦 = 𝑙+

Аналогично получается формула для 𝑙−, и тогда

[𝑙𝑧, 𝑙±] = ±𝑙± (34)

Вычислим второй коммутатор:

[𝑙+, 𝑙−] = (𝑙𝑥 + 𝑖𝑙𝑦)(𝑙𝑥 − 𝑖𝑙𝑦)− (𝑙𝑥 − 𝑖𝑙𝑦)(𝑙𝑥 + 𝑖𝑙𝑦) = (35){︀
можно сразу заметить, что все слагаемые с 𝑙2𝑥, 𝑙

2
𝑦 сокращаются

}︀

= 𝑖𝑙𝑦𝑙𝑥 − 𝑖𝑙𝑥𝑙𝑦 − (𝑖𝑙𝑥𝑙𝑦 − 𝑖𝑙𝑦𝑙𝑥) =

= 𝑖(𝑙𝑦𝑙𝑥 − 𝑙𝑥𝑙𝑦)− 𝑖(𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥) = 𝑖(−𝑖𝑙𝑧)− 𝑖(𝑖𝑙𝑧) = 2𝑙𝑧

Теперь нам нужно через новые операторы выразить 𝑙2 = 𝑙2𝑥 + 𝑙2𝑦 + 𝑙2𝑧 .

𝑙2 = 𝑙2𝑥 + 𝑙2𝑦 + 𝑙2𝑧 =
(𝑙+ + 𝑙−)(𝑙+ + 𝑙−)

4
− (𝑙+ − 𝑙−)(𝑙+ − 𝑙−)

4
+ 𝑙2𝑧

Все квадраты сократятся, поскольку операторы сами с собой коммутируют,

а смешанные слагаемые удвоятся:

𝑙2 =
𝑙−𝑙+ + 𝑙+𝑙−

4
+
𝑙+𝑙− + 𝑙−𝑙+

4
+ 𝑙2𝑧 =

𝑙+𝑙− + 𝑙−𝑙+
2

+ 𝑙2𝑧

Воспользуемся коммутационным соотношением (35):

𝑙+𝑙− − 𝑙−𝑙+ = 2𝑙𝑧 ⇒

𝑙2 =
2𝑙−𝑙+ + 2𝑙𝑧

2
+ 𝑙2𝑧 = 𝑙−𝑙+ + 𝑙2𝑧 + 𝑙𝑧 = 𝑙+𝑙− + 𝑙2𝑧 − 𝑙𝑧 (36)
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3.3. Собственные функции и числа оператора орбиталь-

ного момента

Будем искать решения аналогично тому, как мы это делали для гармони-

ческого осциллятора. Будем искать собственные векторы оператора 𝑙𝑧
4.

В обозначениях Дирака это запишется так:

𝑙̂𝑧 |𝛼𝑙𝑧 , 𝛼𝑙2⟩ = 𝛼𝑙𝑧 |𝛼𝑙𝑧 , 𝛼𝑙2⟩

𝑙̂2 |𝛼𝑙𝑧 , 𝛼𝑙2⟩ = 𝛼𝑙2 |𝛼𝑙𝑧 , 𝛼𝑙2⟩
Оператор 𝑙𝑧 и 𝑙2 коммутируют, значит, у них общая система собствен-

ных функций. Два собственных числа обозначают, что собственный вектор

нумеруется двумя числами. Поясним это на примере двух произвольных опе-

раторов с общей системой функций:

𝐴Ψ𝑛 = 𝑎𝑛Ψ𝑛, 𝐵Ψ𝑛 = 𝑏𝑛Ψ𝑛

Ψ𝑛 собственная функция для операторов 𝐴 и 𝐵, поэтому её можно нуме-

ровать одним индексом 𝑛, но иногда нумеруют двумя индексами Ψ𝑎𝑛,𝑏𝑛, по-

скольку она удовлетворяет обоим уравнениям.

Физический смысл оператора 𝑙𝑧 - поворот вокруг оси 𝑧, то есть измене-

ние угла 𝜙. Поставим перед собой задачу записать 𝑙𝑧 в сферической системе

координат. Для этого найдём вид оператора бесконечно малого поворота:

𝑓(𝜃, 𝜙+ 𝛿𝜙) = 𝑓(𝜙) + 𝛿𝜙
𝜕𝑓

𝜕𝜙
=

(︂
1 + 𝛿𝜙

𝜕

𝜕𝜙

)︂
𝑓(𝜙) =

⎛
⎜⎜⎜⎜⎝
1 + 𝑖 𝛿𝜙

1

𝑖

𝜕

𝜕𝜙⏟  ⏞  
𝑅̂𝛿𝜙=𝑙𝑧

⎞
⎟⎟⎟⎟⎠
𝑓(𝜙)

Тогда в сферической системе координат (сравним с (27))

𝑙𝑧 = −𝑖 𝜕
𝜕𝜙

4Оператор, действуя на свой собственный вектор, умножает его на число
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Найдём собственные функции Ψ(𝜙) оператора 𝑙𝑧 в 𝜙–представлении:

−𝑖 𝜕
𝜕𝜙

Ψ(𝜙) = 𝛼𝑙𝑧Ψ(𝜙) (37)

Решая дифференциальное уравнение (37), получим решение с точностью до

константы 𝑓(𝑟, 𝜃), не зависящей от 𝜙:

Ψ(𝜙) = 𝑓(𝑟, 𝜃) exp{𝑖𝛼𝑙𝑧𝜙}, Ψ(𝜙) = Ψ(𝜙+ 2𝜋)

Целость собственных чисел оператора 𝑙𝑧. Из решения следует, что

собственные числа оператора 𝑙𝑧 должны быть целым числом, иначе поворот

на полный угол (2𝜋) не переведёт функцию обратно.

𝛼𝑙𝑧 = 𝑚, 𝑚 = 0,±1,±2, . . .

𝑚 – собственное число оператора 𝑙𝑧. Его также называют магнитным кван-

товым числом. Далее мы всюду будем писать, вместо 𝛼𝑙𝑧 , число 𝑚:

𝑙2 |𝑚,𝛼𝑙2⟩ = 𝛼𝑙2 |𝑚,𝛼𝑙2⟩

Нормировка собственных функций 𝑙𝑧. Тривиальное интегрирование

даёт предэкспоненциальный множитель:

Ψ𝑚 =
1√
2𝜋

exp{𝑖𝑚𝜙}

Смысл операторов повышения и понижения. Для поиска смысла по-

действуем оператором повышения на уравнение для собственных функций и

чисел 𝑙𝑧:

𝑙+ ·
⃒⃒
⃒⃒ 𝑙𝑧 |𝑚,𝛼𝑙2⟩ = 𝑚 |𝑚,𝛼𝑙2⟩ ⇒ 𝑙+𝑙𝑧 |𝑚,𝛼𝑙2⟩ = 𝑚𝑙+ |𝑚,𝛼𝑙2⟩

Заменим в левой части оператор, воспользовавшись коммутационными соот-

ношениями (34):

𝑙𝑧𝑙+ − 𝑙+𝑙𝑧 = 𝑙+ ⇒ 𝑙+𝑙𝑧 = 𝑙𝑧𝑙+ − 𝑙+
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𝑙𝑧𝑙+ |𝑚,𝛼𝑙2⟩ − 𝑙+ |𝑚,𝛼𝑙2⟩ = 𝑚𝑙+ |𝑚,𝛼𝑙2⟩
𝑙𝑧𝑙+ |𝑚,𝛼𝑙2⟩ = (𝑚+ 1)𝑙+ |𝑚,𝛼𝑙2⟩

Это означает, что 𝑙+ |𝑚,𝛼𝑙2⟩ является собственной функцией оператора 𝑙𝑧,

соответствующей собственному числу 𝑚+ 1:

𝑙+ |𝑚,𝛼𝑙2⟩ ∼ |𝑚+ 1, 𝛼𝑙2⟩

Легко догадаться, что

𝑙− |𝑚,𝛼𝑙2⟩ ∼ |𝑚− 1, 𝛼𝑙2⟩

Ограниченность собственных чисел оператора 𝑙𝑧. Рассмотрим опера-

тор 𝑙2. Собственные числа оператора 𝑙𝑧, как мы выяснили, целые. Оказывает-

ся, они также будут ограниченными вследствие того, что проекция не может

быть больше, чем полный вектор. Докажем этот факт. Очевидно, что

𝑙2 − 𝑙2𝑧 = 𝑙2𝑥 + 𝑙2𝑦

Оператор справа положительно определённый. Вообще говоря, будучи со-

ставленным из эрмитовых операторов, он имеет действительные собственные

числа, а их сумма квадратов – положительно определённая. Для не эрми-

товых было бы не так. Но в нашем случае все хорошо, и любое скалярное

произведение будет положительно:

⟨Ψ| 𝑙2𝑥 + 𝑙2𝑦 |Ψ⟩ ≥ 0

Так как операторы слева и справа равны, значит, слева тоже положительно

определённый оператор, и тогда собственные числа 𝑙𝑧 будут ограничены.

Обозначим максимальное возможное𝑚max как 𝑙. Тогда минимальное𝑚min =

−𝑙. Всего получается 2𝑙 + 1 значений. Тогда чему равно 𝑙+ |𝑙, 𝛼𝑙2⟩? Должно
быть равно нулю:

𝑙+ |𝑙, 𝛼𝑙2⟩ = 0, 𝑙− |−𝑙, 𝛼𝑙2⟩ = 0

Если бы это было не так, то нарушилось бы условие ограниченности 𝑚.
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Собственные числа оператора 𝑙2. Подействуем оператором 𝑙2 на соб-

ственный вектор и воспользуемся коммутационным соотношением (36):

𝑙2 |𝑙, 𝛼𝑙2⟩ =
(︀
𝑙−𝑙+ + 𝑙2𝑧 + 𝑙𝑧

)︀
|𝑙, 𝛼𝑙2⟩ = 𝑙𝑧(𝑙𝑧 + 1) |𝑙, 𝛼𝑙2⟩

Так как ранее мы выяснили, что собственные значения 𝑙𝑧 – числа 𝑚:

{︃
𝑙2𝑧 |𝑙, 𝛼𝑙2⟩ = 𝑙2 |𝑙, 𝛼𝑙2⟩
𝑙𝑧 |𝑙, 𝛼𝑙2⟩ = 𝑙 |𝑙, 𝛼𝑙2⟩

то ⇒ 𝛼𝑙2 = 𝑙(𝑙 + 1)

Итак, мы нашли собственные числа оператора 𝑙2: 𝛼𝑙2 = 𝑙(𝑙+1). Собствен-

ная функция нумеруется теперь двумя числами, 𝑚 и 𝑙:

𝑙𝑧 |𝑙,𝑚⟩ = 𝑚 |𝑙,𝑚⟩ (38)

𝑙2 |𝑙,𝑚⟩ = 𝑙(𝑙 + 1) |𝑙,𝑚⟩ (39)

3.4. Матричное представление операторов момента

3.4.1 Матричные элементы операторов 𝑙±

Займёмся поиском матричных элементов операторов 𝑙±. Для этого нужно

выразить оператор 𝑙2 через 𝑙𝑧 и 𝑙± (36) и подставить в формулу с собствен-

ными числами оператора 𝑙2 (39):

(𝑙+𝑙− + 𝑙2𝑧 − 𝑙𝑧) |𝑙,𝑚⟩ = 𝑙(𝑙 + 1) |𝑙,𝑚⟩

Теперь можно домножить уравнение на скобку ⟨𝑙,𝑚|:

⟨𝑙,𝑚| 𝑙+𝑙− + 𝑙2𝑧 − 𝑙𝑧 |𝑙,𝑚⟩ = ⟨𝑙,𝑚| 𝑙2 |𝑙,𝑚⟩ = ⟨𝑙,𝑚| 𝑙(𝑙 + 1) |𝑙,𝑚⟩

Предполагая, что волновая функция нормирована ⟨𝑙,𝑚|𝑙,𝑚⟩ = 1, можно

упростить правую часть уравнения. В левой части уравнения можно рас-

крыть сумму, и тогда уравнение перепишется в следующем виде:

⟨𝑙,𝑚| 𝑙+𝑙− |𝑙,𝑚⟩+ ⟨𝑙,𝑚| 𝑙2𝑧 |𝑙,𝑚⟩ − ⟨𝑙,𝑚| 𝑙𝑧 |𝑙,𝑚⟩ = 𝑙(𝑙 + 1)
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Окончательно уравнение станет содержать только операторы 𝑙±, если под-

ставить собственные числа операторов 𝑙𝑧 и 𝑙
2
𝑧 (38):

⟨𝑙,𝑚| 𝑙+𝑙− |𝑙,𝑚⟩ = 𝑙(𝑙+1)−𝑚2+𝑚 = 𝑙2−𝑚2+(𝑙+𝑚) = (𝑙+𝑚)(𝑙−𝑚+1)

В разделе 2.4.4 мы показывали, что можно разделить скалярное произве-

дение на два сомножителя, а значит, можно и вставить между ними единич-

ный оператор:

⟨𝑙,𝑚| 𝑙+𝑙− |𝑙,𝑚⟩ = (⟨𝑙,𝑚| 𝑙+) · (𝑙− |𝑙,𝑚⟩) = (⟨𝑙,𝑚| 𝑙+) · 1̂ · (𝑙− |𝑙,𝑚⟩) =
= ⟨𝑙,𝑚| 𝑙+ ·

∑︁

𝑘

|𝑙, 𝑘⟩⟨𝑙, 𝑘| · 𝑙− |𝑙,𝑚⟩ =
∑︁

𝑘

⟨𝑙,𝑚| 𝑙+ |𝑙, 𝑘⟩ ⟨𝑙, 𝑘| 𝑙− |𝑙,𝑚⟩

Воспользуемся повышающим и понижающим свойством операторов 𝑙±:

∑︁

𝑘

⟨𝑙,𝑚| 𝑙+ |𝑙, 𝑘⟩ ⟨𝑙, 𝑘| 𝑙− |𝑙,𝑚⟩ ∼
∑︁

𝑘

⟨𝑙,𝑚|𝑙, 𝑘 + 1⟩ ⟨𝑙, 𝑘|𝑙,𝑚− 1⟩ ∼

∼
∑︁

𝑘

𝛿𝑚,𝑘+1 · 𝛿𝑘,𝑚−1

Отсюда мы получаем, что ненулевой вклад в сумму даст только слагаемое с

𝑘 = 𝑚− 1, и тогда сумма вырождается в произведение двух скобок

∑︁

𝑘

⟨𝑙,𝑚| 𝑙+ |𝑙, 𝑘⟩ ⟨𝑙, 𝑘| 𝑙− |𝑙,𝑚⟩ = ⟨𝑙,𝑚| 𝑙+ |𝑙,𝑚− 1⟩ ⟨𝑙,𝑚− 1| 𝑙− |𝑙,𝑚⟩

Операторы повышения и понижения образуют эрмитово сопряжённую пару

𝑙+− = 𝑙+, 𝑙++ = 𝑙−,

и вследствие этого матричные элементы ⟨𝑙,𝑚| 𝑙+ |𝑙,𝑚− 1⟩ и ⟨𝑙,𝑚− 1| 𝑙− |𝑙,𝑚⟩
— тоже эрмитово сопряжённые, а так как это числа, то они просто сопряжён-

ные, и тогда их произведение есть модуль:

⟨𝑙,𝑚| 𝑙+𝑙− |𝑙,𝑚⟩ =
= |⟨𝑙,𝑚| 𝑙+ |𝑙,𝑚− 1⟩|2 = |⟨𝑙,𝑚− 1| 𝑙− |𝑙,𝑚⟩|2 = (𝑙 +𝑚)(𝑙 −𝑚+ 1)

Чтобы найти матричный элемент, нужно извлечь корень из обоих частей

уравнения. При этом, вообще говоря, число под корнем в общем случае ком-
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плексное: но обычно фазу матричного элемента выбирают равной нулю, по-

этому извлечение корня упрощается:

⟨𝑙,𝑚| 𝑙+ |𝑙,𝑚− 1⟩ =
√︀

(𝑙 +𝑚)(𝑙 −𝑚+ 1) = ⟨𝑙,𝑚− 1| 𝑙− |𝑙,𝑚⟩

Итак, мы получили матричные элементы операторов повышения и пони-

жения. Теперь можно задаться вопросом, как будут выглядеть и сами мат-

рицы операторов 𝑙±.

3.4.2 Составление матриц из матричных элементов

Этот раздел возник из-за впадения аудитории в ступор перед матричны-

ми элементами. Мы хотим получить матрицы всех операторов, которые мы

использовали, при 𝑙 = 1.

𝑙 это максимальное значение 𝑚, а 𝑚 пробегает значения −𝑙 < 𝑚 < +𝑙 —

всего 2𝑙 + 1 значений. В случае 𝑙 = 0 матрицей оператора является матрица

1× 1, то есть число.

Матрица оператора 𝑙2 в случае 𝑙 = 1:

𝑙2 |𝑙,𝑚⟩ = 𝑙(𝑙 + 1) |𝑙,𝑚⟩
⟨𝑙,𝑚| 𝑙2 |𝑙,𝑚⟩ = 𝑙(𝑙 + 1)

}︃
⇔ 𝑙̂ 2 = 2 ·

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠

Как выглядит вектор |𝑙,𝑚⟩ в своём собственном представлении? Нужно

разложить его по базису, определяемому формулой

𝑙𝑧 |𝑙,𝑚⟩ = 𝑚 |𝑙,𝑚⟩

Домножим на скобку ⟨𝑙′,𝑚′|:

⟨𝑙′,𝑚′| 𝑙𝑧 |𝑙,𝑚⟩ = 𝑚𝛿𝑙𝑙′𝛿𝑚𝑚′

Это означает, что на диагонали стоит 𝑚. Матрица оператора в своём

собственном представлении диагональна.
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𝑙̂𝑧 =

⎛
⎜⎝

𝑚=1 𝑚=0 𝑚=−1

𝑚′=1 1 0 0

𝑚′=−0 0 0 0

𝑚′=−1 0 0 −1

⎞
⎟⎠

Теперь, коль скоро мы нашли матрицу оператора, можем найти и её соб-

ственные вектора |1,𝑚⟩. Это задача на собственные вектора и собственные

значения из линейной алгебры:

⎛
⎜⎝
1− 𝜆 0 0

0 −𝜆 0

0 0 −1− 𝜆

⎞
⎟⎠ ·

⎛
⎜⎝
𝑐1
𝑐2
𝑐3

⎞
⎟⎠ = 0

Чтобы это произведение было равно нулю, нужно чтобы детерминант левой

матрицы был равен нулю. А он равен нулю при трех значениях 𝜆: 𝜆1 = 1, 𝜆2 =

0, 𝜆3 = −1. Подставляя по очереди эти три значения, получим собственные

вектора:

|1, 1⟩ =

⎛
⎜⎝

1

0

0

⎞
⎟⎠, |1, 0⟩ =

⎛
⎜⎝

0

1

0

⎞
⎟⎠, |1,−1⟩ =

⎛
⎜⎝

0

0

1

⎞
⎟⎠

Или в общем виде

|1,𝑚⟩ =

⎛
⎜⎝
𝛿𝑚,1

𝛿𝑚,0

𝛿𝑚,−1

⎞
⎟⎠

3.4.3 Матрицы операторов 𝑙±, 𝑙𝑥, 𝑙𝑦

Освежив знания по составлению матриц, мы можем составить матрицу

для оператора 𝑙−:

⟨𝑙,𝑚− 1| 𝑙− |𝑙,𝑚⟩ =
√︀

(𝑙 +𝑚)(𝑙 −𝑚+ 1)

Здесь 𝑚′ = 𝑚− 1, значит, числа стоят на нижней побочной диагонали(чтобы

получить нужные матричные элементы, нужно положить 𝑚 = 1, 0,−1 и под-

ставить их в левую и правую скобку. Тогда число слева будет номером строки,
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а число справа - номером столбца):

𝑙− =

⎛
⎜⎝

0 0 0√
2 0 0

0
√
2 0

⎞
⎟⎠

Для 𝑙+ аналогично:

𝑙+ =

⎛
⎜⎝
0

√
2 0

0 0
√
2

0 0 0

⎞
⎟⎠

Можно проверить, что эти операторы действительно повышают или по-

нижают число 𝑚. Подействуем на собственный вектор |1,−1⟩ оператором 𝑙+:
⎛
⎜⎝
0

√
2 0

0 0
√
2

0 0 0

⎞
⎟⎠ ·

⎛
⎜⎝
0

0

1

⎞
⎟⎠ =

⎛
⎜⎝

0√
2

0

⎞
⎟⎠ =

√
2

⎛
⎜⎝
0

1

0

⎞
⎟⎠

Т.е. вектор |1,−1⟩ превратился в |1, 0⟩. Действуем этим же оператором теперь

на |1, 0⟩: ⎛
⎜⎝
0

√
2 0

0 0
√
2

0 0 0

⎞
⎟⎠ ·

⎛
⎜⎝
0

1

0

⎞
⎟⎠ =

⎛
⎜⎝

√
2

0

0

⎞
⎟⎠ =

√
2

⎛
⎜⎝
1

0

0

⎞
⎟⎠

А если еще раз подействовать, получится ноль, как нас и учили.

Теперь можем получить и матрицы операторов 𝑙𝑥,𝑦, выразив их через опе-

раторы повышения и понижения, для которых матрицы уже найдены:

𝑙𝑥 =
1

2
(𝑙− + 𝑙+) =

1

2

⎛
⎜⎝

0
√
2 0√

2 0
√
2

0
√
2 0

⎞
⎟⎠

𝑙𝑦 =
1

2𝑖
(𝑙+ − 𝑙−) =

1

2𝑖

⎛
⎜⎝

0
√
2 0

−
√
2 0

√
2

0 −
√
2 0

⎞
⎟⎠ =

1√
2

⎛
⎜⎝
0 −𝑖 0

𝑖 0 −𝑖
0 𝑖 0

⎞
⎟⎠
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3.5. Собственные функции операторов момента в 𝜃 и 𝜙

представлениях

Займёмся поиском выражений операторов бесконечно малых поворотов

через углы. Ранее мы получили формулу для оператора бесконечно малого

поворота вокруг оси 𝑧:

𝑙𝑧 = −𝑖 𝜕
𝜕𝜙

Напомним, что выражение для бесконечно малого поворота вокруг оси 𝑧 было

получено через разложение в ряд Тейлора:

𝑓(𝜃, 𝜙+ 𝛿𝜙) = 𝑓(𝜙) + 𝛿𝜙
𝜕𝑓

𝜕𝜙
=

(︂
1 + 𝛿𝜙

𝜕

𝜕𝜙

)︂
𝑓(𝜙) =

⎛
⎜⎜⎜⎜⎝
1 + 𝑖𝛿𝜙

1

𝑖

𝜕

𝜕𝜙⏟ ⏞ 
𝑅̂𝛿𝜙=𝑙𝑧

⎞
⎟⎟⎟⎟⎠
𝑓(𝜙)

Воспользуемся полученным выражением для поиска остальных.

Аналитический способ. По определению 𝑙⃗:

𝑙⃗ =
[︁
𝑟⃗ × 𝑘⃗

]︁
= −𝑖

[︁
𝑟⃗ × ∇⃗

]︁
⇒ 𝑙𝑥 = −𝑖

(︂
𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦

)︂

Затем нужно выразить все через сферические координаты:

𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = 𝑟 cos 𝜃

Оператор дифференцирования расписать как дифференцирование сложной

функции:
𝜕

𝜕𝑥
=

𝜕

𝜕𝑟
· 𝜕𝑟
𝜕𝑥

+
𝜕

𝜕𝜃
· 𝜕𝜃
𝜕𝑥

+
𝜕

𝜕𝜙
· 𝜕𝜙
𝜕𝑥

Все производные, которые придется считать, содержатся в якобиане:

⎛
⎜⎝

𝜕𝑟
𝜕𝑥

𝜕𝜃
𝜕𝑥

𝜕𝜙
𝜕𝑥

𝜕𝑟
𝜕𝑦 . . . . . .
𝜕𝑟
𝜕𝑧 . . . . . .

⎞
⎟⎠

Чтобы посчитать компоненты якобиана, нужно разрешить систему отно-
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сительно 𝑟, 𝜙, 𝜃:

𝑟 =
√︀
𝑥2 + 𝑦2 + 𝑧2, 𝑟⊥ =

√︀
𝑥2 + 𝑦2, cos 𝜃 =

𝑧

𝑟
, cos𝜙 =

𝑥

𝑟⊥

Этот способ включает в себя много громоздких вычислений (нужно будет

сосчитать девять частных производных), в которых сложно не ошибиться,

поэтому будет рассмотрен второй способ, который с математической точки

зрения проще.

Геометрический способ. Введём тройку векторов – орты (𝑟⃗0, 𝜃0, 𝜙⃗0):

x
y

z

~r

~r⊥ϕ

θ

~ϕ0

~θ0

~r0

Рис. 18. Сферическая система координат

Введём новую систему координат (рис. 19), повёрнутую относительно ла-

бораторной (рис. 18) таким образом, чтобы ось 𝑧 осталась на месте, а ось 𝑦′

была сонаправлена перпендикулярной составляющей вектора 𝑟⃗: {𝑦′} ‖ 𝑟⃗⊥.
Чем хороша новая ось 𝑥′? При вращении вокруг неё изменяется только

угол 𝜃. В старых осях у нас такое уже было: при вращении вокруг 𝑧 менялся

только угол 𝜙. Значит, выражение для 𝑙𝑥′ должно быть таким же по виду,

как и 𝑙𝑧, но есть разница в знаке.

Для оси 𝑧 угол 𝜙 растёт по правилу правого винта: если правый винт

крутить так же, как и 𝜙, то он будет двигаться в направлении +𝑧. Для оси

же 𝑥′ вращение угла 𝜃 левое, значит, по сравнению с 𝑙𝑧 у 𝑙𝑥′ поменяется знак.
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x

y

~r⊥

x′ y′ϕ

δϕ

δ~r

Рис. 19. Новая система координат

Так, не привлекая никакого дифференцирования, мы нашли в новых осях

оператор 𝑙𝑥′:

𝑙𝑥′ = 𝑖
𝜕

𝜕𝜃

z

~r‖ δ~r

x′
⊙
y′

ϕ′

Рис. 20. Новый угол вращения вокруг оси 𝑦′

Оператор 𝑙𝑦′. Поворот вектора 𝑟⃗ осуществляется добавлением бесконечно

малого перпендикулярного вектора 𝛿𝑟⃗. Из рисунка 19 видно, что модуль этого

вектора можно выразить через 𝛿𝜙 и 𝑟⊥ = 𝑟 sin 𝜃:

sin 𝛿𝜙 = 𝛿𝜙 =
𝛿𝑟

𝑟⊥
⇒ 𝛿𝑟 = 𝑟 sin 𝜃𝛿𝜙 (40)

С другой стороны, если мы теперь будем смотреть на этот же поворот со

стороны оси 𝑦′ (рис. 20), можно ввести бесконечно малый угол поворота 𝛿𝜙′
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вокруг оси 𝑦′, и для него аналогично записывается связь через 𝛿𝑟 и 𝑟‖:

sin 𝛿𝜙′ = 𝛿𝜙′ =
𝛿𝑟

𝑟‖
⇒ 𝛿𝑟 = 𝑟 cos 𝜃𝛿𝜙′ (41)

Объединяя уравнения (40) и (41), получим

𝛿𝜙′ = tg 𝜃 · 𝛿𝜙

Аналогично тому, как мы это делали для 𝑙𝑥′, можем записать оператор пово-

рота (на угол 𝜙′) для 𝑙𝑦′. Точно так же учтём знак −, который исчезнет из-за
того, что вращение 𝜙′ опять левое:

𝑙𝑦′ = 𝑖
𝜕

𝜕𝜙′ = 𝑖 ctg 𝜃
𝜕

𝜕𝜙

Переход от 𝑙𝑥′, 𝑙𝑦′ к 𝑙𝑥, 𝑙𝑦 получим, воспользовавшись векторностью опера-

тора момента, а именно тем, что компоненты вектора преобразуются также,

как компоненты радиус-вектора. А как преобразуются координаты, видно из

рисунка (рис. 19):

𝑙𝑥 = 𝑙𝑥′ sin𝜙+ 𝑙𝑦′ cos𝜙, 𝑙𝑦 = −𝑙𝑥′ cos𝜙+ 𝑙𝑦′ sin𝜙

Резюмируя полученные результаты, окончательно запишем операторы в сфе-

рических координатах:

𝑙𝑧 = −𝑖 𝜕
𝜕𝜙

,

𝑙𝑥 = 𝑖 sin𝜙
𝜕

𝜕𝜃
+ 𝑖 cos𝜙 ctg 𝜃

𝜕

𝜕𝜙
,

𝑙𝑦 = −𝑖 cos𝜙 𝜕

𝜕𝜃
+ 𝑖 sin𝜙 ctg 𝜃

𝜕

𝜕𝜙

Отсюда можно получить и операторы повышения и понижения:

𝑙± = 𝑒±𝑖𝜙

(︂
± 𝜕

𝜕𝜃
+ 𝑖 ctg 𝜃

𝜕

𝜕𝜙

)︂
(42)

Для получения оператора 𝑙2 воспользуемся его выражением через операторы
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𝑙±, 𝑙𝑧, например вторым из соотношений 36

𝑙2 = 𝑙−𝑙+ + 𝑙2𝑧 + 𝑙𝑧.

Подставляя в это выражение явные формулы (42) получим

𝑙2 = 𝑒−𝑖𝜙

(︂
− 𝜕

𝜕𝜃
+ 𝑖 ctg 𝜃

𝜕

𝜕𝜙

)︂
𝑒𝑖𝜙
(︂
𝜕

𝜕𝜃
+ 𝑖 ctg 𝜃

𝜕

𝜕𝜙

)︂
− 𝜕2

𝜕𝜙2
− 𝑖

𝜕

𝜕𝜙
.

Откуда, выполнив несложные вычисления, получим простое выражение:

𝑙2 = − 1

sin2 𝜃

𝜕2

𝜕𝜙2
− 1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃

Интересный факт — квадрат момента является угловой частью лапласиана:

∆ =
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙2(𝜃, 𝜙)

𝑟2

3.6. Сферические гармоники

Сферические гармоники Y𝑙,𝑚(𝜃, 𝜙) – это собственные функции операторов

𝑙𝑧 и 𝑙
2, и поэтому они удовлетворяют уравнениям на собственные значения и

функции: {︃
𝑙2Y𝑙,𝑚(𝜃, 𝜙) = 𝑙(𝑙 + 1)Y𝑙,𝑚(𝜃, 𝜙)

𝑙𝑧Y𝑙,𝑚(𝜃, 𝜙) = 𝑚Y𝑙,𝑚(𝜃, 𝜙)

Ранее мы получали 𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 𝑙
2, 𝑙±. Выпишем операторы в сферических коор-

динатах:

𝑙𝑧 = −𝑖 𝜕
𝜕𝜙

, 𝑙2 = − 1

sin2 𝜃

𝜕2

𝜕𝜙2
− 1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
, ∆ =

1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙2(𝜃, 𝜙)

𝑟2

Физический смысл сферических гармоник. Волновая функция в де-

картовых координатах имеет смысл амплитуды вероятности, или, другими

словами, величина

|Ψ(𝑟⃗ )|2𝑑𝑥 𝑑𝑦 𝑑𝑧
есть вероятность нахождения частицы в элементарном объемчике 𝑑𝑥 𝑑𝑦 𝑑𝑧.

Волновая функция Ψ(𝑟, 𝜃, 𝜙) есть амплитуда вероятности в сферических ко-
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ординатах, так что

|Ψ(𝑟, 𝜃, 𝜙 )|2𝑟2 sin 𝜃𝑑𝑟𝑑𝜙𝑑𝜃
есть вероятность нахождения частицы в элементарном объеме сферической

системы координат. Поскольку, как мы видели, в сферической системе коор-

динат в операторе Лапласа угловые переменные отделяются от радиальной

Ψ(𝑟, 𝜃, 𝜙) =
∑︁

𝑛𝑟,𝑙,𝑚

𝑅𝑛𝑟,𝑙(𝑟)Y𝑙,𝑚(𝜃, 𝜙),

то сама сферическая гармоника 𝑌 𝑙𝑚 будет иметь смысл амплитуды вероят-

ности пребывания частицы в элементарном телесном угле, так что

|Y𝑙,𝑚(𝜃, 𝜙)|2𝑑Ω = |Y𝑙,𝑚(𝜃, 𝜙)|2 sin 𝜃𝑑𝜙𝑑𝜃.

Отсюда следует условие нормировки сферических гармоник.

∫︁
|𝑌𝑙,𝑚|2 sin 𝜃𝑑𝜙𝑑𝜃 = 1.

Нахождение сферических гармоник. Y𝑙,𝑚(𝜃, 𝜙) мы можем найти, стан-

дартным образом разделив переменные:

Y𝑙,𝑚(𝜃, 𝜙) = Θ𝑙,𝑚(𝜃) · Φ𝑚(𝜙)

Подставим гармонику в таком виде в уравнение на собственные значения 𝑙𝑧
и проинтегрируем:

−𝑖 𝜕
𝜕𝜙

Θ𝑙,𝑚(𝜃) · Φ𝑚(𝜙) = 𝑚Θ𝑙,𝑚(𝜃) · Φ𝑚(𝜙)

−𝑖 𝜕
𝜕𝜙

Φ𝑚(𝜙) = 𝑚Φ𝑚(𝜙), Θ𝑙,𝑚(𝜃) ̸= 0 ⇒ Φ𝑚(𝜙) = 𝐶 · exp{𝑖𝑚𝜙}

59



Квантовая механика Лекции В.В. Курина 2018-2019

Чтобы найти константу, отнормируем функцию Φ. Заметим, что её квадрат

можно трактовать как вероятность найти частицу в данном угле 𝜙5:

2𝜋∫︁

0

|Φ𝑚(𝜙)|2d𝜙 = 2𝜋𝐶2 = 1 ⇒ Φ𝑚(𝜙) =
1√
2𝜋

· exp{𝑖𝑚𝜙}

Причём 𝑚, из условия однозначности функции Φ𝑚(𝜙) = Φ𝑚(𝜙+2𝜋), должно

быть целым.

Теперь воспользуемся уравнением на собственные значения 𝑙2:

[︂
− 1

sin2 𝜃

𝜕2

𝜕𝜙2
− 1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃

]︂
Θ𝑙,𝑚(𝜃) · Φ𝑚(𝜙) = 𝑙(𝑙 + 1)Θ𝑙,𝑚(𝜃) · Φ𝑚(𝜙)

Функцию Φ мы уже нашли, и можем подставить:

[︂
𝑚2

sin2 𝜃
− 1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃

]︂
Θ𝑙,𝑚(𝜃) = 𝑙(𝑙 + 1)Θ𝑙,𝑚(𝜃)

Это дифференциальное уравнение – с переменными коэффициентами, назы-

вается уравнением Лежандра6.

Один из способов его решить – сделать замену 𝜉 = cos 𝜃:

sin2 𝜃 = 1− 𝜉2, sin 𝜃
𝜕

𝜕𝜃
= . . .

Такая замена, как говорят, рационализирует уравнение: оно становится урав-

нением, решение которого можно искать в виде ряда по 𝜉. Но мы будем ре-

шать другим способом.

Операторное решение уравнения Лежандра. Идея операторного ре-

шения заключается в том, что вместо общего решения мы можем рекуррентно

получить все функции7, начиная с 𝑌𝑙,𝑙.

Когда мы с помощью коммутационных соотношений выводили все фор-

мулы, мы получили условие ограниченности 𝑚 ≤ 𝑙, и тогда максимально

5Для 𝑅(𝑟) и Y𝑙,𝑚(𝜃, 𝜙) это не так из-за якобиан-преобразования при переходе из декартовых в сфери-
ческие координаты

6Его решения называются присоединёнными полиномами Лежандра, и вообще – это уравнение с точ-
ки зрения математики – уравнение в обычных производных. Есть справочник Канке по обыкновенным
дифференциальным уравнениям.

7Также, как мы делали это ранее с полиномами Эрмита
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возможная сферическая гармоника с орбитальным числом 𝑙 – это 𝑌𝑙,𝑙(𝜃, 𝜙).

Значит, если подействовать на гармонику 𝑌𝑙,𝑙 оператором повышения, то

в силу ограниченности 𝑚 = −𝑙 . . . 𝑙 оператор должен дать ноль:

𝑙+𝑌𝑙,𝑙(𝜃, 𝜙) = 0

Сначала давайте рассмотрим случай 𝑙 = 0. В этом случае 𝑚 = 0 и уравнение

𝑙+𝑌0,0 = 0 принимает вид 8. При этом, так как 𝑌0,0 не зависит от 𝜙, второе

слагаемое обратится в ноль:

�
�Z
Z𝑒𝑖𝜙
(︂
𝜕

𝜕𝜃
+

�
���

��HH
HHHH

𝑖 ctg 𝜃
𝜕

𝜕𝜙

)︂
𝑌0,0 = 0 ⇒ 𝜕𝑌0,0

𝜕𝜃
= 0 ⇒ 𝑌00 = const = 𝑐

Остаётся отнормировать 𝑌0,0, чтобы найти значение константы 𝑐:

∫︁
|𝑌0,0|2 sin 𝜃 d𝜙 d𝜃 = 2𝜋

𝜋∫︁

0

𝑐2 sin 𝜃 d𝜃 = 1 ⇒ 4𝜋𝑐2 = 1 ⇒ 𝑌0,0 =
1√
4𝜋

Высшие гармоники. Теперь рассмотрим случай 𝑚 = −𝑙, 0, 𝑙. Сначала
найдём формулу гармоники 𝑌𝑙,𝑙:

𝑙+𝑌𝑙,𝑙 = 0 ⇒ 𝑒𝑖𝜙
(︂
𝜕

𝜕𝜃
+ 𝑖 ctg 𝜃

𝜕

𝜕𝜙

)︂
𝑌𝑙,𝑙(𝜃, 𝜙) = 0

Это уже уравнение первого порядка, линейное с переменными коэффициен-

тами, которое решается. Прежде всего, 𝑒𝑖𝜙 ̸= 0, на него можно сократить.

Разделим переменные и получим уравнение для Θ𝑙,𝑙:

𝑌𝑙,𝑙 = Θ𝑙,𝑙(𝜃) · Φ𝑙(𝜙) ∼ Θ𝑙,𝑙(𝜃)𝑒
𝑖𝑙𝜙 ⇒

(︂
𝜕

𝜕𝜃
− 𝑙 ctg 𝜃

)︂
Θ𝑙,𝑙(𝜃) = 0

Проинтегрируем полученное уравнение и получим выражение для 𝑌𝑙,𝑙:

dΘ

Θ
= 𝑙

cos 𝜃

sin 𝜃
d𝜃 ⇒ Θ𝑙,𝑙(𝜃) = 𝑐·sin𝑙 𝜃 ⇒ 𝑌𝑙,𝑙 ∼ sin𝑙 𝜃 ·𝑒𝑖𝑙𝜙 = 𝑐 sin𝑙 𝜃 ·𝑒𝑖𝑙𝜙

8Напомним, мы получили выражения для повышающих и понижающих операторов в сферической
системе координат:

𝑙± = 𝑙𝑥 ± 𝑖𝑙𝑦 = 𝑒±𝑖𝜙

(︂
± 𝜕

𝜕𝜃
+ 𝑖 ctg 𝜃

𝜕

𝜕𝜙

)︂

61



Квантовая механика Лекции В.В. Курина 2018-2019

Осталось гармонику отнормировать, как мы это делали раньше:

2𝜋𝑐2
∫︁

sin2𝑙 𝜃 sin 𝜃 d𝜃 = 1

Это сложный интеграл, его надо брать 𝑙 раз по частям. Вычислим его в случае

𝑙 = 1:

2𝜋𝑐2
𝜋∫︁

0

sin2 𝜃 sin 𝜃 d𝜃 = 1

Возьмём интеграл стандартным образом:

2𝜋𝑐2
𝜋∫︁

0

sin2 𝜃 sin 𝜃 d𝜃 = −2𝜋𝑐2
𝜋∫︁

0

(1− cos2 𝜃) d cos 𝜃 =

= 2𝜋𝑐2
1∫︁

−1

(1− 𝜉2) d𝜉 = 2𝜋𝑐2
(︂
𝜉 − 𝜉3

3

)︂⃒⃒
⃒⃒
1

−1

= 2𝜋𝑐2 · 4
3
=

8𝜋𝑐2

3

Отсюда 𝑐2 = 3
8𝜋 . Тогда

𝑌1,1 =

√︂
3

8𝜋
sin 𝜃 𝑒𝑖𝜙

Рекуррентное выражение гармоник для l = 1. Найдя 𝑌1,1, мы можем

найти также и гармоники 𝑌1,0 и 𝑌1,−1. Воспользуемся оператором понижения:

𝑙− 𝑌𝑙,𝑙(𝜃, 𝜙) =
√︀

(𝑙 + 𝑙)(𝑙 − 𝑙 + 1)𝑌𝑙,𝑙−1(𝜃, 𝜙) ⇒ 𝑙− 𝑌1,1(𝜃, 𝜙) =
√
2𝑌1,0(𝜃, 𝜙)

И отсюда

𝑌1,0 =
𝑙−√
2
𝑌1,1 =

1√
2
𝑒−𝑖𝜙

(︂
− 𝜕

𝜕𝜃
+ 𝑖 ctg 𝜃

𝜕

𝜕𝜙

)︂√︂
3

8𝜋
sin 𝜃 𝑒𝑖𝜙 =

=

√︂
3

16𝜋

(︂
− 𝜕

𝜕𝜃
− ctg 𝜃

)︂
sin 𝜃 = −

√︂
3

4𝜋
cos 𝜃

А если мы знаем 𝑌1,0, то можем также рекуррентно найти 𝑌1,−1:

𝑙− 𝑌1,0(𝜃, 𝜙) =
√
2𝑌1,−1(𝜃, 𝜙) ⇒ 𝑌1,−1 =

𝑙−√
2
𝑌1,0
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Тогда

𝑌1,−1 = −
√︂

3

8𝜋
𝑒−𝑖𝜙

(︂
− 𝜕

𝜕𝜃

)︂
cos 𝜃 = −

√︂
3

8𝜋
sin 𝜃 𝑒−𝑖𝜙

Вообще, любая функция на сфере может быть разложена по сферическим

гармоникам:

𝑓(𝜃, 𝜙) =
∑︁

𝑙,𝑚

𝐶𝑙,𝑚 𝑌𝑙,𝑚(𝜃, 𝜙)

Это обобщённый ряд Фурье для функций не на отрезке, а на сфере. Сфериче-

ские гармоники образуют полную систему функций для разложения. Такие

функции встречались в электродинамике: разложение по мультиполям. Пер-

вый член 𝑙 = 0 – это монополь, 𝑙 = 1 – диполь, 𝑙 = 2 – квадруполь и вообще

далее 2𝑙-поль.

Почему эти функции - диполи? Давайте их нарисуем. Рисовать комплекс-

ные функции мы не можем, но можем образовать функции пригодные для

построения:

𝑌1,0 ∼ cos 𝜃, (𝑌1,1 + 𝑌1,−1)
1

2
∼ sin 𝜃 sin𝜙, (𝑌1,1 − 𝑌1,−1)

1

2𝑖
∼ sin 𝜃 cos𝜙

y

x

z

y

x

z

y

x

z
̴cos θ ̴sin θ cosφ ̴sin θ sinφ

Рис. 21. Дипольные функции

Исторически так сложилось, что состояние с 𝑙 = 0 называется 𝑠-состояние

(монопольное состояние), и так далее состояния 𝑝, 𝑑, 𝑓, 𝑔, ℎ, . . .. Начиная с 𝑓 ,

обозначение идёт согласно английскому алфавиту.
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4. Движение в центрально-симметричном поле

Запишем в общем виде оператор поворота:

𝑅̂ = 1 + 𝑖
(︁
𝛿𝜙⃗, 𝑙⃗

)︁

Мы нашли собственные функции операторов 𝑙𝑧, 𝑙
2. Эти операторы коммути-

руют и имеют общую систему собственных функций – сферических гармоник

Y𝑙,𝑚(𝜃, 𝜙), где 𝑙 – орбитальное квантовое число,𝑚 – магнитное квантовое чис-

ло. Сферические гармоники возникают при разделении переменных в урав-

нении Шрёдингера, в котором есть сферическая симметрия.

Постановка задачи. Запишем гамильтониан сферически симметричной

задачи

𝐻 =
𝑝2

2𝑚
+ 𝑈(|𝑟⃗ |) (43)

где 𝑈(|𝑟⃗ |) - потенциал центрального поля, зависящий только от модуля |𝑟⃗|.
Поскольку потенциал сферически симметричен, удобно пользоваться сфери-

ческой системой координат.

x
y

z

~r

~r⊥ϕ

θ

~ϕ0

~θ0

~r0

Рис. 22. Сферическая система координат

В 𝑟⃗ – представлении оператор импульса можно выразить через лапласиан:

𝑝2

2𝑚
= − ℏ2

2𝑚
∆ ⇒ 𝑝2 = −ℏ2∆, ∆ =

1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙̂ 2(𝜃, 𝜙)

𝑟2
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Тогда уравнение Шрёдингера запишется в виде

[︃
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙̂ 2

𝑟2
− 2𝑚

ℏ2
𝑈(𝑟) +

2𝑚𝐸

ℏ2

]︃
Ψ(𝑟⃗ ) = 0

Будем искать решение в виде сферических гармоник:

Ψ(𝑟⃗ ) = 𝑅(𝑟)Y𝑙,𝑚(𝜃, 𝜙)

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙(𝑙 + 1)

𝑟2
− 2𝑚

ℏ2
𝑈(𝑟) +

2𝑚𝐸

ℏ2

]︂
𝑅(𝑟) = 0

В центральном поле переменные разделились. Можно ввести

𝑈eff⏟ ⏞ 
Эффективная энергия

= 𝑈(𝑟)⏟ ⏞ 
Потенциальная энергия

+
ℏ2

2𝑚

𝑙(𝑙 + 1)

𝑟2⏟  ⏞  
Центробежная энергия

~2

2𝑚 · 𝑙(𝑙+1)
𝑟2

𝑟

𝑈

Рис. 23. Отталкивающий от центра потенциал, если 𝑙 ̸= 0

При свободном движении частица летит по прямой. Если есть момент,

то частица в центр не попадает, она от него отталкивается. Если момент

равен нулю, то частица летит через центр (или покоится), и центробежного

потенциала нет.

Наше уравнение можно рассматривать как уравнение с параметром 𝐸, и

тогда приписать индекс 𝐸:

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙(𝑙 + 1)

𝑟2
− 2𝑚

ℏ2
𝑈(𝑟) +

2𝑚𝐸

ℏ2

]︂
𝑅𝐸,𝑙(𝑟) = 0

Квантовых чисел всего три: энергия 𝐸, орбитальное квантовое число 𝑙,
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магнитное квантовое число 𝑚. Заметим, что в уравнение совсем не входит

квантовое число 𝑚9. Это означает, что энергия не зависит от числа 𝑚: появ-

ляется вырожденность энергии по 𝑚, и каждый уровень энергии вырожда-

ется 2𝑙 + 1 раз.

Такое вырождение возникает из-за того, что в сферически симметричной

системе можно произвольно выбрать ось 𝑧.

Замечание о вырождении. Выше мы выводили представления операто-

ров в сферической системе:

𝑙𝑧 = −𝑖 𝜕
𝜕𝜙

, 𝑙𝑥 = 𝑖 sin𝜙
𝜕

𝜕𝜃
+ 𝑖 cos𝜙 ctg 𝜃

𝜕

𝜕𝜙
,

𝑙𝑦 = −𝑖 cos𝜙 𝜕

𝜕𝜃
+ 𝑖 sin𝜙 ctg 𝜃

𝜕

𝜕𝜙
, 𝑙2 = − 1

sin2 𝜃

𝜕2

𝜕𝜙2
− 1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃

В силу сферической симметрии гамильтониана (43), каждый из операторов

𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 𝑙
2 коммутирует с гамильтонианом. При этом проекции момента им-

пульса не коммутируют между собой.

Покажем в общем случае, что это приводит к вырождению. Пусть у нас

есть два не коммутирующих между собой оператора 𝑓, 𝑔, но коммутирующих

с гамильтонианом:

[𝑓, 𝑔] ̸= 0, [𝐻, 𝑔] = 0, [𝐻, 𝑓 ] = 0

Из коммутации следует наличие общей системы собственных функций:

𝐻Ψ𝑛 = 𝐸𝑛Ψ𝑛, 𝑓Ψ𝑛 = 𝑓𝑛Ψ𝑛

Подействуем на первое уравнение оператором 𝑔, при этом в силу коммутации

𝑔 и 𝐻 можем их менять местами:

𝑔𝐻Ψ𝑛 = 𝐸𝑛 𝑔Ψ𝑛 ⇒ 𝐻 𝑔Ψ𝑛 = 𝐸𝑛 𝑔Ψ𝑛

Возникает 𝜙𝑛 = 𝑔Ψ𝑛. В силу коммутации

𝐻̂𝑔Ψ𝑛 = 𝐸𝑛 𝑔Ψ𝑛 ⇒ 𝐻̂𝜙𝑛 = 𝐸𝑛 𝜙𝑛

9Вообще говоря, буква 𝑚 есть – но это масса частицы, а не квантовое число
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Возникает вопрос, совпадают ли Ψ𝑛 и 𝜙𝑛, хотя бы с точностью до множите-

ля? Оказывается, не совпадают, что следует из [𝑓, 𝑔] ̸= 0. Значит, возникает

вырождение, и одному значению 𝐸𝑛 соответствует несколько волновых функ-

ций.

Можно сформулировать общее утверждение: если есть какая-либо сим-

метрия, то обязательно появится вырождение. Чем выше симметрия за-

дачи, тем кратность вырождения будет больше.

4.1. Свободное движение

Как хорошо известно, в этом случае потенциала нет, 𝑈 ≡ 0. Обозначим

𝑘2 = 2𝑚
ℏ2 𝐸, тогда уравнение Шрёдингера можно записать в виде

∆Ψ+ 𝑘2Ψ = 0

Запишем это уравнение в сферических координатах:

[︂
1

𝑟2
d

d𝑟
𝑟2

d

d𝑟
− 𝑙(𝑙 + 1)

𝑟2
+ 𝑘2

]︂
𝑅𝑘,𝑙(𝑟) = 0

Из-за разделения переменных уравнение стало уравнением в обыкновенных

производных. Исследуем асимптотику решения при 𝑟 → 0 и 𝑟 → ∞.

Асимптотика в нуле. Если 𝑙 ̸= 0, то можно пренебречь 𝑘2:

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙(𝑙 + 1)

𝑟2

]︂
𝑅𝑘,𝑙(𝑟) = 0

Заметим, что можно сделать масштабное преобразование 𝑟 → 𝛼𝑟, и при нем

уравнение будет однородным и инвариантным. Значит, решение тоже должно

быть инвариантно: 𝑓(𝛼𝑟) = 𝛽𝑓(𝑟). Такие уравнения называются дифферен-

циальными уравнениями Коши-Эйлера, и любая степенная функция годится

в качестве решения10. Будем искать решение в виде 𝑅(𝑟) ∼ 𝑟𝜎:

𝜕𝑅

𝜕𝑟
∼ 𝜎𝑟𝜎−1, 𝑟2

𝜕𝑅

𝜕𝑟
∼ 𝜎𝑟𝜎+1,

𝜕

𝜕𝑟
𝑟2
𝜕𝑅

𝜕𝑟
∼ 𝜎(𝜎 + 1)𝑟𝜎−2,

10При этом, конечно, выполняется (𝛼 𝑟)𝛾 = 𝛼𝛾 𝑟𝛾
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Получается квадратное уравнение относительно 𝜎. Его решения очевидны,

можно увидеть, а можно посчитать дискриминант:

𝜎(𝜎 + 1) = 𝑙(𝑙 + 1) ⇒ 𝜎1 = 𝑙, 𝜎2 = −𝑙 − 1.

𝑅(𝑟 → 0) = 𝑐1 𝑟
𝑙 +

𝑐2
𝑟𝑙+1

Асимптотика на бесконечности. Теперь можно пренебречь 𝑙(𝑙+1)
𝑟2 . Заме-

тим, что такое уравнение будет точным при 𝑙 = 0 для любых 𝑟.

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
+ 𝑘2

]︂
𝑅𝑘,𝑙(𝑟) = 0

Это уравнение сферической волны. Оно решается заменой 𝑅(𝑟) = 𝜉(𝑟)
𝑟 :

𝜕

𝜕𝑟

(︂
𝜉

𝑟

)︂
=
𝜉′𝑟 − 𝜉

𝑟2
, 𝑟2

𝜕

𝜕𝑟

(︂
𝜉

𝑟

)︂
= 𝜉′𝑟 − 𝜉,

𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟

(︂
𝜉

𝑟

)︂
= 𝜉′′𝑟 + 𝜉′ − 𝜉′ = 𝜉′′𝑟,

1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟

(︂
𝜉

𝑟

)︂
=
𝜉′′

𝑟

После проведения всех расчётов и подстановок исходное уравнение примет

вид
1

𝑟

(︀
𝜉′′ + 𝑘2𝜉

)︀
= 0,

и его решение (так как решали при 𝑟 ̸= 0)

𝜉 = 𝑐1 𝑒
𝑖𝑘𝑟 + 𝑐2 𝑒

−𝑖𝑘𝑟 ⇒ 𝑅 = 𝑐1
𝑒𝑖𝑘𝑟

𝑟
+ 𝑐2

𝑒−𝑖𝑘𝑟

𝑟

Получили решение вида сферической волны. Первое слагаемое отвечает рас-

ходящейся волне, а второе - сходящейся11.

Наше решение должно быть регулярно везде в случае 𝑙 = 0. Для этого

нужно выбрать другую фундаментальную систему решений:

𝑅𝑘,𝑙=0 =
𝑎1 sin 𝑘𝑟 + 𝑎2 cos 𝑘𝑟

𝑟

Второй член расходится в нуле, значит, 𝑎2 = 0.

11В квантовой механике зависимость стационарных решений от времени 𝑒−𝑖𝐸
ℎ 𝑡, нужно с учётом этого

посмотреть куда будет бежать волновой фронт
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Займёмся случаем 𝑙 ̸= 0:

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙(𝑙 + 1)

𝑟2
+ 𝑘2

]︂
𝑅𝑘,𝑙(𝑟) = 0

Такое уравнение называется уравнением сферических функций Бесселя. Сфе-

рические функции Бесселя выражаются через обычные. Приведём ответ без

доказательства (вывод можно можно посмотреть в Ландау(§33., стр.140)):

𝑅𝑘,𝑙(𝑟) ∼ 𝑟𝑙
(︂

1

𝑘𝑟

𝜕

𝜕𝑟

)︂𝑙

· sin 𝑘𝑟
𝑟

, 𝑅𝑘,0 ∼
sin 𝑘𝑟

𝑟

𝑟

sin 𝑘𝑟
𝑟

Рис. 24. График sin 𝑘𝑟/𝑟

𝑅𝑘,1(𝑟) ∼
1

𝑘

𝜕

𝜕𝑟

sin 𝑘𝑟

𝑟
=

1

𝑘

(︂
𝑘 cos 𝑘𝑟

𝑟
− sin 𝑘𝑟

𝑟2

)︂

Для анализа асимптотики в нуле полученные выражения надо разложить

в ряд, то есть раскрыть неопределённость дальше:

𝑅𝑘,1 = [𝑟 → 0] =
1

𝑘

⎛
⎝
𝑘
(︁
1− (𝑘𝑟)2

2

)︁

𝑟
−
𝑘𝑟 − (𝑘𝑟)3

6 )

𝑟2

⎞
⎠ =

1

𝑘

(︂
−𝑘

3𝑟

2
+
𝑘3𝑟

6

)︂
= −𝑘

2

3
𝑟
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К вопросу о нормировке. Займёмся нормировкой функции 𝑅𝑘,𝑙:

∞∫︁

0

|𝑅𝑘,𝑙(𝑟)|2 𝑟2 d𝑟

Если считать в лоб, возникнет проблема: интеграл расходится на бесконеч-

ности, то есть не существует. Физически это говорит о свободном движении:

частица может уходить на бесконечность. Так как движение инфинитное, то

спектр 𝑘 непрерывен.

Правильно считать нормировочный интеграл надо так:

∞∫︁

0

𝑅*
𝑘,𝑙𝑅𝑘′,𝑙′ 𝑟

2 d𝑟 = 𝛿(𝑘 − 𝑘′)𝛿𝑙,𝑙′

Попробуем посчитать нормировку 𝑅𝑘,0:

𝑎21

∞∫︁

0

sin 𝑘𝑟 sin 𝑘′𝑟

𝑟2
𝑟2 d𝑟 = 𝛿(𝑘 − 𝑘′)

Такой ответ можно получить, взяв интеграл с помощью известного интегра-

ла12: ∫︁ ∞

−∞
𝑒𝑖(𝑘−𝑘′)𝑥d𝑥 = 2𝜋 𝛿(𝑘 − 𝑘′)

Итак, мы рассмотрели свободное движение в сферической системе коор-

динат. Оно сложнее, чем в декартовой.

12Это Фурье-преобразование дельта-функции
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4.2. Сферическая потенциальная яма

r

U

a

-U0

0

Рис. 25. Сферическая яма, 𝑎 - радиус

Рассмотрим задачу о движении в сферически симметричной яме13 (см.

рис. 25). Для простоты рассмотрим случай, когда 𝑙 = 0 (так называемый

𝑠-канал):

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙(𝑙 + 1)

𝑟2
− 2𝑚

ℏ2
𝑈(𝑟) + 𝑘2

]︂
𝑅𝑘,𝑙(𝑟) = 0, 𝑈 =

{︃
−𝑈0, 𝑟 < 𝑎

0, 𝑟 > 𝑎

В самом первом разделе мы уже решали задачу об одномерной яме:

Ψ′′ +
2𝑚

ℏ2
(𝐸 − 𝑈0)Ψ = 0, 𝑈 =

{︃
−𝑈0, −𝑎 < 𝑥 < 𝑎

0, |𝑥| > 𝑎

Оказывается, сферическая задача сводится к одномерной заменой 𝑅 = 𝜒
𝑟 :

⎧
⎪⎨
⎪⎩

𝜒′′ +
2𝑚

ℏ2
𝑈0𝜒+

2𝑚

ℏ2
𝐸𝜒 = 0, 𝑟 ≤ 𝑎,

𝜒′′ +
2𝑚

ℏ2
𝐸𝜒 = 0, 𝑟 > 𝑎

Задача, казалось бы, та же. Но надо учесть особенность в нуле. Для одно-

мерной задачи мы получали в яме

Ψ = 𝐶1 cos 𝑘𝑥, Ψ = 𝐶2 sin 𝑘𝑥, 𝑘2 =
2𝑚

ℏ2
(𝑈0 − |𝐸|)

13Казалось бы, есть сходство наших задач с электродинамическими. Главное отличие в том, что мы
ищем скалярную функцию, и она может представлять собой сферически-симметричную волну, в силу
скалярности, а в ЭД поля векторные. В ЭД не бывает монопольного излучения. Не может быть в точке
переменного заряда: он должен откуда-то притечь (или куда-то утечь). Квантовая механика в этом плане
больше похожа на акустику.
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И вне ямы

Ψ = 𝑑1 exp[−κ(𝑥− 𝑎)], Ψ = 𝑑2 exp[κ(𝑥− 𝑎)], κ2 =
2𝑚

ℏ2
|𝐸|

Ключевая разница в граничных условиях в нуле: задача на 𝜒 формально

совпала с одномерной для Ψ, но нам нужна регулярность в нуле не 𝜒, а

𝑅 = 𝜒
𝑟 . Все чётные серии одномерной задачи дают 𝑅 особенность в нуле и

не подходят сферической задаче: не удовлетворяют ограниченности в нуле.

Поэтому работает только нечётная серия.

Что отсюда следует? Давайте вспомним одномерную задачу. В силу гра-

ничных условий – непрерывности функции и её производной получается

𝑐2 sin 𝑘𝑎 = 𝑑2, 𝑐2𝑘 cos 𝑘𝑎 = −κ𝑑2 ⇒ 𝑘 ctg 𝑘𝑎 = −κ

Обозначим

𝛾2 =
2𝑚

ℏ2
|𝐸| ⇒ 𝑘2 = 𝛾2 − κ2

Введём переменные 𝑦 = 𝑘𝑎, 𝑧 = 𝛾𝑎, 𝑝 = κ𝑎, и тогда

𝑦 ctg 𝑦 = −𝑝 = −
√︀
𝑧2 − 𝑦2,

В разделе 1.2.2 мы подробно уже рассмотрели решение этой задачи. На-

помним, что условие появление корня в нечётной серии

√︂
2𝑚𝑈0

ℏ2
𝑎 ≥ 𝜋

2

Это важный результат: в квантовой механике в трёхмерной задаче нужно,

чтобы яма была достаточно глубокой. Дискретные уровни появляются

из нуля при достижении критической глубины. Это ключевое отличие

сферической симметричной ямы от одномерной. В одномерной задаче один

уровень энергии есть всегда, при любой глубине ямы.
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4.3. Сферический гармонический осциллятор

Рассмотрим задачу о трёхмерном (сферическом) гармоническом осцилля-

торе. Гамильтониан такой задачи

𝐻 = 𝐻𝑥 +𝐻𝑦 +𝐻𝑧 =
𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

2𝑚
+
𝑚𝜔2(𝑥2 + 𝑦2 + 𝑧2)

2
=

𝑝2

2𝑚
+
𝑚𝜔2𝑟2

2

Это тоже задача о центральном поле: гамильтониан зависит только от моду-

ля |𝑟⃗ |. Задача решается разделением переменных в декартовой системе ко-

ординат Ψ(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌 (𝑦)𝑍(𝑧), затем решаются задачи на собственные

значения

𝐻𝑥𝑋 = 𝐸𝑥𝑋, 𝐻𝑦𝑌 = 𝐸𝑦𝑌, 𝐻𝑧𝑍 = 𝐸𝑧𝑍, где 𝐸 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧

По сути, задача разбивается на три одномерных осциллятора. Дальше для

каждого решение проводится стандартным образом: вводятся безразмерные

координаты 𝜉 = 𝑥
𝑙кв

= 𝑥/
√︁

ℏ
𝑚𝜔 , получается уравнение, которое можно свести

к уравнению Эрмита

[︂
− ℏ2

2𝑚

𝜕2

𝜕𝑥2
+
𝑚𝜔2𝑥2

2

]︂
𝑋 = ℏ𝜔

[︂
− ℏ
2𝑚𝜔

𝜕2

𝜕𝑥2
+
𝑚𝜔𝑥2

2ℏ

]︂
𝑋 = 𝐸𝑥𝑋

Решение такой задачи мы знаем:

𝐸𝑥 = ℏ𝜔
(︂
𝑛𝑥 +

1

2

)︂
, 𝑋𝑛𝑥

(𝜉) = exp

[︂
−𝜉

2

2

]︂
𝐻𝑛𝑥

(𝜉)

Без доказательства отметим тот факт, что решение трёхмерного осциллятора

можно сконструировать из решений трах одномерных осцилляторов:

𝐸 = ℏ𝜔
(︂
𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧 +

3

2

)︂
,

Ψ = exp

[︂
−𝑥

2 + 𝑦2 + 𝑧2

2𝑙2кв

]︂
𝐻𝑛𝑥

(𝜉𝑥)𝐻𝑛𝑦
(𝜉𝑦)𝐻𝑛𝑧

(𝜉𝑧)

Случайное вырождение. Рассмотрим основное состояние (𝑛𝑥 = 𝑛𝑦 =

𝑛𝑧 = 0). Какова его степень вырождения? Такое состояние одно: степень

вырождения 1, или, как говорят, не вырожденное состояние.
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Рис. 26. Уровни и степени вырождения

Количество вырождений определяется количеством способов 𝑁 набрать

один и тот же уровень энергии разными 𝑛𝑥, 𝑛𝑦, 𝑛𝑧. Так, для уровня энергии

𝐸 = 5
2 степень вырождения будет 3, для 𝐸 = 7

2 степень 6 и так далее.

Чтобы было яснее, построим табличку, куда будем записывать все воз-

можные способы набрать определённую энергию:

Таблица 1. Таблица вырождений

𝑁 1 3 6 10
𝑛𝑥 0 1 0 0 2 0 0 1 1 0 3 0 0 1 0 1 2 2 1 0
𝑛𝑦 0 0 1 0 0 2 0 1 0 1 0 3 0 1 1 2 1 0 0 2
𝑛𝑧 0 0 0 1 0 0 2 0 1 1 0 0 3 1 2 0 0 1 2 1

Степени вырождения образуют арифметическую прогрессию. Степень вы-

рождения на 𝑛-ом уровне будет

𝑁 =
(𝑛+ 1)(𝑛+ 2)

2

Эту задачу можно решать и в сферической системе координат, записав

соответствующий гамильтониан и разделив переменные:

𝐻̂ = − ℏ2

2𝑚

(︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙2

𝑟2

)︂
+
𝑚𝜔2𝑟2

2
, Ψ = 𝑅𝑛𝑟,𝑙(𝑟)Y𝑙,𝑚(𝜃, 𝜙),

где 𝑛𝑟 – число узлов радиальной волновой функции. При таком решении

квантование энергии получится в следующем виде:

𝐸 = ℏ𝜔
(︂
2𝑛𝑟 + 𝑙 +

3

2

)︂
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Такое квантование даст тот же самый ряд степеней вырождения. Например,

попробуем набрать степень 7
2 :

𝑛𝑟 = 1, 𝑙 = 0, 𝑛𝑟 = 0, 𝑙 = 2, . . . 6 способов

Если бы мы использовали формулу вырождения по магнитному квантово-

му числу 2𝑙+1, то получили бы степень вырождения меньше. Это пример так

называемого случайного вырождения: вырождение выше, чем ожидается

просто из сферической симметрии.

Если степень вырождения выше, значит есть ещё преобразование, отлич-

ное от сферического вращения. Это более высокая группа симметрии. Более

низкая группа – подгруппа высокой. Пример: одномерное вращение – под-

группа трёхмерного вращения.

4.4. Кулоново поле

Прежде чем рассматривать движение в поле Кулона, нужно учесть, что на

самом деле поле создаётся частицами, а значит, рассматривать нужно движе-

ние нескольких частиц. Простейший пример такой системы – атом водорода:

задача двух тел – движение протона и электрона.

Потенциал Кулона зависит только от расстояния между частицами. Сила

же, которая зависит только от разности расстояний, есть внутренняя сила.

Поэтому полный импульс сохраняется, и можно ввести новую систему коор-

динат относительно центра масс системы 𝑅⃗цм, и тогда задачу двух тел можно

разделить на задачу о вращении одного из тел вокруг центра масс и задачу

о движении центра масс.

Введём обозначения:

𝑟⃗ = 𝑟⃗1 − 𝑟⃗2,

где 𝑟⃗1, 𝑟⃗2 – радиус-векторы соответственно первой и второй частицы. Взаи-

модействие между частицами будем описывать притягивающим потенциалом

Кулона

𝑈(𝑟) = −𝑒
2

𝑟

Запишем стационарное уравнение Шрёдингера:

[︂
− ℏ2

2𝑚1
∆𝑟1 −

ℏ2

2𝑚2
∆𝑟2 + 𝑈(𝑟)

]︂
Ψ(𝑟⃗1, 𝑟⃗2) = 𝐸Ψ(𝑟⃗1, 𝑟⃗2) (44)
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Волновая функция здесь зависит от 𝑟⃗1 и 𝑟⃗2, а значит, является функцией

шести скалярных переменных.

Преобразование к задаче о движении центра масс. Разобьём эту

систему на движение центра масс и вращение частицы вокруг общего центра

масс. Введём обозначения радиус-вектора центра масс 𝑅⃗, массы системы 𝑀

и приведённой массы 𝑚:

𝑅⃗ =
𝑚1𝑟⃗1 +𝑚2𝑟⃗2
𝑚1 +𝑚2

, 𝑀 = 𝑚1 +𝑚2,
1

𝑚
=

1

𝑚1
+

1

𝑚2
(45)

Запишем 𝑟⃗ и 𝑅⃗ в индексной форме записи 𝑥𝑖 и 𝑋𝑖:

𝑥𝑖 = 𝑥1𝑖 − 𝑥2𝑖, 𝑋𝑖 =
𝑚1𝑥1𝑖 +𝑚2𝑥2𝑖
𝑚1 +𝑚2

, 𝑖 = 1, 2, 3

Нужно перейти от старых переменных 𝑟⃗1, 𝑟⃗2 к новым 𝑟, 𝑅. Для этого нужно

выразить производные:

𝜕

𝜕𝑥1𝑗
=

𝜕

𝜕𝑥𝑖
· 𝜕𝑥𝑖
𝜕𝑥1𝑗

+
𝜕

𝜕𝑋𝑖
· 𝜕𝑋𝑖

𝜕𝑥1𝑗
,

𝜕

𝜕𝑥2𝑗
=

𝜕

𝜕𝑥𝑖
· 𝜕𝑥𝑖
𝜕𝑥2𝑗

+
𝜕

𝜕𝑋𝑖
· 𝜕𝑋𝑖

𝜕𝑥2𝑗

Дифференцированием уравнений по соответствующим переменным получа-

ем:

𝜕𝑥𝑖
𝜕𝑥1𝑗

= 𝛿𝑖𝑗,
𝜕𝑥𝑖
𝜕𝑥2𝑗

= −𝛿𝑖𝑗,
𝜕𝑋𝑖

𝜕𝑥1𝑗
=

𝑚1

𝑚1 +𝑚2
𝛿𝑖𝑗,

𝜕𝑋𝑖

𝜕𝑥2𝑗
=

𝑚2

𝑚1 +𝑚2
𝛿𝑖𝑗,

где 𝛿𝑖𝑗 – символ Кронекера. Лапласиан и другие производные в индексной

форме записи примут вид:

∆𝑥1
=

3∑︁

𝑖=1

𝜕2

𝜕𝑥21𝑖
, ∆𝑥2

=
3∑︁

𝑖=1

𝜕2

𝜕𝑥22𝑖

𝜕

𝜕𝑥1𝑗
= 𝛿𝑖𝑗

[︂
𝜕

𝜕𝑥𝑖
+

𝑚1

𝑚1 +𝑚2

𝜕

𝜕𝑋𝑖

]︂
,

𝜕

𝜕𝑥2𝑗
= −𝛿𝑖𝑗

[︂
𝜕

𝜕𝑥𝑖
− 𝑚2

𝑚1 +𝑚2

𝜕

𝜕𝑋𝑖

]︂
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В последних уравнениях, так как справа идёт неявное суммирование по 𝑖,

можно упростить формулы:

𝜕

𝜕𝑥1𝑗
=

𝜕

𝜕𝑥𝑗
+

𝑚1

𝑚1 +𝑚2

𝜕

𝜕𝑋𝑗
,

𝜕

𝜕𝑥2𝑗
= − 𝜕

𝜕𝑥𝑗
+

𝑚2

𝑚1 +𝑚2

𝜕

𝜕𝑋𝑗

∆𝑥1
=
∑︁

𝑖

𝜕2

𝜕𝑥21𝑖
=
∑︁

𝑖

(︂
𝜕

𝜕𝑥𝑖
+

𝑚1

𝑚1 +𝑚2

𝜕

𝜕𝑋𝑖

)︂2

=

𝜕2

𝜕𝑥2𝑖
+

2𝑚1

𝑚1 +𝑚2

𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑋𝑖
+

𝑚2
1

𝑚1 +𝑚2

𝜕2

𝜕𝑋2
𝑖

В дальнейшем знак суммы опускается и по повторяющемуся индексу подра-

зумевается суммирование.

∆𝑥2
=

𝜕2

𝜕𝑥22𝑖
=

(︂
− 𝜕

𝜕𝑥𝑖
+

𝑚2

𝑚1 +𝑚2
· 𝜕

𝜕𝑋𝑖

)︂2

=

𝜕2

𝜕𝑥2𝑖
− 2𝑚2

𝑚1 +𝑚2

𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑋𝑖
+

𝑚2
2

𝑚1 +𝑚2

𝜕2

𝜕𝑋2
𝑖

Подставим теперь выраженные через новые переменные лапласианы в (44):

− ℏ2

2𝑚1
∆𝑥1𝑖

− ℏ2

2𝑚2
∆𝑥2𝑖

=

−ℏ2

2

(︂
1

𝑚1

𝜕2

𝜕𝑥2𝑖
+

𝑚1

(𝑚1 +𝑚2)2
𝜕2

𝜕𝑋2
𝑖

+
1

𝑚2

𝜕2

𝜕𝑥2𝑖
+

𝑚2

(𝑚1 +𝑚2)2
𝜕2

𝜕𝑋2
𝑖

)︂
=

−ℏ2

2

(︂
1

𝑚1

𝜕2

𝜕𝑥2𝑖
+

1

𝑚1 +𝑚2

𝜕2

𝜕𝑋2
𝑖

+
1

𝑚2

𝜕2

𝜕𝑥2𝑖

)︂

С учётом введённых в (45) обозначений:

− ℏ2

2𝑚1
∆𝑥1𝑖

− ℏ2

2𝑚2
∆𝑥2𝑖

= −ℏ2

2

(︂
1

𝑚

𝜕2

𝜕𝑥2𝑖
+

1

𝑀

𝜕2

𝜕𝑋2
𝑖

)︂
= − ℏ2

2𝑚
∆𝑟 −

ℏ2

2𝑀
∆𝑅

Подставим найденные выражения в (44):

[︂
− ℏ2

2𝑀
∆𝑅 − ℏ2

2𝑚
∆𝑟 + 𝑈(𝑟⃗ )

]︂
Ψ(𝑅⃗, 𝑟⃗ ) = 𝐸Ψ(𝑅⃗, 𝑟⃗ )
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Переменные разделяются, и мы можем искать решение в виде

Ψ(𝑅⃗, 𝑟⃗ ) = 𝑒𝑖𝑘⃗𝑅⃗ 𝜓(𝑟⃗ )

Тогда уравнение можно переписать в виде

[︂
− ℏ2

2𝑚
∆𝑟 + 𝑈(𝑟⃗ )

]︂
𝜓(𝑟⃗ ) = 𝐸нов 𝜓(𝑟⃗ ), где 𝐸нов = 𝐸 − ℏ2𝑘2

2𝑀
,

а 𝑘 – волновой вектор центра масс: 𝑃цм = ℏ𝑘⃗. Энергия теперь разделилась

на энергию разностного движения и энергию центра масс. Задача двух тел

свелась к свободному движению центра масс 𝑣⃗цм = ℏ𝑘⃗
𝑀 .

r
U

0

e2
r-

Рис. 27. Потенциал притяжения

Задача о вращении вокруг центра масс. Итак, уравнение для движе-

ния частицы вокруг центра масс задаётся уравнением Шрёдингера

[︂
− ℏ2

2𝑚
∆𝑟 + 𝑈(𝑟⃗ )

]︂
𝜓(𝑟⃗ ) = 𝐸нов 𝜓(𝑟⃗ ) ⇒

⇒
[︃
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙̂ 2

𝑟2
+

2𝑚

ℏ2

(︂
𝐸нов +

𝑒2

𝑟

)︂]︃
𝜓(𝑟) = 0

Будем искать решение в сферических гармониках методом разделения пере-

менных:

𝜓(𝑟⃗ ) = 𝑅(𝑟)Y𝑙,𝑚(𝜃, 𝜙)

Подстановка в уравнение Шрёдингера даст уравнение для радиальной части:

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− 𝑙(𝑙 + 1)

𝑟2
+

2𝑚

ℏ2

(︂
𝐸 +

𝑒2

𝑟

)︂]︂
𝑅(𝑟) = 0
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Удобно привести это уравнение к безразмерному виду. Для этого надо сделать

масштабное преобразование, выбрать единицу длины и единицу энергии:

1𝐿 : 𝑟 = (1𝐿)𝑟𝑑 = 𝛼𝑟𝑑, 1𝐸 : 𝐸 = (1𝐸)𝜀𝑑 = 𝛾𝜀𝑑

Для безразмерности нужно:

𝑚𝛼2

ℏ2
𝛾 = 1,

𝑚𝛼2

ℏ2
𝑒2

𝛼
= 1

Тогда в безразмерных переменных

[︂
1

𝑟2
𝜕

𝜕𝑟
𝑟2
𝜕

𝜕𝑟
− (𝑙 + 1)𝑙

𝑟2
+ 2

(︂
𝜀+

1

2

)︂]︂
𝑅(𝑟) = 0

где 𝛼 = ℏ2
𝑚𝑒2 – кулоновская единица длины, 𝛾 = 𝑚𝑒4

ℏ2 – кулоновская единица

энергии. Если в 𝛼 подставить массу электрона, это будет боровский радиус.

Приведение к стандартному виду. Хотим найти дискретный спектр.

Введём новые переменные 𝑛 = 1√
−2𝜀

и 𝜌 = 2𝑟
𝑛 . В них уравнение запишется как

𝑅′′ +
2

𝜌
𝑅′ +

[︂
−1

4
+
𝑛

𝜌
− 𝑙(𝑙 + 1)

𝜌2

]︂
𝑅(𝜌) = 0

Как ведёт себя волновая функция при 𝜌→ ∞? Пренебрежём убывающи-

ми на бесконечности членами:

𝑅′′ +
�
�
��S

S
SS

2

𝜌
𝑅′ +

[︂
−1

4
+

�
�
��C
C
CC

𝑛

𝜌
−

�
�

�
�
�Z

Z
Z

Z
Z

𝑙(𝑙 + 1)

𝜌2

]︂
𝑅(𝜌) = 0, 𝜌→ ∞

𝑅′′ − 1

4
𝑅 = 0 ∼ exp

[︁
−𝜌
2

]︁

А при 𝜌→ 0

𝑅′′ +
2

𝜌
𝑅′ − 𝑙(𝑙 + 1)

𝜌2
𝑅 = 0

Это уравнение Эйлера14 и решение ищется в виде 𝑅 ∼ 𝜌𝑙. Член + 𝑐2
𝜌𝑙+1 не

учитываем, он противоречит ограниченности волновой функции.

Предлагается искать решение в виде 𝑅 = 𝜌𝑙 exp
[︀
−𝜌

2

]︀
𝑊 (𝜌). Подстановка

14Оно однородно степени 0: если домножить решение на 𝜆, то 𝜆 будет можно вынести за скобки
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в исходное уравнение даст

𝜌𝑊 ′′ + (2𝑙 + 2⏟  ⏞  
𝛽

−𝜌)𝑊 ′ + (𝑛− 𝑙 − 1⏟  ⏞  
−𝛿

)𝑊 = 0

𝜌𝑊 ′′ + (𝛽 − 𝜌)𝑊 − 𝛿𝑊 = 0

Получившееся уравнение известно в математике как уравнение Куммера.

При этом всю левую часть называют функцией Куммера или вырожденной

гипергеометрической функцией:

𝐹 (𝛿, 𝛽, 𝜌)

Будем искать решение в виде ряда.

𝑊 =
∞∑︁

𝑛=0

𝑐𝑛 𝜌
𝑛 ⇒ 𝜌𝑊 ′′ =

∞∑︁

𝑛=0

𝑐𝑛 𝑛(𝑛− 1)𝜌𝑛−1

𝑊 ′ =
∞∑︁

𝑛=0

𝑐𝑛 𝑛𝜌
𝑛−1 ⇒ 𝜌𝑊 ′ =

∞∑︁

𝑛=0

𝑐𝑛 𝑛𝜌
𝑛

Тогда

∞∑︁

𝑛=0

𝑐𝑛 𝑛(𝑛− 1)𝜌𝑛−1 −
∞∑︁

𝑛=0

𝑐𝑛 𝑛𝜌
𝑛 + 𝛽

∞∑︁

𝑛=0

𝑐𝑛 𝑛𝜌
𝑛−1 − 𝛿

∞∑︁

𝑛=0

𝑐𝑛 𝜌
𝑛 = 0

В первой сумме первые два члена нули, и ещё сделаем замену 𝑛 = 𝑘 + 1. Во

второй сумме заменяем немой индекс 𝑛 = 𝑘, в третей 𝑘 = 𝑛 − 1, последняя

как вторая:

∞∑︁

𝑘=0

𝑐𝑘+1 𝑘(𝑘 + 1)𝜌𝑘 −
∞∑︁

𝑘=0

𝑐𝑘 𝑘𝜌
𝑘 + 𝛽

∞∑︁

𝑘=−1?

𝑐𝑘 (𝑘 + 1)𝜌𝑘 − 𝛿
∞∑︁

𝑘=0

𝑐𝑘 𝜌
𝑘 = 0

Группируем члены:

(𝑘 + 1)(𝛽 + 𝑘)𝑐𝑘+1 = (𝑘 + 𝛿)𝑐𝑘 ⇒ 𝑐𝑘+1 =
(𝑘 + 𝛿)

(𝑘 + 1)(𝑘 + 𝛽)
𝑐𝑘

Чтобы записать общее решение этого уравнения, 𝑐𝑘=0 мы можем положить
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произвольной, например 1:

𝑐0 = 1, 𝑐1 =
𝛿

𝛽1
, . . . 𝑐2 =

𝛿(𝛿 + 1)

𝛽(𝛽 + 1)2!
, 𝑐3 =

𝛿(𝛿 + 1)(𝛿 + 2)

𝛽(𝛽 + 1)(𝛽 + 2)3!
,

Тогда

𝑐𝑛 =
𝛿(𝛿 + 1) · . . . · (𝛿 + 𝑛− 1)

𝛽(𝛽 + 1) · . . . · (𝛽 + 𝑛− 1)
𝑛!

Нам нужна регулярность в нуле и на бесконечности функции

𝑅 = 𝜌𝑙 exp
[︁
−𝜌
2

]︁
𝑊 (𝜌).

Для этого нужен обрыв ряда, чтобы он превратился в полином. Для этого с

некоторого 𝑘 нужно обрывать. Если 𝛿 – целое отрицательное число, то нужно

𝛿 = −𝑛𝑟, где 𝑛𝑟 – целое положительное число или ноль.
Вспомним, что у нас была введена замена 𝛿 = 1 − 𝑛 + 𝑙 = −𝑛𝑟, тогда

условие обрыва можно записать в виде

𝑛 = 𝑛𝑟 + 𝑙 + 1

Также мы делали замену 𝑛 = 1√
−2𝜀

. Отсюда можно найти безразмерную энер-

гию:

𝜀 = − 1

2𝑛2

Полиномы, образующиеся при обрыве ряда, называются полиномами Ла-

гера 𝐿𝛽,𝛿, и решение через них записывается как

𝑅 = 𝜌𝑙 exp
[︁
−𝜌
2

]︁
𝐿𝛽,𝛿(𝜌)

4.5. Случайное вырождение

Итак, мы получили выражение на собственные значения (энергию) и на

собственные функции при больших 𝑟
𝑛 :

𝜀 = − 1

2𝑛2
, где 𝑛 = 𝑛𝑟 + 𝑙 + 1, Ψ =

(︂
2𝑟

𝑛

)︂𝑙

exp
[︁
− 𝑟
𝑛

]︁
𝐿𝑛𝑟

(︂
2𝑟

𝑛

)︂
Y𝑙,𝑚(𝜃, 𝜙)

Сосчитаем степень вырождения. В правой колонке набрано вырождение

по 𝑚, которое составляет 2𝑙 + 1:

81

https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD%D1%8B_%D0%9B%D0%B0%D0%B3%D0%B5%D1%80%D1%80%D0%B0
https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD%D1%8B_%D0%9B%D0%B0%D0%B3%D0%B5%D1%80%D1%80%D0%B0


Квантовая механика Лекции В.В. Курина 2018-2019

𝑛 = 0 :
{︁
𝑛𝑟 = 0, 𝑙 = 0 1 ⇒ 1 𝑛 = 1 :

{︃
𝑛𝑟 = 1, 𝑙 = 0 1

𝑛𝑟 = 0, 𝑙 = 1 3
⇒ 4

𝑛 = 2 :

⎧
⎪⎨
⎪⎩

𝑛𝑟 = 2, 𝑙 = 0 1

𝑛𝑟 = 1, 𝑙 = 1 3

𝑛𝑟 = 0, 𝑙 = 2 5

⇒ 9 𝑛 = 3 :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑛𝑟 = 3, 𝑙 = 0 1

𝑛𝑟 = 2, 𝑙 = 1 3

𝑛𝑟 = 1, 𝑙 = 2 5

𝑛𝑟 = 0, 𝑙 = 3 7

⇒ 16

Легко сообразить, что степень вырождения за счёт только 2𝑙 + 1 будет

𝑙=𝑛−1∑︁

𝑙=0

(2𝑙 + 1) = 𝑛2

Степень вырождения же оказалась выше, чем можно было бы ожидать. Такое

вырождение называется случайным и является следствием некоторой допол-

нительной симметрии.

Дополнительные замечания.

𝐴, 𝐵̂ [𝐴,𝐵] ̸= 0,

Напишем некий оператор (интеграл движения, закон сохранения) специ-

фический для кулонова поля.

𝐴⃗ =
𝑟⃗

𝑟
− 1

2

{︁[︁
𝑝, 𝑙⃗
]︁
−
[︁
𝑙⃗, 𝑝
]︁}︁

Убедимся в этом:

𝑚¨⃗𝑟 = − 𝑟⃗𝑒
2

𝑟3

Если бы был классический интеграл движения, то было бы

𝐴⃗ =
𝑟⃗

𝑟
−
[︁
𝑝, 𝑙⃗
]︁

В квантовой механике дополнительному вырождению соответствует некото-
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рый оператор, коммутирующий с гамильтонианом.

Импульс и момент импульса в квантах эрмитовы, а их симметризованное

произведение (pl-lp) тоже эрмитово.

(𝐴𝐵)+ = 𝐵+𝐴+, 𝐶 = 𝐴𝐵 +𝐵𝐴 эрмитов всегда (симметризован)

r
E
0

e2
r- 1

2-

1
8-

1
16-

Рис. 28. Спектр в кулоновом поле

Всего под нулём находится бесконечное число уровней. В задаче про яму

получалось конечное число уровней, а в кулоновом поле оно бесконечно: из-за

слабого спадания функции 1
𝑟 .

Для высоких 𝑛 движение будет классическим. Например, сильно возбуж-

дённые атомы водорода (так называемые ридверговские).

В размерных переменных

𝐸 = −Ry

2𝑛2
, где Ry = 27.2 эВ
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5. Теория возмущений

Количество точно решаемых задач ограничено. Это такие задачи, как

прямоугольные потенциалы, гармонический осциллятор, кулоново поле и по-

добные. Таких задач очень мало. Практически любая реальная физическая

квантовая задача точно не решается. Поэтому важно уметь применять при-

ближенные методы: один из них – теория возмущений. Она основана на су-

ществовании малого параметра задачи.

Покажем простейшее применение теории возмущений на примере реше-

ния алгебраических уравнений. Оказывается, можно решить точно квадрат-

ное уравнение, кубическое (с помощью формулы Кардано) и четвёртой сте-

пени, а уравнение пятой степени в радикалах уже не решается. Это строго

доказанный математический факт (см. книгу Феликса Клейна «Элементар-

ная математика глазами высшей»).

𝑥5 + 𝛼𝑥4 + 𝛽𝑥3 + 𝛾𝑥2 + 𝛿𝑥+ 𝜀 = 0

Довольно сложно доказать, что чего-то решить нельзя. Аналитически решить

уже не получится. Тем не менее, может оказаться, (по теореме о представ-

лении любого уравнения в виде Π5
𝑛=1(𝑥 − 𝑥𝑛) = 0) что решение мы найдём.

Например:

𝑥5 − 1 = 0 его решение 𝑥 = exp

{︂
2𝜋𝑖𝑛

5

}︂

Если уравнение решается в радикалах, то решения на комплексной плоскости

можно построить циркулем и линейкой, иначе нельзя.

Пусть у нас есть точно решённая задача, и задача, слабо отличающая от

точной:

𝑥2 + 𝑥 = 𝜀

Квадратное уравнение, в принципе, решается точно.

Если 𝜀 = 0, то

𝑥2 + 𝑥 = 𝑥(𝑥+ 1) = 0 𝑥1 = 0, 𝑥2 = −1.

Будем искать решение в виде 𝑥2 = 𝑥02 + 𝛿. Тогда

(−1 + 𝛿)2 + (−1 + 𝛿) = 𝜀⇒ 1− 2𝛿 + 𝛿2 − 1 + 𝛿 = 𝜀
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Так как 𝛿 ≪ 1, то 𝛿2 → 0, и тогда 𝛿 = −𝜀.
Суть теории возмущений заключается именно в разложении по малому

параметру в области точного решения.

5.1. Стационарная теория возмущений

Пусть у нас есть уравнение Шрёдингера:

𝑖ℏΨ̇ = 𝐻̂Ψ

Пусть 𝐻̂ = 𝐻̂0 + 𝑉 , где 𝑉 - это возмущение. Предположим отсутствие яв-

ной зависимости от времени: 𝜕𝐻0

𝜕𝑡 = 0, 𝜕𝑉𝜕𝑡 = 0. Тогда можем искать решение

стационарной задачи:

𝐻̂𝜓 = 𝐸𝜓

Пусть мы знаем точное решение невозмущенной задачи:

𝐻(0)𝜓(0)
𝑚 (𝑞) = 𝐸(0)

𝑚 𝜓(0)
𝑚 (𝑞) (46)

Тогда решение этой задачи 𝜓 можно искать в виде разложения по собствен-

ным функциям стационарных состояний невозмущённой задачи:

(𝐻̂(0) + 𝑉 )𝜓 = 𝐸𝜓, 𝜓 =
∞∑︁

𝑚=0

𝑐𝑚𝜓
(0)
𝑚 (𝑞) (47)

Подставим это разложение в уравнение невозмущенной задачи (47), и учи-

тывая, что оператор линейный, получим:

∞∑︁

𝑚=0

𝑐𝑚

(︁
𝐻̂(0) + 𝑉

)︁
𝜓(0)
𝑚 = 𝐸

∞∑︁

𝑚=0

𝑐𝑚𝜓
(0)
𝑚 .

В силу точного решения (46)

∞∑︁

𝑚=0

𝑐𝑚(𝐸 − 𝐸(0)
𝑚 )𝜓(0)

𝑚 =
∞∑︁

𝑚=0

𝑐𝑚𝑉 𝜓
(0)
𝑚

Собственные функции гамильтониана невозмущённой задачи (причём он

является эрмитовым оператором) ортогональны. Тогда сумму можно домно-
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жить слева на 𝜓
(0)*
𝑘 и проинтегрировать по d𝑞. В итоге получаем:

⟨
𝜓
(0)
𝑘

⃒⃒
⃒𝜓(0)

𝑚

⟩
≡ ⟨𝑘|𝑚⟩ = 𝛿𝑘𝑚 ⇒ (𝐸 − 𝐸

(0)
𝑘 )𝑐𝑘 =

∑︁

𝑚

𝑉𝑘𝑚𝑐𝑚,

или

(𝐸
(0)
𝑘 − 𝐸)𝑐𝑘 +

∑︁

𝑚

𝑉𝑘𝑚𝑐𝑚 = 0, (48)

где 𝑉𝑘𝑚 – матричный элемент:

𝑉𝑘𝑚 =
⟨
𝜓
(0)
𝑘

⃒⃒
⃒𝑉
⃒⃒
⃒𝜓(0)

𝑚

⟩
=

∫︁
𝜓
(0)*
𝑘 𝑉 𝜓(0)

𝑚 (𝑞) d𝑞 .

Слагаемое 𝐸
(0)
𝑘 . Как выглядит 𝐻(0) в своём представлении?

∫︁
𝜓
(0)*
𝑘 𝐻(0)𝜓(0)

𝑚 d𝑞 = 𝐸(0)
𝑚 𝛿𝑘𝑚

Он диагональный.

Предпологается, что спектр дискретный, так как ставились суммы, а не

интегралы. Как записать систему уравнений (48) в матричном виде ? (столб-

цы 𝑚, строчки 𝑘)

⎛
⎜⎝
𝐸

(0)
1 − 𝐸 + 𝑉11 𝑉12 𝑉13 . . .

𝑉21 𝐸
(0)
2 − 𝐸 + 𝑉22 𝑉23 . . .

. . . . . . . . .

⎞
⎟⎠ ·

⎛
⎜⎝
𝑐1
𝑐2
. . .

⎞
⎟⎠ = 0

Индекс 𝑘 – это номер уравнения.

∑︁

𝑗

𝑎𝑖𝑗𝑐𝑗 = 0

Будем считать, что 𝑉𝑘𝑚 в каком-то смысле малы. В каком, выясним. Будем

искать значение коэффициентов 𝑐𝑚 и энергии 𝐸 в виде рядов

𝑐𝑚 = 𝑐(0)𝑚 + 𝑐(1)𝑚 + 𝑐(2)𝑚 + . . . , 𝐸 = 𝐸(0) + 𝐸(1) + 𝐸(2) + . . .

Где 𝐸(1), 𝑐
(1)
𝑚 такого же порядка малости, как возмущение. Определим поправ-

ки к 𝑛-му собственному значению в нулевом, первом и втором приближении.
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Для 𝑛-го состояния:

𝑐(0)𝑛 = 1, 𝑐(0)𝑚 = 0 (𝑚 ̸= 𝑛)

𝐸 = 𝐸(0)
𝑛 + 𝐸(1)

𝑛 + 𝐸(2)
𝑛 + . . .

Нулевой порядок малости. Рассмотрим нулевое приближение. Пусть си-

стема без возмущения находилась в начальном состоянии 𝐸
(0)
𝑛 . В нулевом

приближении все элементы 𝑉𝑘𝑛 зануляются:

⎛
⎜⎝
𝐸

(0)
1 − 𝐸 0 0 . . .

0 𝐸
(0)
2 − 𝐸 0 . . .

. . . . . . . . . . . .

⎞
⎟⎠ ·

⎛
⎜⎝
𝑐1
𝑐2
. . .

⎞
⎟⎠ = 0

Для решения этой линейной однородной системы, нужно чтобы определитель

был равен нулю. Матрица диагональная, ее детерминант – произведение диа-

гональных элементов:

∆ =
∞∏︁

𝑘=1

(𝐸
(0)
𝑘 − 𝐸) =

∞∏︁

𝑘=1

(𝐸
(0)
𝑘 − 𝐸(0)) = 0 ⇒ 𝑐

(0)
𝑘 = 𝛿𝑛𝑘 ⇒ 𝐸(0) = 𝐸(0)

𝑛

В итоге, невозмущённое решение очевидно, совпадает с решением невозму-

щенной задачи 𝜓 = 𝜓(0). Мы можем так решать эту систему уравнений, т.к.

сделали предположение при решении, что все энергии 𝐸
(0)
1 , 𝐸

(0)
2 . . . разные.

Вырождение будет рассмотрено позднее.

Первый порядок малости. Уравнение (48) это уравнение Шрёдингера,

записанное в представлении стационарных состояний невозмущённой систе-

мы. Геометрический образ – матрица (𝑘 – номер строки, 𝑚 – столбца):

⎛
⎜⎝
𝐸

(0)
1 − 𝐸 + 𝑉11 𝑉12 𝑉13 . . .

𝑉21 𝐸
(0)
2 − 𝐸 + 𝑉22 𝑉23 . . .

. . . . . . . . .

⎞
⎟⎠ ·

⎛
⎜⎝
𝑐1
𝑐2
. . .

⎞
⎟⎠ = 0

Это СЛАУ. Сколько собственных функций – столько и уравнений в системе,

т.е. имеем бесконечную матрицу. Рассмотрим первое приближение. Для этого

в уравнении (48) при подстановке выражений для 𝐸 и 𝑐𝑘 необходимо оставить

только слагаемые первого порядка малости. Для первой поправки ищем
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решение в виде:

𝐸 = 𝐸(0)
𝑛 + 𝐸(1)

𝑛 , 𝑐𝑘 = 𝑐
(0)
𝑘 + 𝑐

(1)
𝑘∑︁

𝑚

𝑉𝑘𝑚𝑐
(0)
𝑚 = (𝐸(0)

𝑛 + 𝐸(1)
𝑛 − 𝐸

(0)
𝑘 ) · (𝑐(0)𝑘 + 𝑐

(1)
𝑘 ) ≃ 𝑐

(0)
𝑘 𝐸(1)

𝑛 + 𝑐
(1)
𝑘 (𝐸(0)

𝑛 − 𝐸
(0)
𝑘 )

Так как 𝑐
(0)
𝑘 = 𝛿𝑛𝑘:

∑︁

𝑚

𝑉𝑘𝑚𝛿𝑛𝑚 = 𝑉𝑘𝑛 = 𝛿𝑛𝑘𝐸
(1)
𝑛 + 𝑐

(1)
𝑘 (𝐸(0)

𝑛 − 𝐸
(0)
𝑘 )

Для случая 𝑛 = 𝑘 получаем поправку к энергии:

𝐸(1)
𝑛 = 𝑉𝑛𝑛 =

∫︁
𝜓(0)*
𝑛 𝑉 𝜓(0)

𝑛 (𝑞) d𝑞 .

А для 𝑛 ̸= 𝑘 находим поправку к коэффициенту разложения:

𝑉𝑘𝑛 = 𝑐
(1)
𝑘 (𝐸(0)

𝑛 − 𝐸
(0)
𝑘 ) ⇒ 𝑐

(1)
𝑘 =

𝑉𝑘𝑛

𝐸
(0)
𝑛 − 𝐸

(0)
𝑘

, 𝑛 ̸= 𝑘

Мы получили, что в первом приближении столбец коэффициентов 𝐶 = {𝑐𝑘}
имеет вид (на 𝑛-ом месте 1 + 𝑐

(1)
𝑛 )

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐
(0)
1 + 𝑐

(1)
1

𝑐
(0)
2 + 𝑐

(1)
2

. . .

𝑐
(0)
𝑛 + 𝑐

(1)
𝑛

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑉1𝑛

𝐸
(0)
𝑛 −𝐸

(0)
1

𝑉2𝑛

𝐸
(0)
𝑛 −𝐸

(0)
2

. . .

1 + 𝑐
(1)
𝑛

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

Таким образом, мы нашли в первом порядке все коэффициенты 𝑐
(1)
𝑘 , кроме

𝑛-го – которое из уравнения не находится.

Поправку 𝑐
(1)
𝑛 легко определить из условия нормировку волновой функции

𝜓𝑛 = 𝜓
(0)
𝑛 + 𝜓

(1)
𝑛 на единицу, с точностью до первого порядка. При этом

необходимо учесть ортогональность собственных функций, их нормировку и

отбросить все слагаемые, у которых порядок малости выше единицы.

⟨𝜓|𝜓⟩ =
⟨∑︁

𝑚

(𝛿𝑚𝑛 + 𝑐(1)𝑚 )𝜓(0)
𝑚

⃒⃒
⃒⃒
⃒
∑︁

𝑚

(𝛿𝑚𝑛 + 𝑐(1)𝑚 )𝜓(0)
𝑚

⟩
=
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=

⟨
(1 + 𝑐(1)𝑛 )𝜓0

𝑛 +
∑︁

𝑚̸=𝑛

𝑐(1)𝑚 𝜓(0)
𝑚

⃒⃒
⃒⃒
⃒⃒(1 + 𝑐(1)𝑛 )𝜓0

𝑛 +
∑︁

𝑚 ̸=𝑛

𝑐(1)𝑚 𝜓(0)
𝑚

⟩
=

= |1 + 𝑐(1)𝑛 |2
⟨
𝜓(0)
𝑛

⃒⃒
⃒𝜓(0)

𝑛

⟩
+

⟨∑︁

𝑚̸=𝑛

𝑐(1)𝑚 𝜓(0)
𝑚

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑚̸=𝑛

𝑐(1)𝑚 𝜓(0)
𝑚

⟩
=

= |1 + 𝑐(1)𝑛 |2 +
∑︁

𝑚̸=𝑛

|𝑐(1)𝑚 |2

⏟  ⏞  
второй порядок малости

= 1 + 𝑐(1)𝑛 + 𝑐*(1)𝑛 = 1 + 2Re
{︁
𝑐(1)𝑛

}︁
= 1

Логично предположить, что Re
{︁
𝑐
(1)
𝑛

}︁
= 0. Следовательно, 𝑐

(1)
𝑛 = 0. Таким

образом, мы нашли первую поправку:

𝐸(1)
𝑛 = 𝑉𝑛𝑛, 𝑛 = 𝑘

𝑐
(1)
𝑘 =

𝑉𝑘𝑛

𝐸
(0)
𝑛 − 𝐸

(0)
𝑘

, 𝑛 ̸= 𝑘

Второй порядок малости Запишем уравнения во втором порядке мало-

сти. В (48) подставляем 𝑘 = 𝑛 и разложение 𝐸 и 𝑐𝑘 до вторых порядков

малости. При этом большинство слагаемых сократится, и останется:

−𝐸(2)
𝑛 𝑐(0)𝑛 +

∑︁

𝑚 ̸=𝑛

𝑉𝑛𝑚𝑐
(1)
𝑚 = 0

Откуда поправка второго порядка к 𝑛-му уровню энергии:

𝐸(2)
𝑛 =

∑︁

𝑚̸=𝑛

𝑉𝑛𝑚𝑉𝑚𝑛

𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

Находя аналогичным способом поправку к коэффициентам (пренебрегая всем

выше второго порядка малости, учитывая что у 𝑉 · 𝑐(2)𝑚 - 3й порядок ма-

лости), получаем выражение для поправки коэффициентов разложения (

??Выражение ниже – (49) получено студентом, а не записано с лекций, воз-

можно, оно неправильное!):
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𝑐
(2)
𝑘 =

⎧
⎪⎪⎨
⎪⎪⎩

0, 𝑘 = 𝑛
∑︁

𝑚̸=𝑛

|𝑉𝑚𝑛|2

(𝐸
(0)
𝑛 − 𝐸

(0)
𝑚 )(𝐸

(0)
𝑛 − 𝐸

(0)
𝑘 )

− 𝑉𝑘𝑛𝑉𝑛𝑛

(𝐸
(0)
𝑛 − 𝐸

(0)
𝑘 )2

, 𝑘 ̸= 𝑛
(49)

С точностью до второго порядка, получаем выражение для энергии:15

𝐸𝑛 = 𝐸(0)
𝑛 + 𝑉𝑛𝑛 +

∑︁

𝑚 ̸=𝑛

𝑉𝑚𝑛𝑉𝑛𝑚

𝐸
(0)
𝑛 − 𝐸

(0)
𝑚

5.1.1 Ангармонический осциллятор

Такой осциллятор описывает движение в непараболическом потенциале.

Гамильтониан системы есть

𝐻̂ =
𝑝2

2𝑚
+
𝑚𝜔2𝑥2

2
+ 𝛼𝑥3 + 𝛽𝑥4⏟  ⏞  

̂︀𝑉

Будем считать, что невозмущенный гамильтониан 𝐻̂ (0) = 𝑝2

2𝑚 + 𝑚𝜔2𝑥2

2 . Эта

задача может быть решена с помощью операторов рождения и уничтожения

𝑎+, 𝑎:

𝑝 = −𝑖ℏ 𝜕
𝜕𝑥

≡ −𝑖ℏ𝜕𝑥

𝐻 = −ℏ2𝜕2𝑥
2𝑚

+
𝑚𝜔2𝑥2

2
+ 𝛼𝑥3 + 𝛽𝑥4

𝐻 = ℏ𝜔
(︂
− ℏ𝜕2𝑥
2𝑚𝜔

+
𝑚𝜔

2ℏ
𝑥2 + 𝛼

𝑥3

ℏ𝜔
+ 𝛽

𝑥4

ℏ𝜔

)︂

Введём безразмерные величины 𝑙кв =
√︁

ℏ
𝑚𝜔 ≡ 𝑙𝑘 и 𝑥 = 𝜉𝑙𝑘:

𝐻 = ℏ𝜔
(︂
−1

2

𝜕2

𝜕𝜉2
+
𝜉2

2
+
𝛼𝑙3𝑘
ℏ𝜔

𝜉3 +
𝛽𝑙4𝑘
ℏ𝜔

𝜉4
)︂

15В Ландау(см. §38, стр 173) такую сумму часто обозначают штрихом, считая, что в такой сумме опус-
кается бесконечное слагаемое.
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Введём переменные

𝜀 =
𝐸

ℏ𝜔
, 𝛼̃ =

𝛼𝑙3𝑘
ℏ𝜔

, 𝛽 =
𝛽𝑙4𝑘
ℏ𝜔

Тогда

𝐻 =
𝑝2 + 𝜉2

2
+ 𝛼̃𝜉3 + 𝛽𝜉4, 𝐻𝜓 = 𝜀𝜓

Вспомним, как вводились операторы 𝑎 и 𝑎+ в (16), а также их коммутацион-

ные соотношения:

𝜉 =
𝑎+ 𝑎+√

2
, 𝑝 =

𝑎− 𝑎+

𝑖
√
2
, 𝑝𝜉 − 𝜉𝑝 = −𝑖, 𝑎𝑎+ − 𝑎+𝑎 = 1

Гамильтониан при подстановке будет иметь вид:

𝐻 = 𝑎+𝑎+
1

2⏟  ⏞  
𝐻0

+ 𝛼̃
(𝑎+ 𝑎+)3

2
√
2

+ 𝛽
(𝑎+ 𝑎+)4

4⏟  ⏞  
𝑉

Задача схожа с теорией колебаний, где мы ищем поправку к частоте методом

Ван-дер-Поля. Мы же будем искать поправку к 𝑘-му уровню энергии.

𝜀(0) = 𝑘 +
1

2

Чтобы найти первую поправку, надо найти матричный элемент 𝑉𝑘𝑘:

𝜀 = 𝜀(0) + ⟨𝑘|𝑉 |𝑘⟩

Займёмся этим. Сначала найдем матричный элемент от кубического слагае-

мого:

⟨𝑘| 𝛼̃(𝑎+ 𝑎+)3 |𝑘⟩ = (50)

Вспомним, как действуют операторы 𝑎, 𝑎+, и как раскрывается куб суммы:

𝑎+ |𝑘 − 1⟩ =
√
𝑘 |𝑘⟩ , 𝑎 |𝑘⟩ =

√
𝑘 |𝑘 − 1⟩

(𝑎+ 𝑎+)3 =

= 𝑎3 + 𝑎+
3
+ 𝑎2𝑎+ + 𝑎𝑎+

2
+ 𝑎𝑎+𝑎+ 𝑎+𝑎2 + 𝑎+𝑎𝑎+ + 𝑎+

2
𝑎
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Если расписывать действие каждого оператора на каждую собственную функ-

цию, то в результате окажется, что под итегралом:

⟨𝑘| 𝛼̃(𝑎+ 𝑎+)3 |𝑘⟩ =
∫︁
𝜓*
𝑘 𝛼̃(𝑎+ 𝑎+)3𝜓𝑘d𝑞

в множителе 𝛼̃(𝑎 + 𝑎+)3𝜓𝑘 - отсутствуют собственные функции номера 𝑘, и

в силу ортогональности ⟨𝜓𝑘|𝜓𝑚⟩ = 𝛿𝑚𝑘, выражение (50) равно 0, а значит, и

первая поправка к энергии 𝜀(1) = 0.

Теперь займёмся слагаемым 4-й степени. (Ненулевыми здесь будет шесть

слагаемых, из бинома Ньютона 1 4 6 4 1):

⟨𝑘| 𝛽(𝑎+ 𝑎+)4 |𝑘⟩ =
= ⟨𝑘| 𝑎𝑎𝑎+𝑎+ + 𝑎𝑎+𝑎𝑎+ + 𝑎+𝑎𝑎𝑎+ + 𝑎+𝑎𝑎+𝑎+ 𝑎+𝑎+𝑎𝑎 |𝑘⟩

𝑎+ |𝑘⟩ =
√
𝑘 + 1 |𝑘 + 1⟩ , 𝑎+𝑎+ |𝑘⟩ =

√
𝑘 + 2

√
𝑘 + 1 |𝑘 + 2⟩ ,

𝑎𝑎+𝑎+ |𝑘⟩ = (𝑘 + 2)
√
𝑘 + 1 |𝑘 + 1⟩ , 𝑎𝑎𝑎+𝑎+ |𝑘⟩ = (𝑘 + 2)(𝑘 + 1) |𝑘⟩

Находя таким образом действие каждого слагаемого в итоге получаем:

⟨𝑘| 𝑎𝑎+𝑎𝑎+ |𝑘⟩ = (𝑘 + 1)2, ⟨𝑘| 𝑎𝑎𝑎+𝑎+ |𝑘⟩ = (𝑘 + 2)(𝑘 + 1)

⟨𝑘| 𝑎+𝑎𝑎𝑎+ |𝑘⟩ = 𝑘(𝑘+1), ⟨𝑘| 𝑎𝑎+𝑎+𝑎 |𝑘⟩ = 𝑘(𝑘+1), ⟨𝑘| 𝑎+𝑎+𝑎𝑎 |𝑘⟩ = 𝑘(𝑘−1)

Проделав все таким нехитрым способом, напишем окончательный ответ:

𝜀(1) = ⟨𝑘| 𝛽(𝑎+ 𝑎+)4 |𝑘⟩ = 3𝛽
(︀
2𝑘2 + 2𝑘 + 1

)︀

У гармонического осциллятора (в нулевом приближении) спектр эквидистант-

ный, см рис. 29. При 𝛽 > 0, из-за положительной поправки 𝜀(1) уровни по-

вышаются. Это есть проявление принципа неопределённости: мы пытаемся

зажать квантовую частицу в более узком потенциале, а она реагирует путём

повышения своей энергии. Чем больше 𝑘, тем выше уходят уровни энергии и

сильнее нарушается эквидистантность.

Конечная разность 𝐸𝑘 − 𝐸𝑘−1 – аналог производной. Для производной

𝜕(𝑥2)/𝜕𝑥 = 2𝑥, здесь аналогично разность порядка 𝑘2.

Если же 𝛽 < 0 (см рис. 30), то расстояние между уровнями будет сокра-
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1
k+1/2

Добавили возмущение
β>0

Эквидистантный спектр

Рис. 29. Различие уровней гармонического и ангармонического осцилляторов

щаться. ... ??

Добавили возмущение
β<0

Рис. 30. Сокращение расстояния между уровнями

Как было показано ранее, в первом порядке теории возмущений добав-

ка 𝑥3 не изменит ничего. Во втором порядке – изменит. Попробуем найти

поправку к нулевому уровню из общей формулы для уровня 𝑘:

𝜀𝑘 = 𝜀
(0)
𝑘 + 𝑉𝑘𝑘 +

∑︁

𝑚̸=𝑘

𝑉𝑘𝑚𝑉𝑚𝑘

𝐸
(0)
𝑘 − 𝐸

(0)
𝑚

(51)

Для 𝑘 = 0 𝐸
(0)
0 − 𝐸

(0)
𝑚 < 0, а в силу эрмитовости 𝑉 : 𝑉𝑚𝑘 = 𝑉 *

𝑘𝑚. Тогда

поправка второго порядка к основному приближению будет всегда отрица-

тельна – из-за кубического члена.
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Наметим путь решения этой задачи. Нужно выписывать матричные эле-

менты 𝑉𝑚𝑘:

𝑉𝑘𝑚 = ⟨𝑘| (𝑎+ 𝑎+)3 |𝑚⟩

⟨𝑘| 𝑎3 |𝑚⟩ ⇒ 𝑚 = 𝑘 + 3, ⟨𝑘| 𝑎+3 |𝑚⟩ ⇒ 𝑚 = 𝑘 − 3

⟨𝑘| 𝑎+2
𝑎 |𝑚⟩ ⇒ 𝑚 = 𝑘 − 1, ⟨𝑘| 𝑎2𝑎+ |𝑚⟩ ⇒ 𝑚 = 𝑘 + 1

В этой сумме будет четыре члена, в знаменателе формулы (51) будет

𝐸0
𝑘 − 𝐸0

𝑚 = ±3ℏ𝜔

Эта задача решена в Ландау16. Она у нас на экзамене на пятёрку.

5.1.2 Вырождение

Модификаций теорий возмущений много. Мы будем изучать теорию воз-

мущений Шрёдингера-Ритца. В квантовой электродинамике её применение

сложно, и Фейнман придумал другую теорию возмущений, позволяющую ав-

томатизировать решение.

От времени у нас по-прежнему ничего не зависит. Уравнение в базисе

функций невозмущённой задачи запишется как

(𝐸(0)
𝑛 − 𝐸)𝑐𝑛 +

∑︁

𝑚

𝑉𝑛𝑚𝑐𝑚 = 0.

В матричном виде (𝑚 – номер столбца, 𝑛 – строки):

⎛
⎜⎝
𝐸

(0)
1 − 𝐸 + 𝑉11 𝑉12 𝑉13 . . .

𝑉21 𝐸
(0)
2 − 𝐸 + 𝑉22 𝑉23 . . .

. . . . . . . . .

⎞
⎟⎠ ·

⎛
⎜⎝
𝑐1
𝑐2
. . .

⎞
⎟⎠ = 0

Мы рассматривали случай, когда все 𝐸
(0)
1 , 𝐸

(0)
2 , . . . разные – т.е. нет вырож-

дения. Характеристическое уравнение здесь – определитель матрицы равен

нулю:

∆ =
∏︁

𝑛

(𝐸(0)
𝑛 − 𝐸) = 0

16см. §38, стр 175, решенная во втором порядке малости.
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Если мы брали конкретную энергию 𝐸 = 𝐸
(0)
𝑘 , то получали 𝑐

(0)
𝑛𝑘 = 𝛿𝑛𝑘. При вы-

рождении одному собственному значению соответствует несколько собствен-

ных функций. У характеристического уравнения среди 𝐸
(0)
𝑛 есть одинаковые

корни17.

Пусть у нас кратность вырождения корня 𝐸
(0)
𝑘 будет 𝑁 :

⎛
⎜⎝
𝐸

(0)
1 − 𝐸 + 𝑉11 𝑉12 𝑉13 . . .

𝑉21 𝐸
(0)
2 − 𝐸 + 𝑉22 𝑉23 . . .

. . . . . . . . .

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
. . .

𝑐𝑛1

𝑐𝑛2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0

Например, уровни энергии, и соответсвующие им собств. функции:

𝐸(0)
𝑛 = 𝐸

(0)
𝑛1 = 𝐸

(0)
𝑛2 , 𝜓

(0)
𝑛1 (𝑥), 𝜓

(0)
𝑛2
(𝑥)

Тогда любая их суперпозиция также будет решением:

𝜓 = 𝑑1𝜓
(0)
𝑛1 (𝑥) + 𝑑2𝜓

(0)
𝑛2
(𝑥)

Как же правильно найти эти коэффициенты? Всего в столбце коэффи-

центов 𝑛 = 𝑘 +𝑁 элементов??. В матрице теперь берём не все уравнения, а

только блок кратных корней (𝑛′ обозначены коэффициенты, относящиеся к

одному и тому же значению энергии 𝐸𝑛):

(𝐸(0)
𝑛 − 𝐸)⏟  ⏞  
−𝐸

(1)
𝑛

𝑐(0)𝑛 +
∑︁

𝑛′

𝑉𝑛𝑛′𝑐
(0)
𝑛′ = 0

Выше мы ограничились только первым приближением 𝐸 = 𝐸
(0)
𝑛 + 𝐸

(1)
𝑛 . По-

правка к 𝑛-му уровню

−𝐸(1)
𝑛 𝑐(0)𝑛 +

∑︁

𝑛′

𝑉𝑛𝑛′𝑐
(0)
𝑛′ = 0,

где 𝑛, 𝑛′ - пробегают по всем значениям состояний, относящихся к одному

собственному значению 𝐸
(0)
𝑛 , т.е. система получится 𝑁 -го порядка. Условие

17Пример кратного корня – решение уравнения 𝑥2 = 0
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разрешимости и нахождения коэффицентов 𝑐
′(0)
𝑛 – равенство нулю детерми-

нанта. Напишем, например, для порядка 𝑁 = 3 это уравнение в матричном

виде: ⎛
⎜⎝
−𝐸(1) + 𝑉11 𝑉12 𝑉13

𝑉21 −𝐸(1) + 𝑉22 𝑉23
𝑉31 𝑉32 −𝐸(1) + 𝑉33

⎞
⎟⎠ ·

⎛
⎜⎝
𝑐1
𝑐2
𝑐3

⎞
⎟⎠ = 0

Тогда в индексной записи определитель

∆ = ||𝑉𝑖𝑘 − 𝐸(1)𝛿𝑖𝑘|| = 0

Или

𝑉 =

⎛
⎜⎝
𝑉11 𝑉12 𝑉13 . . .

𝑉21 𝑉22 𝑉23 . . .

𝑉31 𝑉32 𝑉33

⎞
⎟⎠

и тогда

det (𝑉 − 𝐸(1)𝐼) = 0.

Это уравнение называется секулярным. Такими уравнениями описываются

медленные движения планет, например, в небесной механике, и дают малые

поправки. Характерное время оборота Земли – ровно год, а возмущения (на-

пример, влияние Луны) имеют характерные времена – века.

5.1.3 Двукратное вырождение

Простейший пример вырождения – двукратное вырождение. Обозначим

номером 1 строку и столбец выделенного блока в матрице. Тогда

−𝐸𝑐1 + 𝑉11𝑐1 + 𝑉12𝑐2 = 0

−𝐸𝑐2 + 𝑉22𝑐2 + 𝑉21𝑐1 = 0

В матричном виде

(︃
−𝐸 + 𝑉11 𝑉12

𝑉21 −𝐸 + 𝑉22

)︃
·
(︃
𝑐1
𝑐2

)︃
= 0

Смысл равенства нулю детерминанта – совпадение прямых (плоскостей, и

так далее) – что даст существование нетривиального решения. Это всё имеет

простой геометрический смысл и говорит о линейной зависимости уравнений.
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Найдем решение det = 0 – квадратное уравнение:

𝐸2 − (𝑉11 + 𝑉22)𝐸 + 𝑉11𝑉22 − 𝑉12𝑉21 = 0

В общем виде для второго порядка получим:

𝐸2 − 𝐸 diag𝑉 + det𝑉 = 0

Итак, для второго порядка (учтём, что 𝑉12𝑉21 = |𝑉12|2)

𝐸1,2 =
𝑉11 + 𝑉22

2
±
√︂

(𝑉11 + 𝑉22)2

4
− 𝑉11𝑉22 + |𝑉12|2

𝐸1,2 =
𝑉11 + 𝑉22

2
±
√︂

(𝑉11 − 𝑉22)2

4
+ |𝑉12|2

Мы нашли собственные значения энергии. Дальше нужно найти константы:

для нужно этого подставить одно из найденных значений в систему 5.1.3.

(−𝐸1 + 𝑉11)𝑐1 + 𝑉12𝑐2 = 0, ⇒ 𝑐2 = 𝑐1
𝐸1 − 𝑉11
𝑉12

𝑐1 можем положить чему хотим, т.е. константа произвольная. Введём нуме-

рацию, соответствующую решениям 𝐸1,2:

𝑐12 =
𝑐1
𝑉12

[︃
𝑉22 − 𝑉11

2
+

√︂
(𝑉11 − 𝑉22)2

4
+ |𝑉12|2

]︃

𝑐22 =
𝑐1
𝑉12

[︃
𝑉22 − 𝑉11

2
−
√︂

(𝑉11 − 𝑉22)2

4
+ |𝑉12|2

]︃

Или можно записать в виде

(︃
𝑐1
𝑐2

)︃

(1)

=

(︃
𝑉12

𝑉22−𝑉11

2 +
√
. . .

)︃
,

(︃
𝑐1
𝑐2

)︃

(2)

=

(︃
𝑉12

𝑉22−𝑉11

2 −√
. . .

)︃
,

Тогда

𝜓 = 𝑐
(0)
1 𝜓0

1 + 𝑐
(0)
2 𝜓0

2
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Это правильные функции нулевого приближения: они соответствуют невы-

рожденному состоянию.

До возмущения

После возмущения
(снимается вырождение)

E=Ek
(0)

V

Рис. 31. Снятие вырождения при возмущении

При конечном возмущении, как говорят, снимается вырождение. Сейчас

рассмотрим задачу о возникновении зон.

5.2. Электрон в поле двух ядер

Мы решали задачу об атоме водорода. Теперь вдруг сбоку подносим один

𝑈1 𝑈2

Рис. 32. Электрон может находится как в Ψ одного протона, так и другого

протон: получается система из двух протонов и одного электрона. Это систе-

ма образует молекулярный ион H+
2 .

Задачу можно решать так: поскольку протоны тяжёлые, то можно считать

что они не двигаются, и сначала решить задачу о движении электрона в поле

двух протонов:

𝐻 =
𝑝2

2𝑚
+ 𝑈(𝑟 − 𝑟1) + 𝑈(𝑟 − 𝑟2)
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Нам нужно решить такую задачу:

𝐻̂Ψ(𝑟⃗ ) = 𝐸Ψ(𝑟⃗), (52)

Уровни здесь дважды вырождены, так как система уровней неподвижных

ядер одинакова. Будем искать волновую функцию в виде линейной комбина-

ции:

Ψ(𝑟) = 𝑐1Ψ
(0)(𝑟⃗ − 𝑟⃗1) + 𝑐2Ψ

(0)(𝑟⃗ − 𝑟⃗2) + . . .⏟ ⏞ 
поправка

Зная гамильтониан (52) этой системы, можно записать СУШ:

[︂
𝑝2

2𝑚
+ 𝑈(𝑟⃗ − 𝑟⃗1) + 𝑈(𝑟⃗ − 𝑟⃗2)

]︂{︁
𝑐1Ψ

(0)(𝑟⃗ − 𝑟⃗1) + 𝑐2Ψ
(0)(𝑟⃗ − 𝑟⃗2)

}︁
=

= 𝐸
{︁
𝑐1Ψ

(0)(𝑟⃗ − 𝑟⃗1) + 𝑐2Ψ
(0)(𝑟⃗ − 𝑟⃗2)

}︁
(53)

Будем считать, что решения для одного атома мы знаем, т.е.:

[︂
𝑝2

2𝑚
+ 𝑈(𝑟⃗ − 𝑟⃗1)

]︂
Ψ(0)(𝑟⃗ − 𝑟⃗1) = 𝐸(0)Ψ(0)(𝑟⃗ − 𝑟⃗1)

Тогда (53) можно переписать в виде:

𝐸(0)𝑐1Ψ
(0)(𝑟⃗ − 𝑟⃗1) + 𝑈(𝑟⃗ − 𝑟⃗2)𝑐1Ψ

(0)(𝑟⃗ − 𝑟⃗1)+

𝐸(0)𝑐2Ψ
(0)(𝑟⃗ − 𝑟⃗2) + 𝑈(𝑟⃗ − 𝑟⃗1)𝑐2Ψ

(0)(𝑟⃗ − 𝑟⃗2) =

= 𝐸
{︁
𝑐1Ψ

(0)(𝑟⃗ − 𝑟⃗1) + 𝑐2Ψ
(0)(𝑟⃗ − 𝑟⃗2)

}︁

Домножим это уравнение сначала на Ψ(0)*(𝑟⃗ − 𝑟⃗1) и проинтегрируем по про-

странтсву, а затем домножим на Ψ(0)*(𝑟⃗ − 𝑟⃗2), и так же проинтегрируем:

∫︁
Ψ(0)*Ψ(0) d3𝑟 = 1
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Так же будут интегралы, которые мы не будем считать, а просто обозначим:

𝑆 =

∫︁
𝑈(𝑟⃗ − 𝑟⃗2)Ψ

*(0)(𝑟⃗ − 𝑟⃗1)Ψ
(0)(𝑟⃗ − 𝑟⃗1) d

3𝑟 ,

𝑅 =

∫︁
Ψ*(0)(𝑟⃗ − 𝑟⃗1)Ψ

(0)(𝑟⃗ − 𝑟⃗2) d
3𝑟 ,

𝑇 =

∫︁
𝑈(𝑟⃗ − 𝑟⃗1)Ψ

*(0)(𝑟⃗ − 𝑟⃗1)Ψ
(0)(𝑟⃗ − 𝑟⃗2) d

3𝑟 ,

Тогда

𝐸(0)𝑐1 + 𝑆𝑐1 + 𝐸(0)𝑅𝑐2 + 𝑇𝑐2 = 𝐸𝑐1 + 𝐸𝑅𝑐2

Теперь надо написать второе уравнение. Можно не проделывать все то же

самое, а просто сделать замену:

𝑟1 → 𝑟2, 𝑟2 → 𝑟1, 𝑐1 → 𝑐2, 𝑐2 → 𝑐1.

𝐸(0)𝑐2 + 𝑆𝑐2 + 𝐸(0)𝑅𝑐1 + 𝑇𝑐1 = 𝐸𝑐2 + 𝐸𝑅𝑐1

Поскольку уравнения действительные, то в интегралах 𝑆, 𝑇,𝑅 можно было

бы не писать сопряжение. (Почему-то волновая функция действительна).??

Обозначим 𝐸(0) − 𝐸 = −𝜀, тогда оба уравнения запишутся в виде:
(︃

−𝜀+ 𝑆 (𝐸(0)𝑅 + 𝑇 − (𝐸(0) + 𝜀)𝑅)

𝐸(0)𝑅 + 𝑇 − (𝐸(0) + 𝜀)𝑅 −𝜀+ 𝑆

)︃
·
(︃
𝑐1
𝑐2

)︃

𝑆,𝑅, 𝑇 – так называемые интегралы перекрытия. Упрощая систему, получим:

(︃
−𝜀+ 𝑆 𝑇 − 𝜀𝑅

𝑇 − 𝜀𝑅 −𝜀+ 𝑆

)︃
·
(︃
𝑐1
𝑐2

)︃

Для существования решения, определитель должен равняться нулю. Опреде-

литель даст (учтём, что 𝜀 ∼ 𝑇, 𝑆):

(𝑆 − 𝜀)2 − (𝑇 − 𝜀𝑅)2 = 0

его решение будет

𝜀 = 𝑆 ± (𝑇 − 𝜀𝑅)
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поскольку 𝑆, 𝑇,𝑅 ∼ 𝜇 – в первом порядке теории возмущений, то

𝜀(1∓𝑅) = 𝑆 ± 𝑇 → 𝜀 = 𝑆 ± 𝑇

Итак, мы нашли поправку первого порядка малости. Теперь найдём коэффи-

циенты: (︃
−𝑇 𝑇

𝑇 −𝑇

)︃(︃
𝑐1
𝑐2

)︃
= 0

Видно, что уравнения линейно зависимы, значит, при 𝜀 = 𝑆 + 𝑇 , 𝑐2 = 𝑐1.

Аналогично при 𝜀 = 𝑆 − 𝑇 получается 𝑐2 = −𝑐1.
Можно заметить, что 𝑆 и 𝑇 – отрицательны. Потенциал – притяжения,

значит 𝑈 < 0. Отсюда следует, что 𝑆 + 𝑇 < 𝑆 − 𝑇 .

𝜀

0

+S
−T

+T

Рис. 33. Расщепление

Симметричная волновая функция:

Ψ1 = 𝑐1

(︁
Ψ(0)(𝑟⃗ − 𝑟⃗1) + Ψ(0)(𝑟⃗ − 𝑟⃗2)

)︁
,⇒ 𝜀 = −|𝑆| − |𝑇 |

Антисимметричная волновая функция:

Ψ2 = 𝑐1

(︁
Ψ(0)(𝑟⃗ − 𝑟⃗1)−Ψ(0)(𝑟⃗ − 𝑟⃗2)

)︁
,⇒ 𝜀 = −|𝑆|+ |𝑇 |

Это правильные функции нулевого приближения.

Можно рассмотреть задачу не о двух атомах, а о большом количестве.

Степень вырождения будет очень высокой. Например, кристалл. Характер-

ная плотность атомов в металле 1023 см−3. Уровней будет уже не 2, а 1024:
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𝜀

0

+S 1024 уровней

Рис. 34. Разрешённая зона

Резюмируем: снятие вырождения породило зону. Уровни в зоне располо-

жены так близко, что можно считать их сплошным спектром.
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5.3. Нестационарная теория возмущений

Необходимо решить уравнение с нестационарным возмущением:

𝑖ℏΨ̇ =
(︁
𝐻̂(0) + 𝑉 (𝑟⃗, 𝑡)

)︁
Ψ

5.3.1 Переходы в состояниях спектра при периодическом возму-

щении

Пример нестационарных возмущений. Пусть есть атом водорода с потен-

циалом −𝑒2/|𝑥|:

x
E
0

e2
|x|-

Рис. 35. Спектр атома водорода

Что такое возмущение? Пусть действует однородное электрическое поле

𝐸⃗ = 𝐸⃗0 cos𝜔𝑡. Его потенциал

𝜙 = −(𝐸⃗ · 𝑟⃗)

Тогда изначальное уравнение примет вид

𝑖ℏΨ̇ =

(︂
𝑝2

2𝑚
− 𝑒2

2
− 𝑒(𝐸⃗0 · 𝑟⃗) cos𝜔𝑡

)︂
Ψ(𝑟⃗, 𝑡)

Если бы поле было статическое, мы бы наблюдали снятие вырождения –

т.е. эффект Штарка. А теперь могут возникать переходы между уровнями.

Пусть мы знаем, что в нулевой момент времени электрон находится в ос-

новном состоянии. Потом мы включаем переменное поле, и электрон может

возбудиться – перейти на следующий уровень, или вообще ионизироваться –

перейти в область почти сплошного спектра: на простом языке, отрыв элек-

трона от атома.
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Нестационарная теория возмущений позволит нам сосчитать вероятности

переходов и вероятность ионизации.

Переходы в дискретном спектре. Вообще говоря, поле неоднородное,

но если размер атома много меньше длины волны, то это называется диполь-

ным приближением. Как подойти к задаче? Пусть нам известны функции

нулевого порядка (известна задача про атом водорода), а полное решение

будем раскладывать по функциям невозмущённой задачи Ψ
(0)
𝑛 :

Ψ(𝑟⃗, 𝑡) =
∑︁

𝑛

𝑐𝑛(𝑡)Ψ
(0)
𝑛 (𝑟), 𝐻̂(0)Ψ(0)

𝑛 = 𝐸(0)
𝑛 Ψ(0)

𝑛

Запишем уравнение Шрёдингера, и скалярно домножим на Ψ
*(0)
𝑚 :

Ψ*(0)
𝑚 | 𝑖ℏ

∑︁

𝑛

𝑐̇𝑛(𝑡)Ψ
(0)
𝑛 (𝑟) = 𝐻(0)

∑︁

𝑛

𝑐𝑛(𝑡)Ψ
(0)
𝑛 (𝑟) + 𝑉

∑︁

𝑛

𝑐𝑛(𝑡)Ψ
(0)
𝑛 (𝑟)

Воспользуемся ортогональностью:

⟨Ψ𝑚|Ψ𝑛⟩ =
∫︁

Ψ*
𝑚(𝑟)Ψ𝑛(𝑟) d

3𝑟 = 𝛿𝑚,𝑛

Тогда уравнение Шрёдингера принимает вид

𝑖ℏ𝑐̇𝑚 = 𝐸(0)
𝑚 𝑐𝑚(𝑡) +

∑︁

𝑛

𝑉𝑚𝑛(𝑡)𝑐𝑛(𝑡) (54)

Это энергетическое представление невозмущённой задачи. ??

Это система дифференциальных уравнений в обыкновенных производ-

ных, которых много, по всему дискретному спектру. Как её решать? Это

уравнение Шрёдингера, где все операторы взяты в представлении Шрёдин-

гера. Вспомним, что есть представления Гейзенберга и Шрёдингера. В чем

состоит разница между этими представлениями? Среднее значение любой

физической величины A может зависеть от времени:

𝐴 =

∫︁
Ψ*(𝑡)𝐴Ψ(𝑡, 𝑟) d3𝑟 = ⟨Ψ(𝑡)|𝐴 |Ψ(𝑡)⟩ .

Это язык Шрёдингера, когда волновая функция зависит от времени. Сама

функция Ψ удовлетворяет уравнению Шрёдингера: А можно записать через
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оператор эволюции 𝑈̂(𝑡):

𝑖ℏ |Ψ⟩ = 𝐻 |Ψ⟩ , |Ψ(𝑡)⟩ = 𝑈̂(𝑡) |Ψ(0)⟩ , ⟨Ψ(𝑡)| = ⟨Ψ(0)|𝑈+(𝑡)

Оператор эволюции должен быть унитарным, потому что

⟨Ψ(𝑡)|Ψ(𝑡)⟩ = ⟨Ψ(0)|𝑈+𝑈 |Ψ(0)⟩ = 1 ⇒ 𝑈+𝑈 = 1̂.

Тогда выражение для среднего значения принимает вид

𝐴 = ⟨Ψ(0)|𝑈+𝐴𝑈 |Ψ(0)⟩

Это уже представление Гейзенберга:

⟨︀
Ψ𝐺
⃒⃒
𝐴𝐺
⃒⃒
Ψ𝐺
⟩︀

5.3.2 Представление Взаимодействия

𝐴𝐼 = 𝑈̂ 0+𝐴𝑆𝑈̂ 0

𝐻 = 𝐻(0) + 𝑉, 𝑖ℏ(̇𝑈)0 = 𝐻(0)𝑈 0

Итак, нам нужно решать уравнение (54):

𝑖ℏ𝑐̇𝑚 = 𝐸(0)
𝑚 𝑐𝑚(𝑡) +

∑︁

𝑛

𝑉𝑚𝑛(𝑡)⏟  ⏞  
≃0

𝑐𝑛(𝑡)

Сделаем преобразование к представлению взаимодействия. Сначала решим

уравнения нулевого приближения

𝑖ℏ𝑐̇𝑚 = 𝐸(0)
𝑚 𝑐𝑚 ⇒ 𝑐𝑚(𝑡) = 𝑐𝑚(0) exp

(︃
−𝑖𝐸

(0)
𝑚 𝑡

ℏ

)︃
,

а затем введём новую переменную 𝑑𝑚(𝑡) соотношением:

𝑐𝑚(𝑡) = 𝑑𝑚(𝑡) exp

(︃
−𝑖𝐸

(0)
𝑚 𝑡

ℏ

)︃
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Тогда

𝑐̇𝑚 = 𝑑𝑚 exp

(︃
−𝑖𝐸

(0)
𝑚 𝑡

ℏ

)︃
− 𝑖𝐸

(0)
𝑚

ℏ
𝑑𝑚 exp

(︃
−𝑖𝐸

(0)
𝑚 𝑡

ℏ

)︃

Подставляя 𝑐̇𝑚 в изначальное уравнение (54):

𝑖ℏ𝑑𝑚 exp

(︃
−𝑖𝐸

(0)
𝑚 𝑡

ℏ

)︃
=
∑︁

𝑛

𝑉𝑚𝑛(𝑡)𝑑𝑛(𝑡) exp

(︃
−𝑖𝐸

(0)
𝑛 𝑡

ℏ

)︃

Тогда

𝑖ℏ𝑑𝑚 =
∑︁

𝑛

̃︀𝑉𝑚𝑛(𝑡)𝑑𝑛(𝑡), (55)

где оператор возмущения в представлении взаимодействия

̃︀𝑉𝑚𝑛 = 𝑉𝑚𝑛 exp

(︃
𝑖
(𝐸

(0)
𝑚 − 𝐸

(0)
𝑛 )𝑡

ℏ

)︃
(56)

Это уравнениеШрёдингера в представлении взаимодействия. Почему оно так

называется? Если бы не было взаимодействия 𝑉𝑚,𝑛, все 𝑑𝑚 были бы констан-

тами.

5.3.3 Монохроматическое возмущение

Пусть имеется переменное электрическое поле, направление по оси 𝑥. То-

гда имеем:

𝑉 = 𝑒𝑥𝐸 cos𝜔𝑡, 𝑉𝑚𝑛 = 𝑒𝐸𝑋𝑚𝑛 cos𝜔𝑡 =
1

2
𝑒𝐸𝑋𝑚𝑛

(︀
𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡

)︀
,

𝑋𝑚𝑛 =

∫︁
Ψ*

𝑚(𝑟)𝑥Ψ𝑛(𝑟) d𝑥 d𝑦 d𝑧 = 𝑋*
𝑛𝑚.

Можем рассмотреть более общий случай произвольного гармонического воз-

мущения:

𝑉𝑚𝑛 =
(︀
𝐹𝑚𝑛𝑒

−𝑖𝜔𝑡 + 𝐹 *
𝑛𝑚𝑒

+𝑖𝜔𝑡
)︀

Тогда, подставив 𝑉𝑚𝑛 в (56), учитывая, что 𝜔𝑚𝑛 = (𝐸
(0)
𝑚 −𝐸

(0)
𝑛 )

ℏ

̃︀𝑉𝑚𝑛 = 𝐹𝑚𝑛𝑒
𝑖(𝜔𝑚𝑛−𝜔)𝑡 + 𝐹 *

𝑛𝑚𝑒
𝑖(𝜔+𝜔𝑚𝑛)𝑡
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Пусть нам дано, что в начальный момент времени система находится в каком-

то 𝑘-ом состоянии. Значит, 𝑑
(0)
𝑛 (𝑡 = 0) = 𝛿𝑛𝑘. Тогда, подставляя в (55) выра-

жение для ̃︀𝑉𝑚𝑛:

𝑖ℏ𝑑(1)𝑚𝑘 = 𝑉𝑚𝑘(𝑡) = 𝐹𝑚𝑘𝑒
𝑖(𝜔𝑚𝑘−𝜔)𝑡 + 𝐹 *

𝑘𝑚𝑒
𝑖(𝜔𝑚𝑘+𝜔)𝑡

Настоящие уравнения – параметрические и в общем случае не решаются. А

мы получили то, что можно решить. Интеграл берётся, и

𝑑
(1)
𝑚𝑘 =

1

𝑖ℏ

[︂
𝐹𝑚𝑘𝑒

𝑖(𝜔𝑚𝑘−𝜔)𝑡

𝑖(𝜔𝑚𝑘 − 𝜔)
+
𝐹 *
𝑘𝑚𝑒

𝑖(𝜔𝑚𝑘+𝜔)𝑡

𝑖(𝜔𝑚𝑘 + 𝜔)

]︂
(57)

Ɛn

Рис. 36. Структура уровней

Условие применимости такого приближения – |𝑑𝑚𝑘| ≪ 1. Здесь возможно

неограниченное нарастание при совпадении частоты внешнего воздействия с

расстоянием между уровнями, и на таком резонансном уровне теория возму-

щений неприменима.

Итак, формула верна при отсутствии резонанса. Случай резонанса

Ω𝑚𝑘 = 𝜔 · (𝑚− 𝑘)

5.3.4 Двухуровневая среда

Важно, что система (атом) имеет сильно неэквидистантный спектр (см.

рис. 37) и только пара уровней находится в резонансе. Давайте для этой пары

уровней напишем уравнение. Пусть нижний уровень 𝑑1, верхний 𝑑2. Между

ними могут быть и другие, но не резонансные уровни.

Пусть на атом воздействует поле частотой, близкой к резонансной: 𝜔 =
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𝑑2 2

𝑑1 1

Рис. 37. Спектр атома с двухуровневым переходом

𝜔21 + 𝜀. Тогда (54) примет вид:

𝑖ℏ𝑐̇2 = 𝐸2𝑐2 + 𝑐1

(︁
𝐹21𝑒

−𝑖(𝜔21+𝜀)𝑡 + 𝐹 *
12𝑒

𝑖(𝜔21+𝜀)𝑡
)︁

𝑖ℏ𝑐̇1 = 𝐸1𝑐1 + 𝑐2

(︁
𝐹12𝑒

−𝑖(𝜔21+𝜀)𝑡 + 𝐹 *
21𝑒

𝑖(𝜔21+𝜀)𝑡
)︁

В переменных 𝑑:

𝑖ℏ𝑑2 = 𝑑1

[︁
𝐹21𝑒

𝑖(𝜔21−𝜔21−𝜀)𝑡 +((((((((((hhhhhhhhhh𝐹 *
12𝑒

𝑖(𝜔21+𝜔21+𝜀)𝑡
]︁

𝑖ℏ𝑑1 = 𝑑2

[︁
𝐹12𝑒

𝑖(𝜔21−𝜔21+𝜀)𝑡 +((((((((((hhhhhhhhhh𝐹 *
21𝑒

𝑖(𝜔21+𝜔21+𝜀)𝑡
]︁

(58)

Из формулы (58) видим, что важны члены, которые близки к резонансу.

Отбросив остальные члены получим (𝐹12 = 𝐹 *
21):

𝑖ℏ𝑑2 = 𝑑1𝐹21𝑒
−𝑖𝜀𝑡, 𝑖ℏ𝑑1 = 𝑑2𝐹

*
21𝑒

𝑖𝜀𝑡

Введём новые переменные 𝑑2 = 𝑏2𝑒
−𝑖𝜀𝑡/2, 𝑑1 = 𝑏1𝑒

𝑖𝜀𝑡/2. Тогда (58) запишется:

𝑖ℏ
(︁
𝑏̇2 − 𝑖

𝜀

2
𝑏2

)︁
= 𝐹21𝑏1𝑖ℏ

(︁
𝑏̇1 + 𝑖

𝜀

2
𝑏1

)︁
= 𝐹 *

12𝑏2

Это уже уравнения с постоянными коэффициентами. Система уравнений пер-

вого порядка лучше уравнения 𝑛-го порядка. Так что решать будем так: урав-

нение линейное с постоянными коэффициентами, значит нужно искать реше-

ния в виде экспонент: (︃
𝑏2(𝑡)

𝑏1(𝑡)

)︃
=

(︃
𝑏2
𝑏1

)︃
𝑒−𝑖Ω𝑡
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Подставляем в ():

𝑖ℏ
(︁
−𝑖Ω− 𝑖

𝜀

2

)︁
𝑏2 = 𝐹21𝑏1

𝑖ℏ
(︁
−𝑖Ω + 𝑖

𝜀

2

)︁
𝑏1 = 𝐹 *

21𝑏2

ℏ
(︁
Ω +

𝜀

2

)︁
𝑏2 = 𝐹21𝑏1

ℏ
(︁
Ω− 𝜀

2

)︁
𝑏1 = 𝐹 *

21𝑏2

Получили СЛАУ, значит есть нетривиальное решение, когда определитель

равен нулю:

ℏ2
(︂
Ω2 − 𝜀2

4

)︂
= |𝐹21|2

Отсюда

Ω2 =
𝜀2

4
+

|𝐹21|2
ℏ2

Впервые эту задачу рассмотрел Раби. Это базовая задача квантовой оптики.

За это он получил Нобелевскую премию. Эта частота называется частотой

Раби. Теперь найдём собственные вектора:

Ω = ±
√︂
𝜀2

4
+

|𝐹21|2
ℏ2

(︃
𝑏2(𝑡)

𝑏1(𝑡)

)︃
= 𝑐1

(︃
𝑏12
𝑏21

)︃
𝑒−𝑖Ω𝑡 + 𝑐2

(︃
𝑏22
𝑏21

)︃
𝑒𝑖Ω𝑡

𝑏1,22 = 𝐹21, 𝑏1,21 = ℏ
(︁
±Ω +

𝜀

2

)︁

Имеем следующие выражения для собственных векторов

(︃
𝑏12
𝑏11

)︃
=

(︃
𝐹21

ℏ
(︀
Ω + 𝜀

2

)︀
)︃
,

(︃
𝑏22
𝑏21

)︃
=

(︃
𝐹21

ℏ
(︀
−Ω + 𝜀

2

)︀
)︃
.

Общее решение уравнений

(︃
𝑏2(𝑡)

𝑏1(𝑡)

)︃
= 𝑐1

(︃
𝐹21

ℏ
(︀
Ω + 𝜀

2

)︀
)︃
𝑒−𝑖Ω𝑡 + 𝑐2

(︃
𝐹21

ℏ
(︀
−Ω + 𝜀

2

)︀
)︃
𝑒𝑖Ω𝑡
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Зададим начальные условия: 𝑏2(𝑡 = 0) = 0, 𝑏1(𝑡 = 0) = 1: атом в началь-

ный момент времени находится на первом уровне (нижнем). Удовлетворение

начальным условиям даст 𝑐1 = −𝑐2.

𝑐1

[︁
ℏ
(︁
Ω +

𝜀

2

)︁
− ℏ
(︁𝜀
2
− Ω

)︁]︁
= 1 ⇒ 𝑐1 =

1

2ℏΩ
(︃
𝑏2(𝑡)

𝑏1(𝑡)

)︃
=

1

2ℏΩ

[︃(︃
𝐹21

ℏ(Ω𝑅 + 𝜀
2)

)︃
𝑒−𝑖Ω𝑡 −

(︃
𝐹21

ℏ(−Ω + 𝜀
2)

)︃
𝑒𝑖Ω𝑡

]︃

Отсюда

𝑏2(𝑡) = − 𝐹21

2ℏΩ
2𝑖 sin𝜔𝑡 = −𝑖𝐹21

ℏΩ
sinΩ𝑡,

𝑏1(𝑡) = − 1

2ℏΩ

[︁
ℏ
𝜀

2

(︀
𝑒−Ω𝑡 − 𝑒𝑖Ω𝑡

)︀
+ ℏΩ

(︀
𝑒−Ω𝑡 + 𝑒𝑖Ω𝑡

)︀
+
]︁
= cosΩ𝑡− 𝑖𝜀

2Ω
sinΩ𝑡

где

Ω = ±
√︂
𝜀2

4
+

|𝐹21|2
ℏ2

Можно показать, что |𝑏1|2 + |𝑏2|2 = 1.

Рассмотрим случай точного резонанса 𝜀 = 0:

𝑏1 = cosΩ𝑡, 𝑏2 = −𝑖 sinΩ𝑡 ⇒ |𝑏1|2 = cos2Ω𝑡, |𝑏2|2 = sin2Ω𝑡,

|b1|2 |b2|2

π/2 ΩRt

Рис. 38. Осцилляция Раби

Это называется осцилляцией Раби. 𝑏1 – населённость нижнего уровня.

Легко видеть, что если резонанс неточный, то осцилляция станет неполной:

система не будет полностью перекачиваться из одного состояния в другое.
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|b1|2 |b2|2

ΩRt

1

Рис. 39. Неточный резонанс

5.3.5 Золотое правило Ферми

Ферми применил теорию возмущений к задаче о переходе из дискретного

спектра в сплошной.

Рис. 40. Переход в спектре атома водорода

Если энергии фотона достаточно, чтобы перескочить из дискретного спек-

тра в сплошной, работает правило Ферми. При гармоническом воздействии

на систему справедливо (см. (57) ):

𝑐𝑛𝑘 = −𝐹𝑛𝑘𝑒
𝑖(𝜔𝑛𝑘−𝜔)𝑡

ℏ(𝜔𝑛𝑘 − 𝜔)
− 𝐹 *

𝑘𝑛𝑒
𝑖(𝜔𝑛𝑘+𝜔)𝑡

ℏ(𝜔𝑛𝑘 + 𝜔)

𝑐𝑚(𝑡 = 0) = 𝛿𝑚𝑘. 𝑐𝑛𝑘 есть амплитуда вероятности перехода из начального

состояния 𝑘 в конечное 𝑛. Обозначим 18

𝑛 ≡ 𝑓, 𝑘 ≡ 𝑖

18Такиме обозначения используются в Ландау f=final, i=initial, см. §41 стр. 187
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Нужно решить задачу

𝑖ℏ𝑐̇𝑓𝑖 = 𝐹𝑓𝑖𝑒
𝑖(𝜔𝑓𝑖−𝜔)𝑡 + 𝐹 *

𝑖𝑓𝑒
𝑖(𝜔𝑓𝑖+𝜔)𝑡

Проинтегрируем по времени от 0 до 𝑡:

𝑖ℏ𝑐̇𝑓𝑖 = 𝑉𝑓𝑖(𝑡), 𝑉𝑓𝑖(𝑡) = 𝐹𝑓𝑖𝑒
𝑖(𝜔𝑓𝑖−𝜔)𝑡 + 𝐹 *

𝑖𝑓𝑒
𝑖(𝜔𝑓𝑖+𝜔)𝑡

𝑖ℏ𝑐𝑓𝑖 =
𝑡∫︁

0

𝑉𝑓𝑖(𝑡)𝑑𝑡

В первом порядке теории возмущений, пренебрегая не резонансным членом:

𝑐𝑓𝑖 = −𝐹𝑓𝑖

ℏ
·
𝑒𝑖(𝜔𝑓𝑖−𝜔)𝑡 − 1

𝜔𝑓𝑖 − 𝜔
−���HHH(. . .) = −

2𝑖𝐹𝑓𝑖

ℏ
𝑒
𝑖
𝜔𝑓𝑖 − 𝜔

2
𝑡

𝜔𝑓𝑖 − 𝜔
sin

(︂
𝜔𝑓𝑖 − 𝜔

2
𝑡

)︂

Тогда

|𝑐𝑓𝑖|2 =
|𝐹𝑓𝑖|2
ℏ2

sin2

(︃
𝜔𝑓𝑖 − 𝜔

2
𝑡

)︃

(𝜔𝑓𝑖 − 𝜔)2

4

=
|𝐹𝑓𝑖|2
ℏ2

sin2(𝛼𝑡)

𝛼2
(59)

Какую размерность имеет амплитуда вероятности - безразмерную. Это легко

проверить, если учесть, что матричный элемент имеет размерность энергии.

Рассмотрим функцию (60). Есть утверждение, что при 𝑡→ ∞ справедли-

во:
sin2(𝛼𝑡)

𝛼2
∼ 𝛿(𝛼)𝑡 (60)

Вычислим интеграл:

+∞∫︁

−∞

sin2(𝛼𝑡)

𝛼2
d𝛼 = 𝑡

+∞∫︁

−∞

sin2(𝛼𝑡)

𝛼2𝑡2
d𝛼𝑡 ∼ 𝑡

𝑡 здесь будет параметром. График функции изображён на рисунке 41: Нули

функции (60) расположены в 𝛼𝑡 = 𝑛𝜋. В нуле аргумента функция равна 𝑡.

Ширина этой функции до первых нулей по оси 𝛼 – 2𝜋
𝑡 . Чем-то похоже на

дельта-функцию: чем больше время, тем выше и уже эта функция. Опреде-

112



Квантовая механика Лекции В.В. Курина 2018-2019

𝜋
𝑡

𝛼

sin2 𝛼𝑡
𝛼2

Рис. 41. График функции
sin2 𝛼𝑡

𝛼2

ление 𝛿-функции: в нуле бесконечность, в остальных точках 0, а площадь под

кривой равна 1.

Рассмотрим интеграл
+∞∫︁

−∞

sin2 𝑦

𝑦2
d𝑦

Можно применить теорию вычетов. Чтобы свести интеграл к вычетам, нужно

образовать контур на комплексной плоскости (см. рис. 42).

Rey

Imy

φ

C

Рис. 42. Контур по комплексной плоскости

Особая точка 𝑦 = 0. Это устранимая особая точка:

+∞∫︁

−∞

sin2 𝑦

𝑦2
d𝑦 =

+∞∫︁

−∞

1− cos 2𝑦

2𝑦2
d𝑦 =

∫︁

𝐶

=

∫︁

𝐶

[︂
1

2𝑦2
− 𝑒2𝑖𝑦

4𝑦2
− 𝑒−2𝑖𝑦

4𝑦2

]︂
d𝑦 =
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Где контур обходит особую точку. Нам нужно где-то этот интеграл замкнуть.

Замкнём на бесконечности в верхней полуплоскости, окружностью радиуса

𝑅 → ∞:

d𝑦 = 𝑅 d𝜙 ,
1

2𝑦2
=

1

𝑅2

Так как внутри контура 𝐶 ′ нет особых точек, вычетов нет, интеграл равен

нулю. Второй член тоже можно замкнуть сверху аналогично, и он тоже равен

нулю.

А последнее слагаемое, из-за минуса, надо замыкать по нижней полуплос-

кости. Правило замыкания носит название «лемма Жордана».

Тогда ∫︁
= −

∫︁

𝐶 ′′

𝑒−2𝑖𝑦

4𝑦2
d𝑦 = 2𝜋𝑖Res 𝑓(0)

Обход по контуру идёт против часовой стрелки. А вычет – это коэффициент

𝑐−1 в ряде Лорана:

Res 𝑓(𝑧) = 𝑐−1, 𝑓(𝑧) =
𝑐−2

𝑧2
+
𝑐−1

𝑧
+ 𝑐0 + 𝑐1𝑧 + . . .

Тогда найдём вычет (разлагая в нуле):

∫︁
= 2𝜋𝑖Res

𝑒−2𝑖𝑦

4𝑦2
= 2𝜋𝑖Res

1− 2𝑖𝑦

4𝑦2
= 𝜋.

Итак, тогда

lim
𝑡→∞

sin2 𝛼𝑡

𝛼2
= 𝜋𝛿(𝛼)𝑡

Тогда уравнение (59) при 𝑡→ ∞ принимает вид:

|𝑐𝑓𝑖|2 =
|𝐹𝑓𝑖|2
ℏ2

𝜋 · 𝛿
(︂
𝜔𝑓𝑖 − 𝜔

2

)︂
· 𝑡

Воспользуемся тождеством

𝛿(𝛼𝑥) =
1

𝛼
𝛿(𝑥)

Коэффициент перед временем можно трактовать как частоту – вероят-
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ность перехода в единицу времени:

𝑤𝑓𝑖 = 2𝜋
|𝐹𝑓𝑖|2
ℏ2

𝛿(𝜔𝑓𝑖 − 𝜔) = 2𝜋
|𝐹𝑓𝑖|2
ℏ2

𝛿

(︂
𝐸𝑓 − 𝐸𝑖

ℏ
− 𝜔

)︂

𝑤𝑓𝑖 =
2𝜋

ℏ
|𝐹𝑓𝑖|2𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔)

Это и есть золотая формула Ферми. Она применима для расчёта ядерных,

химических реакций и очень много чего ещё. Дельта-функция говорит о со-

хранении энергии.

Замечание о плотности состояний. Обычно уровни 𝐸𝑓 (конечные состоя-

ния) сильно вырождены. А в формуле 𝑤𝑓𝑖 стоит конкретное состояние. Вво-

дят понятие плотности состояний. У дискретного спектра – это дельта-функции.

Плотность состояний – это число состояний в интервале:

𝑁(𝐸) = 𝜈(𝐸) d𝐸

Если хотим учесть переходы во все состояния (например, нужна скорость

распада атомов, нам не важно куда именно улетело, важно сколько всего

улетело), нужно ещё раз проинтегрировать правило Ферми:

𝑊𝑓𝑖 =

∫︁
𝑤𝑓𝑖(𝐸𝑓)𝜈(𝐸𝑓) d𝐸𝑓 =

2𝜋

ℏ
|𝐹𝑓𝑖|2𝜈(𝐸𝑓)
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6. Квазиклассическое приближение

Это приближение в некотором смысле – тоже вариант теории возмуще-

ний, но другой. В этом разделе мы будем говорить о методе ВКБ (Венцеля,

Крамерса, Бриллюэна). Это вариация метода геометрической оптики, кото-

рый был известен задолго до квантовой механики. ВКБ применим, когда

параметр меняется медленно (может, сильно, но главное – медленно).

Пусть у нас есть уравнение Шрёдингера:

𝑖ℏΨ̇ =
[︀
𝐻0 + 𝑉 (𝑡, 𝑥)

]︀
Ψ,

где 𝑉 (𝑡, 𝑥) – медленная функция.

Пусть мы знаем решение без возмущения. Например, для свободного дви-

жения, причём решением будет плоская волна:

𝑖ℏΨ̇ =
𝑝2

2𝑚
Ψ ⇒ Ψ = exp

{︁
−𝑖𝜔𝑡+ 𝑖

(︁
𝑘⃗, 𝑟⃗

)︁}︁

Характерными масштабами здесь являются временной период 𝑇 =
2𝜋

𝜔
и дли-

на волны19 𝜆 = 2𝜋
𝑘 .

Еще пример – слабонеоднородная среда: потенциал плавный, и производ-

ная потенциала в каком-то смысле мала.

Рассмотрим стационарную одномерную неоднородность 𝑉 = 𝑉 (𝑥). Запи-

шем стационарное уравнение Шрёдингера

𝐻Ψ = 𝐸Ψ ⇒ − ℎ2

2𝑚
∆Ψ(𝑟⃗ ) + 𝑈(𝑟⃗ )Ψ(𝑟⃗ ) = 𝐸Ψ(𝑟⃗ )

Поскольку мы упростили задачу до одномерного случая, то:

− ℏ2

2𝑚
Ψ′′ + [𝐸 − 𝑈(𝑥)]Ψ(𝑥) = 0 ⇒ Ψ′′(𝑥) + 𝑘2(𝑥)Ψ(𝑥) = 0 (61)

Это уравнение Гельмгольца. Оно точно решается только для некоторых из-

вестных специальных зависимостей 𝑘(𝑥). Однако, если 𝑘(𝑥) плавная, то мож-

но развить метод ВКБ.

19Напомним структуру спектра. Смещение в красную сторону – это более длинные волны. Например,
наша вселенная расширяется, и спектральные линии смещены в красную сторону.
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Пусть летит частица выше потенциального барьера. В классике она не

отражается: коэффициент прохождения равен единице. А в квазиклассике

появляется малая экспоненциальная вероятность отражения 𝑅 ∼ 𝑒−(𝐸−𝑈). А

если энергия ниже барьера, в классике строго 1 коэффициент отражения, а

в квазиклассике аналогично экспоненциально малый коэффициент прохож-

дения.

Если бы 𝑘 было бы константой, то решение Гельмгольца было бы 𝑒𝑖𝑘𝑥. А

теперь будем искать решение

𝑘𝑥 =

∫︁
𝑘 d𝑥 = Θ(𝑥), Ψ = 𝐴(𝑥)𝑒𝑖Θ(𝑥)

Эта идея лежит на поверхности, но очень продуктивная. Подставляем все в

уравнение Гельмгольца:

Ψ′ = (𝐴′ + 𝑖Θ′𝐴)𝑒𝑖Θ,Ψ′′ = (𝐴′′ + 𝑖Θ′′𝐴+ 𝑖Θ′𝐴′)𝑒𝑖Θ + 𝑖Θ′(𝐴′ + 𝑖Θ′𝐴)𝑒𝑖Θ

Тогда (𝑒𝑖Θ ̸= 0 ∀Θ)

𝐴′′ + 2𝑖Θ′𝐴′ + 𝑖Θ′′𝐴− (Θ′)2𝐴+ 𝑘2(𝑥)𝐴 = 0

Можем разделить действительную и мнимую части:

𝐴′′ +
(︀
𝑘2 − (Θ′)2

)︀
𝐴 = 0

2Θ′𝐴′ = Θ′′𝐴 = 0 ⇒ 𝜕𝐴2Θ′

𝜕𝑥
= 0

До сих пор все было точное. А теперь пренебрежём 𝐴′′, исходя из идеи плав-

ности. Позже оценим, когда можно так пренебрегать. Тогда

(Θ′)2 = 𝑘2(𝑥) ⇒ Θ = ±
∫︁
𝑘 d𝑥 , Θ′ = ±𝑘

А из второго уравнения 𝐴 = 𝑐1√
𝑘
. Тогда можно записать решение:

Ψ(𝑥) =
𝑐1√
𝑘
𝑒𝑖
∫︀
𝑘d𝑥 +

𝑐2√
𝑘
𝑒−𝑖

∫︀
𝑘d𝑥
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Кстати, все наше решение верно для 𝑘2 > 0. А так как мы ввели

𝑘2 =
2𝑚

ℏ
(𝐸 − 𝑈(𝑥))

Это классически разрешённая область. А в классически запрещённой области

Ψ′′ − κ2(𝑥)Ψ = 0, где κ2 =
2𝑚

ℏ2
(𝑈(𝑥)− 𝐸),

и решение будет иметь вид

Ψ(𝑥) =
𝑑1√
κ
𝑒
∫︀
κd𝑥 +

𝑑2√
κ
𝑒−

∫︀
κd𝑥.

Итак, мы получили уравнения для классически разрешённой области.

Чтобы приближение работало, нам нужно:

𝐴′′

𝐴
≪ 𝑘2(𝑥)

У нас

𝐴 ∼ 𝑘−
1
2 , 𝐴′ ∼ −1

2
𝑘−

3
2𝑘′, 𝐴′′ ∼ −3

4
𝑘−

5
2 (𝑘′)2 − 1

2
𝑘−

3
2𝑘′′

Тогда ⃒⃒
⃒⃒𝐴

′′

𝐴

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒3
4
𝑘−2𝑘′2 − 1

2
𝑘−1𝑘′′

⃒⃒
⃒⃒≪ 𝑘2

Итак,

𝑘−2𝑘′2 ≪ 𝑘2 или |𝑘′| ≪ 𝑘2

Второе возможно, если производная мала, или велико 𝑘2. Значит, приближе-

ние не работает, если 𝑘 → 0. Здесь

𝑘′ ≪ 𝑘2 ⇒ 𝑘′′ ≪ 2𝑘𝑘′

Первое неравенство в совмещении со следствием из второго даёт:

𝑘′′ ≪ 𝑘′2

𝑘
≪ 𝑘𝑘′

Так как 𝑘 = 2𝜋
𝜆 , то 𝑘

′ = −2𝜋
𝜆2𝜆

′. Условие локального приближения (ВКБ)
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можно переписать в виде

𝜆′ ≪ 2𝜋 ∼ 1.

Это означает: изменение длины волны на расстоянии порядка длины волны

мало. Посмотрим на уравнение (61) как на уравнение осциллятора:

𝑥̈+ 𝜔2(𝑡)𝑥 = 0, 𝑥 =
𝑐√
𝜔
𝑒𝑖
∫︀
𝜔𝑡

Тут можно вспомнить слово адиабатический инвариант. Амплитуда ко-

лебаний медленно меняется (ММА). Энергия колебаний

𝐻 ∼ 𝑥̇2 + 𝜔2𝑥2

2
= 𝐴2𝜔2 = 𝜔𝐶2, 𝐶2 =

𝐻

𝜔

Это и есть адиабатический инвариант.

𝐻 = 𝜔𝐽

Фактически, амплитуда ВКБ решения представляет собой адиабатический

вариант.

Точка поворота. Мы получили условие 𝑘′ ≪ 𝑘2. Посмотрим, где оно на-

рушается:

a

осцилляции

спадениеспадение

Рис. 43. В точке 𝑎 и симметричной ей кинетическая энергия обращается в
ноль

Место, где кинетическая энергия в классике обращается в ноль, называ-

ется точкой поворота. В этом месте условие ВКБ 𝑘′ ≪ 𝑘2 нарушается: про-

изводная 𝑘′ конечна, а 𝑘2 обращается в ноль. Значит, вблизи точки поворота
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приближение неверно.

Ψ = . . .+𝑂

(︂
𝑘′

𝑘2

)︂

6.1. Квазиклассическая волновая функция вблизи точ-

ки поворота

Рассмотрим некоторые способы решения вблизи точки поворота. Один из

способов – точно решить уравнение. 𝑘2 можно заменить линейной функцией:

𝑈(𝑥) = 𝐸

(︂
1 +

𝑥− 𝑎

𝐿

)︂
,

где 𝐿 – характерный масштаб. Разлагая потенциальную энергию в ряд Тей-

лора:

𝑈(𝑥) = 𝑈(𝑎) + 𝑈 ′(𝑎) · (𝑥− 𝑎) ⇒ 𝐸

𝐿
= 𝑈 ′(𝑎).

Тогда введём обозначения:

𝑘2 = − 2𝑚

ℏ2𝐿
(𝑥− 𝑎) = −𝜒(𝑥− 𝑎)

И отсюда

Ψ′′
𝑥𝑥 − 𝜒(𝑥− 𝑎)Ψ = 0.

Это уравнение Эйри – уравнениеШрёдингера в линейном потенциале. Вблизи

точки поворота любой потенциал линеен, и мы пренебрегли членами высшего

порядка. Можно решить его точно, а потом сшить при 𝑥 < 𝑎 и 𝑥 > 𝑎 с ранее

полученными решениями.

6.1.1 Метод Цвана

Ещё один способ – метод Цвана20. Суть метода заключается в том, что

мы рассматриваем уравнение на комплексной плоскости 𝑥.

20Это немецкая фамилия. Интересно, что перевод фамилии – Лебедев
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Rex

Imx

a

k

Класс. запрещенная область

Класс. разрешенная область
точка поворота

Рис. 44. Обход точки поворота в комплексной плоскости

Здесь стоит точка поворота 𝑎. Если рассматривать уравнение в комплекс-

ной плоскости, можно, формально ничего не нарушив, обойти точку поворота

по окружности достаточно большого радиуса, так, чтобы формально всегда

работала формула 𝑘′ ≪ 𝑘2, то есть чтобы все время работал метод ВКБ.

Сшивка решений ВКБ в точке поворота. Запишем волновую функ-

цию в классически запрещённой зоне, то есть справа от точки поворота:

𝑥 > 𝑎 :
𝑑√
κ
exp

⎧
⎨
⎩−

𝑥∫︁

𝑎

κ(𝑥) d𝑥

⎫
⎬
⎭, где κ = 𝜒(𝑥− 𝑎). (62)

Преобразуем подэкспоненциальное выражение, проведя интегрирование:

𝑥∫︁

𝑎

κ(𝑥) d𝑥 = 𝜒
1
2

𝑥∫︁

𝑎

(𝑥− 𝑎)
1
2 d𝑥 =

2

3
𝜒

1
2 (𝑥− 𝑎)

3
2 ,

√
κ = 𝜒

1
4 (𝑥− 𝑎)

1
4

Тогда можем переписать формулу (62) – решение справа от точки поворота:

Ψ(𝑥 > 𝑎) =
𝑑

𝜒
1
4 (𝑥− 𝑎)

1
4

𝑒−
2
3𝜒

1
2 (𝑥−𝑎)

3
2

Теперь проведём аналогичные преобразования для волновой функции сле-

ва от точки поворота:

Ψ =
𝑐1√︀
𝑘(𝑥)

𝑒𝑖
∫︀
𝑘d𝑥 +

𝑐2√︀
𝑘(𝑥)

𝑒−𝑖
∫︀
𝑘d𝑥, 𝑘2 = 𝜒(𝑎− 𝑥)
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Re

Im

a ρ=x-aρ=a-x

Рис. 45. Обход точки поворота против часовой стрелки

𝑥∫︁

𝑎

𝜒
1
2 (𝑎− 𝑥)

1
2 d𝑥 = −2

3
𝜒

1
2 (𝑎− 𝑥)

3
2

Тогда

Ψ(𝑥 < 𝑎) =
𝑐1

𝜒
1
4 (𝑎− 𝑥)1/4

𝑒−𝑖 23𝜒
1
2 (𝑎−𝑥)

3
2 +

𝑐2

𝜒
1
4 (𝑎− 𝑥)1/4

𝑒𝑖
2
3𝜒

1
2 (𝑎−𝑥)

3
2

Теперь давайте путешествовать по комплексной плоскости (см. рис. 45).

Нужно посмотреть, как преобразуется показатель экспоненты ∼ (𝑥 − 𝑎)
3
2

при обходе точки поворота по и против часовой стрелки. Выберем начало

координат в точке поворота и перейдём к полярным координатам:

(𝑥− 𝑎)
3
2 = 𝜌

3
2𝑒𝑖0 ⇒ 𝜌

3
2𝑒𝑖𝜋

3
2 = −𝑖(𝑎− 𝑥)

3
2

Получается, что при обходе контура сверху показатель экспоненты стал та-

ким же, как у решения с другой стороны! Еще преобразования:

(𝑥− 𝑎)
1
4 ⇒ 𝑒𝑖

𝜋
4 (𝑎− 𝑥)

1
4

Получается, что

𝑑

𝜒
1
4 (𝑥− 𝑎)

1
4

→ 𝑐1

𝜒
1
4𝑒𝑖

𝜋
4 (𝑎− 𝑥)

1
3

⇒ 𝑐1 = 𝑑𝑒𝑖
𝜋
4

Итак, уже сшили две константы. Теперь обойдём контур по часовой стрелке,

чтобы выразить ещё одну константу (из-за смены направления обхода у фазы

будет другой знак):

(𝑥− 𝑎)
1
4 → 𝑒−𝑖𝜋4 (𝑎− 𝑥)

1
4
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Отсюда

𝑐2 = 𝑑𝑒−𝑖𝜋4

Подводя итог, запишем волновую функцию в классически разрешённой зоне:

Ψ(𝑥 < 𝑎) =
𝑑

𝜒
1
4 (𝑎− 𝑥)

1
4

𝑒−
2
3 𝑖𝜒

1
2 (𝑎−𝑥)

3
2+𝑖𝜋4 +

𝑑

𝜒
1
4 (𝑎− 𝑥)

1
4

𝑒
2
3 𝑖𝜒

1
2 (𝑎−𝑥)

3
2−𝑖𝜋4 = (63)

=
2𝑑√
𝑘
cos

(︂
2

3
𝜒

1
2 (𝑎− 𝑥)

3
2 − 𝜋

4

)︂
=

2𝑑√
𝑘
cos

⎛
⎝

𝑥∫︁

𝑎

𝑘 d𝑥+
𝜋

4

⎞
⎠ =

=
2𝑑√
𝑘
cos

(︂⃒⃒
⃒⃒
∫︁
𝑘 d𝑥

⃒⃒
⃒⃒− 𝜋

4

)︂

Эта формула говорит о том, что при отражении от линейного потенциала

набегает разность фаз. При отражении происходит скачок фазы21 на 𝜋
2 , что

очевидно следует из полученной нами волновой функции (63).

6.2. Правило квантования Бора-Зоммерфельда

Нильс Бор – известный датский физик. Еще до изобретения квантовой ме-

ханики он придумал правила квантования, и с их помощью объяснил спектр

атома водорода. Бор предположил, что адиабатический инвариант принима-

ет не любые значения, как в классической механике, а дискретные, ничем не

обосновывая.

𝐽 =

∮︁
𝑝 d𝑞 = 𝑛ℏ

С помощью квазиклассического приближения мы можем решить задачу

о уровнях в произвольной яме.

b

1 2 3

a
x

Рис. 46. Яма и точки поворота b,a

21Это похоже на отражение волны в электродинамике: волна, падающая на металл, отражается и этим
самым удовлетворяет граничному условию 𝐸𝜏 = 0. Если падает 𝑒𝑖𝑘𝑥, то отражается −𝑒−𝑖𝑘𝑥. Говорят, что
при отражении происходит скачок фазы на полдлины волны (на 𝜋).
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Мы недавно получили

𝑑√
κ
𝑒|
∫︀
κd𝑥| = 𝑑√

𝑘
cos(. . .)

Со стороны 1 получаем:

2𝑑1√
𝑘
cos

⎛
⎝

𝑥∫︁

𝑏

𝑘 d𝑥− 𝜋

4

⎞
⎠

А если применить со стороны 3:

2𝑑3√
𝑘
cos

⎛
⎝

𝑎∫︁

𝑥

𝑘 d𝑥− 𝜋

4

⎞
⎠

Где справедлива эта формула? Эти формулы должны быть одинаковыми.

Отсюда следует, прежде всего, что

𝑑1 cos

⎛
⎝

𝑥∫︁

𝑏

𝑘 d𝑥− 𝜋

4

⎞
⎠ = 𝑑3 cos

⎛
⎝

𝑎∫︁

𝑥

𝑘 d𝑥− 𝜋

4

⎞
⎠

Добавим к этому уравнению

∫︁ 𝑥

𝑏

=

∫︁ 𝑎

𝑏

+

∫︁ 𝑥

𝑎

=

∫︁ 𝑎

𝑏

−
∫︁ 𝑎

𝑥

,

∫︁ 𝑎

𝑥

= 𝜙

Тогда (разобраться с пределами)??

𝑑1 cos

(︂∫︁ 𝑏

𝑎

𝑘 d𝑥− 𝜙− 𝜋

4

)︂
= 𝑑2 cos

(︁
𝜙− 𝜋

4

)︁

∫︁ 𝑎

𝑏

𝑘 d𝑥− 𝜋

2
= 𝑛𝜋, 𝑑3 = 𝑑1(−1)𝑛 ⇒

∫︁ 𝑎

𝑏

𝑘 d𝑥 = 𝜋

(︂
𝑛+

1

2

)︂

Часто это записывают так:
∮︁
𝑘 d𝑥 = 2

∫︁ 𝑎

𝑏

𝑘 d𝑥 = 𝜋(2𝑛+ 1)
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Или, учтя 𝑝 = ℏ𝑘:
∮︁
𝑝 d𝑥 = 𝜋ℏ(2𝑛+ 1) или

∮︁
𝑝 d𝑞 = . . .

Частица в параболическом потенциале. В этом случае 𝑈 = κ𝑥2

2 , соб-

ственная частота 𝜔 =
√︀ κ

𝑚 , откуда κ = 𝑚𝜔2. Уравнение имеет вид:

[︂
− ℏ2

2𝑚

𝜕2

𝜕𝑥2
+
𝑚𝜔2𝑥2

2

]︂
Ψ(𝑥) = 𝐸Ψ(𝑥)

Хотим записать в виде:

[︂
𝜕2

𝜕𝑥2
+ 𝑘2(𝑥)

]︂
Ψ = 𝐸Ψ,

Откуда

𝑘2(𝑥) =
2𝑚

ℏ2

(︂
𝐸 − 𝑚𝜔2𝑥2

2

)︂
⇒ 𝑘(𝑥) =

√︃
2𝑚

ℏ2

(︂
𝐸 − 𝑚𝜔2𝑥2

2

)︂

Точки поворота будут при корне, равном нулю:

𝑥2* =
2𝐸

𝑚𝜔2

У нас должно быть:

∫︁ 𝑥*

−𝑥*

√︃
2𝑚

ℏ2

(︂
𝐸 − 𝑚𝜔2𝑥2

2

)︂
d𝑥 = 𝜋

(︂
𝑛+

1

2

)︂

Введём замену переменной и проинтегрируем:

𝑚𝜔2 =
2𝐸

𝑥2*
⇒

∫︁ 𝑥*

−𝑥*

√︃
2𝑚𝐸

ℏ2

(︂
1− 𝑥2

𝑥2*

)︂
d𝑥 =

√︂
2𝑚𝐸

ℏ2

∫︁ 𝑥*

−𝑥*

√︃
1− 𝑥2

𝑥2*
d𝑥 =

=

√︂
2𝑚𝐸

ℏ2
𝑥*

∫︁ 1

−1

√︀
1− 𝑦2 d𝑦 =

𝜋

2

√︂
2𝑚𝐸

ℏ2
𝑥* =

𝜋

2

√︂
2𝑚𝐸

ℏ2
𝑥*

√︂
2𝐸

𝑚𝜔2
= 𝜋

(︂
𝑛+

1

2

)︂
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Несложными арифметическими действиями отсюда получается

𝐸 = ℎ𝜔

(︂
𝑛+

1

2

)︂

Правило Бора-Зоммерфельда, полученное из классики, даёт верное правило

квантования (правда, волновую функцию даст уже неверную).
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7. Спин

Спин – от английского «вращение». Что же это такое? Обычно говорят,

что это типично квантовое явление, не имеющее аналогов в классической

механике. Действительно, аналогов нет, а вот в классической теории поля

(электродинамике) такое понятие есть, и это понятие поляризации волны.

Будем анализировать волновые функции при вращении пространства или

системы координат. Спин тесно связан с вращением. Как его ввести? До сих

пор мы представляли волновую функцию одной буквой Ψ(𝑟⃗ ). При вращении

она преобразовывалась только за счёт оператора вращения:

𝑅 =
[︁
1 + 𝑖

(︁
𝛿𝜙⃗ , 𝑙⃗

)︁]︁
, где 𝑙⃗ =

[︁
𝑟⃗ × 𝑘⃗

]︁

Здесь 𝑙⃗ – орбитальный момент.

Рассмотрим поле 𝐸⃗(𝑟⃗ ). Оно само вектор, и от вектора зависит. В каждой

точке пространства задано направление. А теперь мы поворочаем систему

координат. При повороте изменится как радиус-вектор, так и направление

𝐸⃗ = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧).

Вектор – это объект, компоненты которого при повороте координат пре-

образуются как координаты (так по определению).

Рассмотрим более сложный объект:

Ψ𝜎(𝑟⃗ ), 𝜎 = 0, . . . , 𝑛

Волновая функция может быть более сложной, а ею компоненты преобразу-

ются друг через друга.

Мы рассматриваем нерелятивистскую квантовую механику, и наше рас-

смотрение верно при скоростях всех частиц, много меньших скорости света.

Наша механика не может описать фотоны, например. Поэтому поляризация –

не совсем хороший образ для нерелятивистской квантовой механике, потому

что волны распространяются в вакууме со скоростью света.

Если же перейти в систему отсчёта, в которой частица покоится, и смот-

реть в ней за вращением, можно ввести оператор спина:

𝑅 = [1 + 𝑖(𝛿𝜙⃗ , 𝑠⃗ )], Ψ𝜎(𝑟⃗ ) = Ψ(𝑟⃗, 𝜎)
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А также можно ввести вектор полного момента:

ˆ⃗
𝑗 =

ˆ⃗
𝑙 + ˆ⃗𝑠

Тогда

𝑅̂ =
[︁
1 + 𝑖

(︁
𝛿𝜙⃗ , 𝑗⃗

)︁]︁

Отделить спин от момента можно только тогда, когда можно перейти в си-

стему отсчёта, в которой момент будет 0.

Переменные Ψ1,Ψ2,Ψ3, . . . называют спиновыми компонентами.

В каком пространстве действует оператор спина? Матричное умножение:

⎛
⎜⎝
. . .

. . .

. . .

⎞
⎟⎠ ·

⎛
⎜⎝
Ψ1

Ψ2

Ψ3

⎞
⎟⎠

Какие коммутационные соотношения получатся для оператора 𝑠⃗ ? Оператор

𝑙⃗ тоже должен быть вектором.

Есть три оператора:

𝑠𝑥, 𝑠𝑦, 𝑠𝑧.

Мы не знаем, как они устроены, лишь это матрицы, действующие в этом кон-

фигурационном пространстве. Утверждается, что аналогично орбитальному

моменту

𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥 = 𝑖𝑙𝑧, etc

Будет

𝑠𝑥𝑠𝑦 − 𝑠𝑦𝑠𝑥 = 𝑖𝑠𝑧, 𝑗𝑥𝑗𝑦 − 𝑗𝑦𝑗𝑥 = 𝑖𝑗𝑧

Почему коммутационные соотношения одинаковы? Мы делали явное пред-

положение, что ℏ⃗𝑙 = [𝑟⃗ × 𝑝 ]. Теперь этого сделать уже не можем, но поче-

му получается то же самое? А вот почему: это все три оператора поворота

и обозначают одно и тоже: два последовательных вращения эквивалентны

вращению вокруг оси 𝑧. Это свойство трёхмерного пространства, и никак не

связано с видом оператора.

Значит, для всех операторов момента (которые есть операторы вращения)

коммутационные соотношения одинаковы, и ими можно воспользоваться для

вычисления матричных элементов.

Займёмся оператором спина. Вводятся повышающий и понижающий опе-
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раторы

𝑠± = 𝑠𝑥 ± 𝑖𝑠𝑦

Их коммутационные соотношения:

[𝑠+, 𝑠−] = 2𝑠𝑧, [𝑠𝑧, 𝑠±] = ±𝑠±

Также вводится оператор квадрата спина:

𝑠2 = 𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧 = 𝑠−𝑠+ + 𝑠2𝑧 + 𝑠𝑧 = 𝑠+𝑠− + 𝑠2𝑧 − 𝑠𝑧

Будем искать собственные функции. Собственные числа обозначаем 𝜎, а мак-

симальное значение её 𝑠:

𝑠𝑧 |𝑠, 𝜎⟩ = 𝜎 |𝑠, 𝜎⟩ , 𝑠2 |𝑠, 𝜎⟩ = 𝑠(𝑠+ 1) |𝑠, 𝜎⟩

Напомним, как строится теория. Подействуем на первое уравнение () опера-

тором повышения:

𝑠+𝑠𝑧 |𝑠, 𝜎⟩ = (𝑠𝑧𝑠+ − 𝑠+) |𝑠, 𝜎⟩ = 𝜎𝑠+ |𝑠, 𝜎⟩

где в силу коммутационной алгебры

𝑠𝑧𝑠+ − 𝑠+𝑠𝑧 = 𝑠+

Тогда

𝑠𝑧𝑠+ |𝑠, 𝜎⟩ = 𝑠+ |𝑠, 𝜎⟩+ 𝜎𝑠+ |𝑠, 𝜎⟩ = (𝜎 + 1)𝑠+ |𝑠, 𝜎⟩
Отсюда следует:

𝑠+ |𝑠, 𝜎⟩ ∼ |𝑠, 𝜎 + 1⟩
Точно также можно доказать,что

𝑠− |𝑠, 𝜎⟩ ∼ |𝑠, 𝜎 − 1⟩

Теорема. 𝜎 ограничена сверху. Если запишем оператор

𝑠2𝑥 + 𝑠2𝑦 = 𝑠2 − 𝑠2𝑧
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Если непрерывно увеличивать 𝑠𝑧, то в конце концов правая часть станет от-

рицательной, что невозможно. Значит, есть максимальное значение, и обо-

значим его

𝑠 = 𝜎max

Аналогично будет ограничение снизу на 𝑠. Расстояние между ними 2𝑠, и оно

должно покрываться целым числом – отсюда следует 2𝑠 – целое. Возможны:

𝑠 = 0 ⇒ 𝜎 = 0

𝑠 =
1

2
⇒ 𝜎 =

1

2
,−1

2
𝑠 = 1 ⇒ 𝜎 = −1, 0, 1

Собственное число 𝜎 называется проекцией спина на ось 𝑧, а его максималь-

ное значение 𝑠 – спином. Число компонент волновой функции есть 2𝑠 + 1, и

оно принимает целые значения начиная с 1.

Нетрудно найти, пользуясь формулой (𝑠2 = . . .), матричные элементы:

Подействуем на кет вектор |𝑠, 𝑠⟩ , соответствующий максимальному 𝜎 = 𝑠

оператором 𝑠2, записав его в форме

𝑠2 = 𝑠−𝑠+ + 𝑠2𝑧 + 𝑠𝑧.

Тогда, поскольку для обрыва ряда нужно, чтобы 𝑠+ |𝑠, 𝑠⟩ = 0, мы получим

(𝑠−𝑠+ + 𝑠2𝑧 + 𝑠𝑧) |𝑠, 𝑠⟩ = 𝑠(𝑠+ 1) |𝑠, 𝑠⟩

Теперь будем искать матричный элемент:

𝑠(𝑠+ 1) = ⟨𝑠, 𝜎| 𝑠+𝑠− + 𝑠2𝑧 − 𝑠𝑧 |𝑠, 𝜎⟩ = ⟨𝑠, 𝜎| 𝑠+𝑠− |𝑠, 𝜎⟩+ ⟨𝑠, 𝜎| 𝑠2𝑧 − 𝑠𝑧 |𝑠, 𝜎⟩

𝑠(𝑠+ 1)−
[︀
𝜎2 − 𝜎

]︀
= ⟨𝑠, 𝜎| 𝑠+𝑠− |𝑠, 𝜎⟩ = ⟨𝑠, 𝜎| 𝑠+ |𝑠, 𝜎 − 1⟩ ⟨𝑠, 𝜎 − 1| 𝑠− |𝑠, 𝜎⟩

И в силу эрмитовости операторов 𝑠− = 𝑠++:

⟨𝑠, 𝜎 − 1| 𝑠−|𝑠, 𝜎 >= ⟨𝑠, 𝜎| 𝑠+ |𝑠, 𝜎 − 1⟩ =
√︀
𝑠(𝑠+ 1)− 𝜎2 + 𝜎

Подкоренное выражение можно преобразовать

𝑠2 + 𝑠− 𝜎2 + 𝜎 = (𝑠+ 𝜎)(𝑠− 𝜎) + 𝑠+ 𝜎 = (𝑠+ 𝜎)(𝑠− 𝜎 + 1),
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и, окончательно для матричных элементов операторов 𝑠± будем иметь

⟨𝑠, 𝜎 − 1| 𝑠−|𝑠, 𝜎 >= ⟨𝑠, 𝜎| 𝑠+ |𝑠, 𝜎 − 1⟩ =
√︀

(𝑠+ 𝜎)(𝑠− 𝜎 + 1)

Рассмотрим спин 𝑠 = 1
2 . В этом случае проекция спина может принимать два

значения 𝜎 = ±1
2 и волновая функция двухкомпонентна:

|𝜓⟩ = (𝜓 1
2
, 𝜓− 1

2
)𝑇 = (𝜓↑, 𝜓↓)

𝑇

Тогда операторами, действующими в этом пространстве, будут матрицы 2×2.

𝑠𝑧 =

(︃
1
2

−1
2

)︃
=

1

2

(︃
1 0

0 −1

)︃

Оператор 𝑠+:

𝑠+ =

(︃
0 1

0 0

)︃

Как мы нумеруем элементы матрицы?

(︃
𝑎 1

2 ,
1
2

𝑎 1
2 ,− 1

2

𝑎− 1
2 ,

1
2
𝑎− 1

2 ,− 1
2

)︃

Аналогично получаем

𝑠− =

(︃
0 0

1 0

)︃

Двухкомпонентная функция называется спинором. Это что-то вроде вектора,

только недоделанного. Вообще, всё, что полуцелый спин, называется спино-

рами, а с целым спином – вектора, тензора и так далее.

Спин – это многокомпонентная волновая функция. При вращении новые

компоненты Ψ1,Ψ2,Ψ3 выражаются через старые. Мы ввели 𝑠 = max𝜎. 𝜎 ∈
−𝑠 . . . 𝑠. Само 𝑠 может принимать либо целые, либо полуцелые моменты.

В чем отличие орбитального момента от спинового? Раньше у нас был

оператор вращения

𝑅̂ =
(︁
𝑞 + 𝑖𝛿𝜙⃗𝑙⃗

)︁

А у спинового:

𝑅̂ = (𝑞 + 𝑖𝛿𝜙⃗𝑠⃗ )
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Оператор полного момента

𝑗⃗ = 𝑙⃗ + 𝑠⃗.

Если компоненты перемешиваются при преобразовании пространства, то ’эти

переменные называют спиновыми. Бывают и другие дискретные переменные,

не связанные с вращением, которые иногда называют псевдоспином, изоспи-

ном (но это не спин, просто так говорят). Пример изоспина: в ядерной физике

протон и нейтрон часто считают изоспиновыми состояниями одной частицы,

различающимися проекциями изоспина.

|nuc⟩ =
(︃
𝑝

𝑛

)︃
, |𝑝⟩ =

(︃
1

0

)︃
, |𝑛⟩ =

(︃
0

1

)︃

Мы ввели операторы 𝑠𝑥, 𝑠𝑦, 𝑠𝑧 → 𝑠±, 𝑠𝑧, 𝑠2 и с помощью алгебры опера-

торов вывели матричные элементы. Ось 𝑧 называют осью квантования, её

можно выбрать как угодно. Операторы 𝑠2, 𝑠𝑧 коммутируют.

𝑠𝑧 |𝑠, 𝜎⟩ = 𝜎 |𝑠, 𝜎⟩
𝑠2 |𝑠, 𝜎⟩ = 𝑠(𝑠+ 1) |𝑠, 𝜎⟩

Дальше мы вывели матричные элементы 𝑠±:

⟨𝑠, 𝜎 − 1| 𝑠− |𝑠, 𝜎⟩ =
√︀

(𝑠+ 𝜎)(𝑠− 𝜎 + 1),

⟨𝑠, 𝜎| 𝑠+ |𝑠, 𝜎 − 1⟩ =
√︀

(𝑠+ 𝜎)(𝑠− 𝜎 + 1)

Что мы видим? 𝜎 принимает 2𝑠+1 значений с шагом 1. Собственные функции

оператора спина называются спинорами.

Все элементарные частицы имеют полуцелый спин: электроны, нейтро-

ны, протоны и т.д. По современным представлениям, весь мир состоит из

вещества и поля. Всё вещество имеет полуцелый спин: три кварка, три ан-

тикварка, лептоны (электроны, мюоны, тау-лептоны и соответствующие им

нейтрино). Лептоны участвуют только в слабом взаимодействии.

У фотона уже спин 1. Есть поле клея (glue), которое связывает собой

кварки. Объединение всех теорий (слабого, сильного взаимодействия и т.д.)

называется Great Unification Theory. Квант гравитации – гравитон – имеет

спин 2.

В релятивизме всё не так просто. Известно, что поляризаций только две.
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Но для безмассовых частиц наша формула не работает: мы были должны

двигаться вместе с частицей (чтобы отделить спин от орбитального момента)

со скоростью света, что невозможно. Согласно принципам СТО, свет остано-

вить нельзя: в любой системе отсчёта свет летит со скоростью света.

Общая собственная функция операторов 𝑠2, 𝑠𝑧 нумеруется двумя кван-

товыми числами |𝑠, 𝜎⟩ , однако, очень часто полный спин фиксирован, как

например у электрона 𝑠 = 1/2 и тогда первый индекс у вектора состояния

просто опускают и пишут только второй индекс. Давайте займёмся спином
1
2 .

𝜎 =
1

2
, 𝜎 = −1

2
⇒

(︃
Ψ(𝑟⃗, 12)

Ψ(𝑟⃗,−1
2)

)︃
=

(︃
Ψ 1

2

Ψ− 1
2

)︃

Почему говорят, что спин – чисто квантовое явление? В классике, во-

первых, нет никаких волновых функций. Размерный спин 𝑆⃗ = ℏ𝑠⃗. При ℏ → 0

полный спиновый момент обращается в 0. Но для орбитального момента при

этом может быть 𝑙 → ∞, и полный момент останется конечным. Поэтому при

постоянной Планка, стремящейся к нулю, спиновый момент исчезает.

Как понимать матрицу ()?

⎛
⎜⎝

Ψ1

Ψ0

Ψ−1

⎞
⎟⎠,

⎛
⎜⎝

Ψ 3
2

. . .

Ψ− 3
2

⎞
⎟⎠

Операторы в пространстве таких векторов – это матрицы. Например, опера-

тор 𝑠𝑧
⟨𝑠′, 𝜎′| 𝑠𝑧 |𝑠, 𝜎⟩ = 𝜎 ⟨𝑠′, 𝜎′|𝑠, 𝜎⟩ = 𝛿𝑠𝑠′,𝜎𝜎′

Он диагонален. Напомню, что мы нумеруем матрицу так:

(︃
𝑎 1

2 ,
1
2

𝑎 1
2 ,− 1

2

𝑎− 1
2 ,

1
2
𝑎− 1

2 ,− 1
2

)︃

𝑠𝑧 =

(︃
1
2 0

0 −1
2

)︃

Теперь для 𝑠+: ⟨
1

2

⃒⃒
⃒⃒ 𝑠+

⃒⃒
⃒⃒−1

2

⟩
= 1
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𝑠+ =

(︃
0 1

0 0

)︃
, 𝑠− =

(︃
0 0

1 0

)︃

Как выглядят собственные вектора:

⃒⃒
⃒⃒𝜎 =

1

2

⟩
=

(︃
1

0

)︃
,

⃒⃒
⃒⃒𝜎 = −1

2

⟩
=

(︃
0

1

)︃

Проверим, что 𝑠+
⃒⃒
1
2

⟩︀
= 0:

(︃
0 1

0 0

)︃
·
(︃
1

0

)︃
=

(︃
0

0

)︃

Проверим 𝑠−
⃒⃒
1
2

⟩︀
=
⃒⃒
−1

2

⟩︀
:

(︃
0 0

1 0

)︃
·
(︃
1

0

)︃
=

(︃
0

1

)︃

Проверим 𝑠−
⃒⃒−1
2

⟩︀
= 0: (︃

0 0

1 0

)︃
·
(︃
0

1

)︃
=

(︃
0

0

)︃

Итак, можно убедиться, что на языке матриц мы реализовали алгебру

операторов.

В случае спина 1: ⎛
⎜⎝
𝑎1,1 𝑎1,0 𝑎1,−1

𝑎0,1 𝑎0,0 𝑎0,−1

𝑎−1,1 𝑎−1,0 𝑎−1,−1

⎞
⎟⎠

Давайте распишем случай спина 1. Теперь будет три вектора:

|1⟩ =

⎛
⎜⎝
1

0

0

⎞
⎟⎠, |0⟩ =

⎛
⎜⎝
0

1

0

⎞
⎟⎠, |−1⟩ =

⎛
⎜⎝
0

0

1

⎞
⎟⎠

Теперь матрица 𝑠𝑧:

𝑠𝑧 =

⎛
⎜⎝
1 0 0

0 0 0

0 0 1

⎞
⎟⎠
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𝑠+ =
√
2

⎛
⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎠, 𝑠− =

√
2

⎛
⎜⎝
0 0 0

1 0 0

0 1 0

⎞
⎟⎠

Если есть две частицы с разным спином, спин у них складывается. Из двух

частиц со спином 1
2 можно получить спин 0 или 1. Более подробно займёмся

спином 1
2 . Вводят такую матрицу:

𝑠𝑧 =
1

2
𝜎𝑧, 𝜎𝑧 =

(︃
1 0

0 −1

)︃

Тогда

𝑠𝑥 =
𝑠+ + 𝑠−

2
=

1

2

(︃
0 1

1 0

)︃
, 𝑠𝑦 =

1

2

(︃
0 −𝑖
𝑖 0

)︃

Эти матрицы 𝜎𝑥,𝑦,𝑧 называют матрицами Паули:

𝑠⃗ =
1

2
𝜎⃗

Здесь компоненты вектора – это матрицы. Хотя это настоящий вектор: при

преобразовании координат он преобразуется как координаты.

7.1. Алгебра матриц Паули

Прежде всего, оператор спина подчиняется соотношениям:

𝑠𝑥𝑠𝑦 − 𝑠𝑦𝑠𝑥 = 𝑖𝑠𝑧

Тогда (пишем одно соотношение, все остальные отличаются циклической пе-

рестановкой)

𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥 = 2𝑖𝜎𝑧

Проверим, действительно ли это так:

(︃
0 1

1 0

)︃
·
(︃
0 −𝑖
𝑖 0

)︃
−
(︃
0 −𝑖
𝑖 0

)︃
·
(︃
0 1

1 0

)︃
=

(︃
𝑖 0

0 −𝑖

)︃
+

(︃
𝑖 0

0 −𝑖

)︃
= 2𝑖𝜎𝑧
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Отсюда также видно, что

𝜎𝑥𝜎𝑦 = 𝑖𝜎𝑧, 𝜎𝑦𝜎𝑥 = −𝑖𝜎𝑧,

и

𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑥 = 0

Такую сумму называют антикоммутатором, и говорят, что матрицы Паули

с разными индексами антикоммутируют. Интересно, что квадраты матриц

Паули – единичные матрицы:

𝜎2𝑥 =

(︃
0 1

1 0

)︃
·
(︃
0 1

1 0

)︃
=

(︃
1 0

0 1

)︃
= 𝜎2𝑦 = 𝜎2𝑧 = 1̂

𝑠2 =
3

4
1̂.

В итоге, есть три матрицы, удовлетворяющие антикоммутационному соотно-

шению

𝜎𝑖𝜎𝑗 + 𝜎𝑗𝜎𝑖 = 2𝛿𝑖𝑗 1̂

Почему мы назвали наш параграф алгеброй матриц Паули? Потому, что

мы нашли таблицу умножения для этих матриц, а алгебра – это математи-

ческая модель с двумя определяющими операциями, сложения и умножения.

Матрицы Паули могут быть рассмотрены как некоторые гиперкомплексные

единицы, из которых можно образовать гиперкомплексное число 𝑧, :

𝑧 = 𝑎𝜎0 + 𝑏1𝜎1 + 𝑏2𝜎2 + 𝑏3𝜎3 = 𝑎+
(︁
𝑏⃗ 𝜎⃗
)︁
.

Здесь, для единообразия записи мы ввели обозначение 𝜎0 = 1̂. У алгебры

обычных комплексных чисел есть две образующих единицы: 1 и 𝑖. А здесь

четыре образующих числа, и Гамильтон, придумавший её, назвал её кватер-

нионной алгеброй.

А мы вывели, по сути, таблицы умножения и сложения матриц. Мы можем

матрицы Паули умножать и складывать, и их множество замкнуто относи-

тельно этих операций: результат – тоже матрица Паули.

Рассмотрим произвольную функцию от матрицы 𝑧:

𝑓(𝑧) = 𝑓
(︁
𝑎+ 𝑏⃗𝜎⃗

)︁

136



Квантовая механика Лекции В.В. Курина 2018-2019

Одно из определений взятия функции от матрицы:

𝑓(𝑧) =
∑︁ 𝑧𝑛

𝑛!

𝜕𝑛𝑓

𝜕𝑧𝑛

⃒⃒
⃒⃒
𝑧=𝑧

О чем свидетельствуют полученные нами соотношения? Квадратичная сте-

пень выражается через линейную. Это значит, что любая функция при

таком определении представляет собой линейную функцию.

Как найти такую функцию? Надо воспользоваться вторым определением:

функция от диагональной матрицы, по определению:

𝑓(diag𝐴) = 𝑓(diag(𝑎𝑛)) = diag(𝑓(𝑎𝑛))

Если матрица приводится к диагональному виду, то эти два определения

совпадают. А как мы знаем, что эрмитовы матрицы всегда можно привести

к диагональному виду.

Как преобразуются матрицы при преобразовании координат? Пусть есть

вектор столбец Ψ⃗:

Ψ =

⎛
⎜⎝
Ψ1

Ψ2

Ψ3

⎞
⎟⎠, 𝜙 = 𝐴Ψ

Введём новый вектор

Ψ′ = 𝑆Ψ

Тогда

𝜙′ = 𝑆𝜙 = 𝑆𝐴Ψ = 𝑆𝐴𝑆−1Ψ′

И

𝜙′ = 𝐴′Ψ′, 𝐴′ = 𝑆𝐴𝑆−1

Пусть 𝐴′ – диагональный: 𝐴′ = diag(𝑎). Тогда

𝐴 = 𝑆−1𝐴′𝑆

По определению,

𝑓(𝐴′) = 𝑓(𝑎)

Отсюда

𝑓(𝐴) = 𝑑𝑒𝑓 = 𝑆−1𝑓(𝑆𝐴𝑆−1)𝑆
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Получили новое определение, но оно хуже: оно справедливо не всегда, а толь-

ко когда матрица может быть приведена к диагональному виду.

Если мы будем пользоваться другим определением, у нас появится мно-

житель

𝑆−1(𝑆𝐴𝑆−1)𝑛𝑆 = 𝑆−1(𝑆𝐴𝑆−1) · . . . · (𝑆𝐴𝑆−1)𝑆 = 𝐴𝑛

Приведём () к диагональному виду: выберем ось 𝑧 вдоль 𝑏⃗, тогда

𝑓
(︁
𝑎+ 𝑏⃗𝜎⃗

)︁
= 𝑓(𝑎+ 𝑏𝜎𝑧) = 𝑓

(︃
𝑎+ 𝑏 0

0 𝑎− 𝑏

)︃
=

(︃
𝑓(𝑎+ 𝑏) 0

0 𝑓(𝑎− 𝑏)

)︃

Утверждается, что 𝑓
(︁
𝑎+ 𝑏⃗𝜎⃗

)︁
= 𝐴+𝐵⃗𝜎⃗: это есть свойство матриц Паули,

любая функция должна быть линейна.

𝐴+𝐵𝜎𝑧 =

(︃
𝐴+𝐵 0

0 𝐴−𝐵

)︃

Тогда получается, что

𝐴+𝐵 = 𝑓(𝑎+ 𝑏), 𝐴−𝐵 = 𝑓(𝑎− 𝑏) ⇒

𝐴 =
𝑓(𝑎+ 𝑏) + 𝑓(𝑎− 𝑏)

2
, 𝐵 =

𝑓(𝑎+ 𝑏)− 𝑓(𝑎− 𝑏)

2

У нас 𝑧⃗0 = 𝑏⃗/𝑏, и тогда 𝐵⃗ = 𝑏⃗
𝑏𝐵. Задача решена.

Итак, мы продолжаем тему спина. Рассмотрим спин 1
2 .

7.2. Оператор конечных вращений

Мы вводили спин как оператор бесконечно малых вращений:

𝑅̂ =
[︀
1̂ + 𝑖(𝛿𝜙⃗ · 𝑠⃗ )

]︀

где оператор поворота работает как 𝜙′ = 𝑅̂𝜙. Хотим образовать оператор ко-

нечных вращений. Эта задача решается просто, стандартно в теории групп.

Мы изучаем группу вращения в трёхмерном пространстве, а спиноры, век-

тора, тензора реализуют различные представления ... .
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По определению, мы вводили

𝛿𝜙⃗ = 𝑛⃗𝛿𝜙

Можем выбрать ось 𝑧 так, чтобы она торчала вдоль 𝑛⃗. Тогда оператор вра-

щения вокруг новой оси 𝑧′:

𝑅𝑧⃗0𝛿𝜙 = [1 + 𝑖𝛿𝜙𝑠𝑧]

А 𝑠𝑧 диагонален: для
1
2

𝑠𝑧 =
1

2

(︃
1 0

0 −1

)︃

Тогда в силу диагональности можем написать:

𝜓′ = 𝜓 + 𝑖
𝛿𝜙

2
𝜎𝑧𝜓 ⇒ 𝜓′ − 𝜓

𝛿𝜙
=
𝑖𝜎𝑧𝜓

2
⇒ 𝜕𝜓

𝜕𝜙
=
𝑖𝜎𝑧𝜓

2

Это матричное уравнение, или система дифференциальных уравнений:

𝜕𝜓1

𝜕𝜙
=
𝑖

2
𝜓1,

𝜕𝜓2

𝜕𝜙
= − 𝑖

2
𝜓2

Спинор у нас двухкомпонентный. Если спин 1, то будет три уравнения, но

все равно они будут диагональными. А их мы уже можем решить:

𝜓1 = 𝜓0
1𝑒

𝑖𝜙2 , 𝜓2 = 𝜓0
2𝑒

−𝑖𝜙2

или опять в матричном виде:

𝜓 = 𝑒𝑖
𝜙
2 𝜎𝑧𝜓0.

Мы получили оператор вращения на конечный угол 𝜙 вокруг новой оси. Его

можно представить в виде, справедливом для произвольного спина

𝜓 = 𝑒𝑖𝜙𝑠𝑧𝜓0.

Здесь стоит экспоненциальная функция от диагональной матрицы, которая,
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как обычно, понимается как

exp
𝑖𝜙

2

(︃
1 0

0 −1

)︃
def
=

(︃
𝑒𝑖

𝜙
2 0

0 𝑒−𝑖𝜙2

)︃

Теперь хотим вернуться обратно, к неповёрнутой системе координат. Опе-

рация возврата, это поворот, который сохраняет скалярное произведение, по-

этому 𝑠𝑧 нужно просто заменить на 𝑛⃗0𝑠⃗. Мы получим формулу

𝜓 = 𝑒𝑖𝜙(𝑛⃗,𝑠⃗ )𝜓0,

верную для любого спина. Обсудим спин 1/2 поподробнее. Для спина 1
2 при

повороте на угол 2𝜋 (полный оборот) со спинором происходит следующее:

𝑅⃗2𝜋 = −1̂ ⇒
(︃
𝜓1

𝜓2

)︃
→
(︃
−𝜓1

−𝜓2

)︃

Говорят, что спиноры реализуют двузначное представление.

Попробуем упростить формулу для оператора конечного вращения. Ра-

нее мы получили, что для произвольная функция от линейной комбинации

матриц Паули есть линейная функция, а именно

𝑓
[︁
𝑎+

(︁
𝑏⃗, 𝜎⃗

)︁]︁
= 𝐴+ 𝐵⃗𝜎⃗

где

𝐴 =
𝑓(𝑎+ 𝑏) + 𝑓(𝑎− 𝑏)

2
, 𝐵⃗ =

𝑏⃗

𝑏

𝑓(𝑎+ 𝑏)− 𝑓(𝑎− 𝑏)

2

Применим решение этой задачи к выражению оператора поворота22. Хотим

узнать 𝑓, 𝑎, 𝑏

𝑅 = exp
[︁
𝑖
𝜙

2
(𝑛⃗, 𝜎⃗ )

]︁

Нетрудно увидеть, что

𝑓 = 𝑒𝑖
𝜙
2 , 𝑎 = 0, 𝑏⃗ = 𝑛⃗, |𝑏| = 1.

Отсюда

𝐴 = cos
𝜙

2
, 𝐵 = 𝑖 sin

𝜙

2
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Тогда окончательно для спина 1
2

𝑅̂ = cos
𝜙

2
+ 𝑖(𝑛⃗, 𝜎⃗ ) sin

𝜙

2

Можно переписать в виде матрицы:

𝑅̂ =

(︃
1 0

0 1

)︃
cos

𝜙

2
+

{︃
𝑖

(︃
0 1

1 0

)︃
𝑛𝑥 + 𝑖

(︃
0 −𝑖
𝑖 0

)︃
𝑛𝑦 + 𝑖

(︃
1 0

0 −1

)︃
𝑛𝑧

}︃
sin

𝜙

2
=

=

(︃
1 0

0 1

)︃
cos

𝜙

2
+ 𝑖

(︃
𝑛𝑧 𝑛𝑥 − 𝑖𝑛𝑦

𝑛𝑥 + 𝑖𝑛𝑦 −𝑛𝑧

)︃
sin

𝜙

2

7.3. Матрицы вращения вокруг базисных осей

𝑅𝑧 =

(︃
𝑒𝑖

𝜙
2 0

0 𝑒−𝑖𝜙2

)︃

𝑅𝑥 = cos
𝜙

2
+ 𝜎𝑥 sin

𝜙

2
=

(︃
cos 𝜙

2 𝑖 sin 𝜙
2

𝑖 sin 𝜙
2 cos 𝜙

2

)︃

Нетрудно видеть, что эрмитово сопряжение оператора поворота

𝑅+ = 𝑅−1

и оператор оказывается унитарным, как и должно быть, для того чтобы он

сохранял норму. В общем случае

⟨𝜓′|𝜓′⟩ = ⟨𝜓|𝑈+𝑈 |𝜓⟩ = ⟨𝜓|𝜓⟩ .

Ну и наконец

𝑅𝑦 = cos
𝜙

2
+ 𝑖𝜎𝑦 sin

𝜙

2
=

(︃
cos 𝜙

2 sin 𝜙
2

− sin 𝜙
2 cos 𝜙

2

)︃

22В Ландау-Лившице введены обозначения 𝑅̂𝜙 = 𝑈
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8. Движение электрона в магнитном поле

B

v

j

e

Рис. 47. Электрон в магнитном поле

Вращение электрона в магнитном поле можно трактовать как круговой

ток или магнитный диполь:

𝑗⃗ = 𝑒𝑛𝑣⃗, где 𝑛(𝑟⃗ ) = 𝛿(𝑟⃗ − 𝑟⃗1)

8.1. Магнитный момент

Механический момент - момент импульса:

𝐿⃗ =
∑︁

𝑚[𝑟⃗ × 𝑣⃗] =

∫︁
𝜌[𝑟⃗ × 𝑣⃗]𝑑3𝑟

Определение магнитного момента

𝜇⃗ =
1

2𝑐

∑︁
𝑒[𝑟⃗ × 𝑣⃗] =

1

2𝑐

∫︁
[𝑟⃗ × 𝑗⃗]𝑑3𝑟

Магнитный момент связан с механическим в классике теоремой Лармора:

𝜇⃗ =
𝑒

2𝑚𝑐
𝐿⃗

Простейший пример магнитного момента – Земля. Считается, что внутри

есть некий «магнит» (течёт магма, есть ферромагнитное ядро, текут токи

внутри):
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N

S

Рис. 48. Магнитное поле земли

Если поместить элементарный магнитик в поле диполя, то он будет ори-

ентирован по полю. Энергия магнитика в поле

𝑈 = −
(︁
𝜇⃗, 𝐵⃗

)︁

В классической механике момент чисто орбитальный, а в квантовой механике

есть два вида момента, и полный момент 𝐽 = 𝐿⃗+𝑆⃗. Все моменты измеряются

в единицах действия ℏ, и тогда:

𝜇⃗ =
𝑒ℏ
2𝑚𝑐

𝐿⃗

Множитель перед полным безразмерным моментом 𝑗⃗ называется магнето-

ном Бора.

Дирак доказал, что для спинового момента электрона коэффициент про-

порциональности в два раза больше

𝜇⃗ = 2𝜇𝐵 𝑠⃗

так что

𝜇⃗ = 𝜇𝐵

(︁
𝑙⃗ + 2𝑠⃗

)︁

Вводится понятие g-фактора:

𝜇 =
𝑒ℏ
2𝑚𝑐

𝑔𝑠⃗

Для электрона 𝑔 = 2. Это впервые показал Дирак, когда написал своё реля-

тивистское уравнение Дирака, а в нерелятивистском случае этот результат
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называется аномальным соотношением. Для связи спина и момента стоит

двойка, а для орбитального момента двойки нет.

Бор и Ван-Лёвен доказали, что в состоянии термодинамического равно-

весия система электрически заряженных частиц (электронов, атомных ядер

и т. п.), помещённая в постоянное магнитное поле, не могла бы обладать маг-

нитным моментом, если бы она строго подчинялась законам классической

физики.

8.2. Орбитальное движение

Давайте запишем выражение для электрона, движущегося в магнитном

поле. Будем рассматривать квантовое движение: есть орбитальная и спиновая

части.

Для начала попробуем записать уравнение Шрёдингера для безспиновой

частицы (𝑠 = 0). Можно записать через векторный и скалярный потенциалы,

которые автоматически удовлетворяют уравнениям без источников:

𝐸⃗ = −∇𝜙− 1

𝑐

𝜕𝐴⃗

𝜕𝑡

8.2.1 Калибровка

Потенциалы определены с точностью до калибровки:

𝐴→ 𝐴+∇𝑓, 𝜙→ 𝜙− 1

𝑐

𝜕𝑓

𝜕𝑡

Утверждается, что калибровочные преобразования – закон природы, а зна-

чит, уравнение Шрёдингера должно быт относительно них инвариантно:

𝑖ℏ
𝜕Ψ

𝜕𝑡
=

𝑝2

2𝑚
Ψ

Как ввести в нем магнитное поле? Нужно заменить

𝑝→ 𝑝− 𝑞

𝑐
𝐴⃗, 𝑈 = 𝑞𝜙, 𝑖ℏ

𝜕

𝜕𝑡
→ 𝑖ℏ

𝜕

𝜕𝑡
− 𝑞𝜙

Так как магнитное поле не совершает работы, то потенциальная энергия оди-

накова как при наличии магнитного поля, так и при отсутствии. Итак, урав-
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нение Шрёдингера для бесспиновой частицы в магнитном поле:

(︂
𝑖ℏ
𝜕

𝜕𝑡
− 𝑞𝜙

)︂
Ψ =

(𝑝− 1
𝑐𝐴⃗)

2

2𝑚
Ψ

В классической механике

𝐹 = 𝑞

(︂
𝐸⃗ +

1

𝑐

[︁
𝑣⃗ × 𝐵⃗

]︁)︂

В нашей квантовой механике

𝑝 = −𝑖ℎ∇

Во пространстве он входит в уравнения как

−𝑖ℎ∇− 1

𝑐
𝐴⃗,

А во времени как

𝑖ℎ
𝜕

𝜕𝑡
− 𝑞𝜙

Это удлинённая (ковариантная) форма. В силу калибровочной инвариантно-

сти

𝐴⃗→ 𝐴⃗+∇𝑓, 𝜙→ 𝜙− 1

𝑐

𝜕𝜙

𝜕𝑡

Можно исключить лишние члены фазовых преобразованием волновой функ-

ции:

Ψ → Ψexp

[︂
𝑖𝑞𝑓

ℏ𝑐

]︂

В таком случае и уравнения Максвелла, и Шрёдингера останутся инвариант-

ными. [︂
𝑖ℏ
𝜕

𝜕𝑡
− 𝑞𝜙+

1

𝑐

𝜕𝑓

𝜕𝑡

]︂
Ψexp

[︂
𝑖𝑞𝑓

ℏ𝑐

]︂

𝑒
𝑖𝑞𝑓
ℏ𝑐

[︂
𝑖ℏ
𝜕

𝜕𝑡
+ 𝑖ℏ

𝑖𝑞

ℏ𝑐
𝜕𝑓

𝜕𝑡
− 𝑞𝜙+

1

𝑐

𝜕𝑓

𝜕𝑡

]︂
Ψ = 0
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8.3. Уравнение Паули

Что изменится, если ввести спин? Должно добавиться к этому уравнению

уравнение для потенциальной энергии:

(︂
𝑖ℏ
𝜕

𝜕𝑡
− 𝑞𝜙

)︂
Ψ =

(𝑝− 𝑞
𝑐𝐴⃗)

2𝑚
Ψ− (𝜇⃗, 𝐵⃗ )Ψ

Для электрона 𝑠 = 1
2 , 𝑔 = 2, а магнитный момент

𝜇⃗ =
𝑒ℏ
2𝑚𝑐

𝑔𝑆⃗ =
𝑒ℏ
2𝑚𝑐

𝜎⃗

B в итоге уравнение для электрона

(︂
𝑖ℏ
𝜕

𝜕𝑡
− 𝑒𝜙

)︂
Ψ =

[︃
(−𝑖ℎ∇− 𝑒

𝑐𝐴⃗)
2

2𝑚
− 𝑒ℏ

2𝑚𝑐
(𝜎⃗, 𝐵⃗ )

]︃
Ψ, Ψ =

(︃
Ψ1

Ψ2

)︃

Кстати, здесь можно ввести гирочастоту, называемую также циклотронной

𝜔⃗𝐻 =
𝑒𝐵⃗

𝑚𝑐
⇒ 𝑒ℏ

2𝑚𝑐
(𝜎⃗, 𝐵⃗ ) =

ℏ
2
(𝜎⃗, 𝜔⃗𝐻 )

Это уравнение и называется уравнением Паули.

8.3.1 Эксперимент Штерна-Герлаха

В приборе Штерна-Герлаха, прежде всего, были незаряженные частицы.

Источник
source

N

S

z

μ μ

Na

B
S=-1/2

S=1/2

Летят атомы 
со спином Экран

Прибор ШГ

Рис. 49. Опыт Штерна-Герлаха

Летели нейтральные атомы натрия. В приборе магнитное поле неоднород-

но: оно создаётся квадрупольным магнитом. Один конец магнита острый, а
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другой тупой. На нас по рисунку летит пучок: нейтральный, но с магнитным

моментом.

Элементарный магнитик в таком неоднородном поле втягивается в об-

ласть сильного поля. Сила, действующая на магнитик

𝐹 = ∇
(︁
𝜇⃗, 𝐵⃗

)︁
= (𝜇⃗∇)𝐵⃗

Это производная по направлению 𝜇⃗ от поля 𝐵⃗. Если поле приблизительно

линейно неоднородно, то

𝑈 = −𝑟⃗ · (𝜇⃗∇) · 𝐵⃗
Что будет происходит, если влетает атом с каким-то направлением спина,

например спин вверх? Что с ним будет происходит? Если у него гиромагнит-

ное соотношение положительно, то магнитный момент тоже смотрит вверх, и

атом отклоняется вниз. Итак, этот прибор, фактически, измеряет проекцию

спина на ось 𝑧.

В классике на экране была бы непрерывная картина. Но как мы знаем,

проекция спина может принимать дискретные значения. Поэтому на экране

прибора будут регистрироваться несколько полос: для спина 1
2 и спина −1

2 .

Это впервые позволило наблюдать дискретность спектра.

Прибор Штерна-Герлаха – аналог поляризатора в оптике.

Теперь пусть прибор разложил пучок на два пучка. Если поставить по-

следовательно ещё один прибор, то второго пучка уже не будет:

S

z

z

z΄ 

S﹦-1/2

S﹦1/2

ШГ

ШГ

ШГ

φ

отсутствует

x΄ 

Рис. 50. Два прибора Штерна-Герлаха

Если же повернуть второй прибор и у него будет новая ось 𝑧′, то можно
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через оператор поворота

𝑈𝜙 = cos
𝜙

2
+ 𝑖(𝑢⃗, 𝜎⃗ ) sin

𝜙

2

𝑈𝜙 = cos
𝜙

2
+ 𝑖𝜎𝑥 sin

𝜙

2
=

(︃
cos 𝜙

2 𝑖 sin 𝜙
2

𝑖 sin 𝜙
2 cos 𝜙

2

)︃

Тогда если начальное состояние ( 10 ), то

(︃
Ψ′

1

Ψ′
2

)︃
= 𝑈

(︃
1

0

)︃
⇒

(︃
1

0

)︃
→
(︃
cos 𝜙

2

𝑖 sin 𝜙
2

)︃

Здесь интенсивности

𝐼1 = cos2
𝜙

2
, 𝐼2 = sin2

𝜙

2

Если угол 𝜋
2 , то интенсивности будут равны. В этом отличие от оптики (по-

ляризацию света можно сравнить со спином 1): у света интенсивность при

проходе через поляроид sin2 𝜙.

Итак, прибор Штерна-Герлаха – это поляризатор для спина. Он всегда

будет разбивать излучение на два пучка (хотя и интенсивность одного из них

может быть равна нулю).

8.4. Заряженная частица в однородном магнитном поле

Эта задача носит имя Ландау. Для электрона 𝑞 = 𝑒, 𝑔 = 2, 𝑠 = 1/2, а

уравнение

[︂
𝑖ℏ
𝜕

𝜕𝑡
− 𝑒𝜙

]︂
Ψ =

[︃
(−𝑖ℏ∇− 𝑒

𝑐𝐴⃗)
2

2𝑚
− 𝑒ℏ

2𝑚𝑐
(𝜎⃗, 𝐵⃗ )

]︃
Ψ

Рассмотрим случай, когда электрического поля нет (𝐸 = 0, 𝜙 = 0), а магнит-

ное поле однородно (𝐵⃗ ‖ 𝑧⃗0 = const).

𝐵⃗ = rot 𝐴⃗ =

⃒⃒
⃒⃒
⃒⃒
⃒

𝑥⃗0 𝑦⃗0 𝑧⃗0
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑥

⃒⃒
⃒⃒
⃒⃒
⃒
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Отсюда

𝐵𝑧 =
𝜕𝐴𝑦

𝜕𝑥
− 𝜕𝐴𝑥

𝜕𝑦

Чтобы поле было однородным, можно выбрать 𝐴𝑦 = 𝐵𝑧𝑥, 𝐴𝑥 = 0 или наобо-

рот: 𝐴𝑥 = −𝐵𝑧𝑦, 𝐴𝑦 = 0. Такой выбор называют калибровкой Ландау.

Такая свобода возникает вследствие калибровочной инвариантности, с ка-

либровочной функцией 𝑓 = 𝐵𝑥𝑦. Выберем второй вариант.

Будем искать стационарные решения, так как гамильтониан от времени

не зависит: [︃
(−𝑖ℏ∇− 𝑒

𝑐𝐴⃗)
2

2𝑚
− 𝑒ℏ

2𝑚𝑐
(𝜎⃗, 𝐵⃗ )

]︃
Ψ = 𝐸Ψ

1

2𝑚

(︂
−𝑖ℏ 𝜕

𝜕𝑥
+
𝑒

𝑐
·𝐵 · 𝑦

)︂2

Ψ− ℏ2

2𝑚

𝜕2

𝜕𝑦2
Ψ =

ℏ2

2𝑚

𝜕2

𝜕𝑧2
Ψ−𝑒ℏ𝐵

2𝑚𝑐
𝜎𝑧Ψ = 𝐸Ψ, 𝜎𝑧 = ( 1 0

0 −1 )

Ψ =

(︃
Ψ↑
Ψ↓

)︃

[︃
1

2𝑚

(︂
−𝑖ℏ 𝜕

𝜕𝑥
+
𝑒

𝑐
·𝐵 · 𝑦

)︂2

− ℏ2

2𝑚

𝜕2

𝜕𝑦2
− ℏ2

2𝑚

𝜕2

𝜕𝑧2
− 𝑒ℏ𝐵𝑧

𝑚𝑐
𝜎

]︃
Ψ = 𝐸Ψ

𝜎𝑧 =
1

2

(︃
1 0

0 −1

)︃
=

(︃
𝜎 0

0 −𝜎

)︃

Так как нет явной зависимость от 𝑥 и 𝑧, можно искать решение в виде пре-

образования Фурье:

Ψ = Φ(𝑦) exp{𝑖𝑘𝑥𝑥+ 𝑖𝑘𝑧𝑧}
Тогда [︂

1

2𝑚

(︁
ℏ𝑘𝑥 +

𝑒

𝑐
𝐵𝑦
)︁2

− ℏ2

2𝑚

𝜕2

𝜕𝑦2
+

ℏ2

2𝑚
𝑘2𝑧 −

𝑒ℏ𝐵𝑧

𝑚𝑐
𝜎

]︂
Φ = 𝐸Φ

Перенесём последние два слагаемых вправо и введём новую энергию

𝜀 = 𝐸 − ℏ2𝑘2𝑧
2𝑚

+
ℏ𝑒𝐵
𝑚𝑐

𝜎 = 𝐸 − ℏ2𝑘2𝑧
2𝑚

+ ℏ𝜔𝐻𝜎

Тогда [︂
1

2𝑚

(︁
ℏ𝑘𝑥 +

𝑒

𝑐
𝐵𝑦
)︁2

− ℏ2

2𝑚

𝜕2

𝜕𝑦2

]︂
Φ = 𝜀Φ
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Это ни что иное, как уравнение осциллятора. Вспомним его:

[︂
− ℎ2

2𝑚

𝜕2

𝜕𝑦2
+
𝑚𝜔2𝑦2

2

]︂
Φ = 𝜀Φ

Попробуем привести уравнение () к такому виду:

1

2𝑚

𝑒2𝐵2

𝑐2
𝑚

𝑚

(︂
ℎ𝑘𝑥𝑐

𝑒𝐵
+ 𝑦

)︂2

=
𝑚𝜔2

𝐻

2
(𝑦 − 𝑦0)

2

Тогда приведённый вид

[︂
− ℏ2

2𝑚

𝜕2

𝜕𝑦2
+𝑚𝜔2

𝐻(𝑦 − 𝑦0)
2

]︂
Φ = 𝜀Φ

Приведём уравнение к безразмерному виду:

ℎ𝜔𝐻

[︂
− ℏ
2𝑚𝜔𝐻

𝜕2

𝜕𝑦2
+
𝑚𝜔𝐻(𝑦 − 𝑦0)

2

2ℏ

]︂
Φ = 𝜀Φ

Можем ввести

𝑌 − 𝑌0 =
𝑦 − 𝑦0
𝑙𝐻

, 𝑙𝐻 =

√︂
ℏ

𝑚𝜔𝐻
=

√︂
ℏ𝑐
𝑒𝐵

ℏ𝜔𝐻

[︂
(𝑌 − 𝑌0)

2

2
− 1

2

𝜕2

𝜕(𝑌 − 𝑌0)2

]︂
Φ = 𝜀Φ

Решение такого осциллятора нам известно:

𝜀 = ℏ𝜔𝐻

(︂
𝑛+

1

2

)︂
⇒ 𝐸 = ℏ𝜔𝐻

(︂
𝑛+

1

2

)︂
+

ℏ2𝑘2𝑧
2𝑚

− ℏ𝜔𝐻𝜎

Так как 𝜎 = ±1
2 , то

𝐸 = ℏ𝜔𝐻𝑛+
ℏ2𝑘2𝑧
2𝑚

− ℏ𝜔𝐻

(︂
𝜎 − 1

2

)︂

Рассмотрим случай без свободного движения (𝑘𝑧 = 0):
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𝐸
~𝜔𝐻

0 𝑛 = 0, 𝜎 = 1
2

1

2

𝑛 = 1, 𝜎 = 1
2

𝑛 = 1, 𝜎 = − 1
2

Рис. 51. Расщепление уровней

Уровень 𝐸 = ℏ𝜔𝐻 дважды вырожден, и все высшие уровни дважды врож-

дены. А собственные функции

Φ = exp

{︂
−(𝑌 − 𝑌0)

2

2

}︂
𝐻𝑛(𝑌 − 𝑌0)

Тогда

Ψ = exp{𝑖𝑘𝑥𝑥+ 𝑖𝑘𝑧𝑧} exp
{︂
−(𝑦 − 𝑦0)

2

2𝑙2𝐻

}︂
𝐻𝑛

(︂
𝑦 − 𝑦0
𝑙𝐻

)︂

где 𝑦0 = −ℏ𝑘𝑥𝑐
𝑒𝐵 = − ℏ𝑘𝑥

𝑚𝜔𝐻
.

Заметим, что есть вырождение: волновые функции зависят от 𝑘𝑥, а энер-

гия – нет. Обсудим аналогию с классической механикой.

Классическая задача

𝑚 ˙⃗𝑣 =
𝑒

𝑐

[︁
𝑣⃗ × 𝐵⃗

]︁
, 𝐵 ≡ 𝐵𝑧

⎧
⎪⎨
⎪⎩

𝑣̇𝑥 = 𝜔𝐻𝑣𝑦

𝑣̇𝑦 = −𝜔𝐻𝑣𝑥

𝑣̇𝑧 = 0

Ищем решение в виде

𝑒−𝑖𝜔𝑡

(︃
𝑣𝑥
𝑣𝑦

)︃
⇒

⎧
⎪⎨
⎪⎩

− 𝑖𝜔𝑣𝑥 = 𝜔𝐻𝑣𝑦

− 𝑖𝜔𝑣𝑦 = −𝜔𝐻𝑣𝑥

𝑣𝑧 = 𝑣0𝑧
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Для первых двух уравнений считаем определитель, чтобы система имела ре-

шение:

𝜔 = ±𝜔𝐻

Тогда два собственных вектора найдём, и полное решение

(︃
𝑣𝑥
𝑣𝑦

)︃
= 𝑐1

(︃
1

−𝑖

)︃
𝑒−𝑖𝜔𝐻𝑡 + 𝑐2

(︃
1

𝑖

)︃
𝑒𝑖𝜔𝐻𝑡

Это хорошо известный результат: на плоскости (𝑣𝑥, 𝑣𝑦) мы крутимся в од-

ну сторону – это гировращение, а по 𝑧 происходит движение с постоянной

скоростью.

Проинтегрируем решение:

(︃
𝑥

𝑦

)︃
=

𝑐1
−𝑖𝜔𝐻

(︃
1

−𝑖

)︃
𝑒−𝑖𝜔𝐻𝑡 +

𝑐2
𝑖𝜔𝐻

(︃
1

𝑖

)︃
𝑒𝑖𝜔𝐻𝑡 +

(︃
𝑥0
𝑦0

)︃

Точка (𝑥0, 𝑦0) называется ведущим центром. На плоскости (𝑥, 𝑦) происходит

вращение вокруг ведущего центра по радиусу

𝑟𝐻 =
𝑣

𝜔𝐻

Аналогия классики и квантового решения. Волновая функция лока-

лизована по 𝑦. Что у неё определено?

yy0

Φ(y)

Рис. 52. Функция Φ(𝑦)

Продольное движение что в классике, что в квантах одинаково. А по-

перечное зависит от калибровки: в функции определён центр 𝑦0, по оси 𝑥

осцилляции.

Центр волновой функции может быть назван ведущим центром. В отли-

чии от классической задачи, где определены обе координаты ведущего цен-

152



Квантовая механика Лекции В.В. Курина 2018-2019

тра, то теперь при нашем выборе калибровки будет определена координата

𝑦0 ведущего центра, а по 𝑥 функция не локализована.

Заметим, что если выбрать другую калибровку 𝐴𝑦 = 𝐵𝑥, ситуация пере-

вернётся: локализация по 𝑥 и неопределённость по 𝑥.

В Ландау также решена задача о симметричной калибровке

𝐴𝑥 =
1

2
𝐵𝑦, 𝐴𝑦 = −1

2
𝐵𝑥

При этом уровни энергии не изменятся. Уровни энергии движения электрона

в магнитном поле называются уровнями Ландау.
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Неофициальный минимум и полезные формулы

Волновая функция и её физический смысл. Каждое состояние систе-

мы может быть описано в данный момент времени определенной функцией

координат 𝜓(𝑞), эта функция называется волновой. 𝑞 – обобщенные коорди-

наты системы, в простейшем случае 𝑥, 𝑦, 𝑧.

|𝜓|2 d𝑞 определяет распределение вероятностей значений координат.
При этом вероятность того, что система находится в каком-то состоянии

всегда равна 1
∞∫︁

−∞

|𝜓(𝑞)|2 d𝑞 = 1

Операторы физических величин, их свойства (эрмитовость, неком-

мутативность). ??

Введем и определим понятие оператор 𝑓 . Пусть 𝑓𝜓 обозначает результат

воздействия оператора 𝑓 на функцию 𝜓

𝑘𝑒𝑘

Импульс. Волновая функция свободной частицы. Импульс опреде-

ляется оператором 𝑝 = −𝑖ℏ∇ Волновая функция свободной частицы:

Ψ(𝑟⃗, 𝑡) =
1

(2𝜋ℏ)3/2
exp{𝑖(𝑘⃗𝑟⃗ − 𝜔𝑡)} =

1

(2𝜋ℏ)3/2
exp{ 𝑖

ℏ
(𝑝𝑟⃗ − 𝐸𝑡)}

Энергия принимает любые значения. Энергетический спектр непрерывный.

Стационарное и нестационарное уравнения Шрёдингера.

Нестационарное: 𝑖ℏ
𝜕Ψ(𝑟⃗, 𝑡)

𝜕𝑡
= 𝐻̂Ψ(𝑟⃗, 𝑡)

В развернутом виде:

𝑖ℏ
𝜕Ψ(𝑟⃗, 𝑡)

𝜕𝑡
= − ℏ2

2𝑚
∆Ψ(𝑟⃗, 𝑡) + 𝑈(𝑟⃗)Ψ(𝑟⃗, 𝑡)

Стационарное: 𝐻̂Ψ(𝑟⃗) = 𝐸Ψ(𝑟⃗)

154



Квантовая механика Лекции В.В. Курина 2018-2019

Или, расписывая оператор Гамильтона:

ℏ2

2𝑚
∆Ψ(𝑟⃗) + [𝐸 − 𝑈(𝑟⃗)]Ψ(𝑟⃗) = 0,

𝐸 = 𝑐𝑜𝑛𝑠𝑡– энергия системы, 𝑈(𝑟⃗)– потенциальная энергия

Значение постоянной Планка

ℏ = 1.054 · 10−34 Дж · с
ℏ = 1.054 · 10−27 эрг · с
ℏ = 6.582 · 10−16 эВ · с

Формулы

Коммутационные соотношения

[𝑝𝑥, 𝑥] = −𝑖ℏ

[𝑎, 𝑎+] = 1
⎧
⎪⎨
⎪⎩

𝑙𝑥𝑙𝑦 − 𝑙𝑦𝑙𝑥 = 𝑖𝑙𝑧

𝑙𝑦𝑙𝑧 − 𝑙𝑧𝑙𝑦 = 𝑖𝑙𝑥

𝑙𝑧𝑙𝑥 − 𝑙𝑥𝑙𝑧 = 𝑖𝑙𝑦

[𝑙2, 𝑙𝑧] = 0

[𝑙𝑧, 𝑙±] = ±𝑙+

[𝑙+, 𝑙−] = 2𝑙𝑧

Собственные числа операторов

𝑎+ |𝑛− 1⟩ = √
𝑛 |𝑛⟩ , 𝑎 |𝑛⟩ = √

𝑛 |𝑛− 1⟩
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𝑙+ |𝑚, 𝑙 − 1⟩ =
√︀
(𝑚+ 𝑘)(𝑙 −𝑚+ 1) |𝑚+ 1, 𝑙⟩ ,

𝑙− |𝑚, 𝑙⟩ =
√︀

(𝑚+ 𝑘)(𝑙 −𝑚+ 1) |𝑚− 1, 𝑙⟩

𝑙𝑧 |𝑙,𝑚⟩ = 𝑚 |𝑙,𝑚⟩
𝑙2 |𝑙,𝑚⟩ = 𝑙(𝑙 + 1) |𝑙,𝑚⟩
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