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Часть 1. Геометрическая оптика 
 

§ 1. Уравнения геометрической оптики в неоднородной среде 

 

Во многих практически важных случаях распространение гармонических волн в 

неоднородной среде описывается решениями уравнения Гельмгольца    

( ) 0
~~ 22 =+ UrnkU


,        (1) 

где U
~

 – скалярная волновая функция, ( ) 2== )/( ck  – волновое число, c – 

скорость распространения волн в однородной (эталонной) среде, )( rn


 – 

коэффициент замедления скорости распространения волн в среде по отношению к 

эталонному значению (в электродинамике и оптике c  – скорость света в вакууме, 

)( rn


 – показатель преломления среды). В неоднородной среде скорость и 

направление распространения оказываются локальными характеристиками волны и 

рассматриваются как функции координат. Точные решения уравнения (1) известны 

лишь для некоторых частных законов изменения )( rn
2  в неоднородной слоистой 

среде, примерами которой в некотором приближении могут служить атмосфера 

Земли, морская вода, земная кора, оптические волокна.  

При произвольной, но достаточно медленной зависимости свойств среды от 

координат, когда длина волны   мала по сравнению с характерными 

масштабами   задачи (  ), можно построить приближенное решение с 

помощью метода геометрической оптики. Простой и наглядный метод го 

обеспечивает хорошее качественное описание чрезвычайно широкого круга волновых 

явлений различной физической природы (электромагнитные и упругие волны, звук, 

волновые процессы в плазме и жидкостях, квантово-механические явления и т.д.). Го 

широко применяется в оптике, в физике плазмы, в теории распространения радиоволн 

через атмосферу Земли и космическое пространство. Можно сказать, что львиная доля 

всех расчетов коротковолновых полей (особенно на начальном этапе оценок и 

прикидок) осуществляется при помощи метода го и его модификаций. В частности, 

большой интерес представляют приложения го, связанные с распространением и 

излучением волн в атмосферах планет, в неоднородном океане, в земной коре, в 

неоднородных линзах и волноводах с неоднородным заполнением, в средах, 

содержащих случайные неоднородности.   

 

 1.1. Вывод уравнений  го из уравнения Гельмгольца  

 

На примере скалярного поля U
~

 проиллюстрируем переход от уравнения 

Гельмгольца (1) к уравнениям го. Вначале заметим, что в однородной среде (т.е. в 

простейшем случае constnn == 22 ) уравнение (1) имеет решение в виде поля  

( ) ( )   ( )  rsnkiUrnkiUrU

−−= 0expexp

~
 ,  (2) 

которое имеет постоянную амплитуду U  и фазу  

    ( )rsnk

−=

0
 ,                         (3) 
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изменяющуюся наибыстрейшим образом в направлении орта 
0

s


. Поверхностью 

постоянной фазы, называемой волновым фронтом, является плоскость, 

перпендикулярная направлению орта 
0

s


. Решение (2) описывает распространение 

волны реальной физической величины  

( )  ( )  rsnktiUtiUU

−+== 0expReexp

~
Re  ,  (4) 

изменяющейся во времени по гармоническому закону. В каждый фиксированный 

момент времени на поверхности (плоскости) постоянной фазы значение U  

постоянно, поэтому волна называется однородной и плоской. С течением времени 

плоскость постоянной фазы перемещается в направлении орта 
0

s


 с постоянной 

фазовой скоростью  

 ( ) ( )ncnk
f

== v .            (5) 

 

1.1.1. Приближение ГО для монохроматического поля в неоднородной среде 

 

Будем считать, что свойства среды в уравнении (1) изменяются достаточно мало 

на расстояниях порядка длины волны  . Это означает, что  

nn       (6) 

и что существует некоторый пространственный масштаб   изменения n , который 

определяется из условия   

      nn  .     (7) 

Этот пространственный масштаб существенно больше  , так что справедливо 

условие  

   ( ) ( ) 112 = k ,   (8) 

где   – малый безразмерный параметр, в предельном случае стремящийся к нулю1).  

 Если заметные изменения амплитуды ( )rA


 и направления распространения 

волны происходят на расстояниях  , то всё пространство, где определяется решение 

уравнения (1), можно разбить на участки с размерами  

   l .       (9) 

В пределах каждого участка волну можно считать плоской, а направление её 

распространения можно определить как направление нормали к волновой 

поверхности. Это означает, что решение уравнения (1) следует искать в виде 

выражения  

( )  )(exp)(
~

rkirArU


−= ,    (10) 

 
1) Поле распространяющейся волны может изменяться не только из-за свойств среды, которые 

представлены в уравнении (1) коэффициентом )( rn


, но и в результате особенностей его 

возбуждения, обусловленных размерами, структурой и расположением источников относительно 

области определения поля. Вторая причина никак не представлена в уравнении (1), но определяет 

характерные размеры 
A

  области изменения амплитуды поля. Будем считать, что 
A

 и 

что поэтому изменение амплитуды поля происходит (в основном) не из-за особенностей её 

возбуждения, а из-за неоднородного коэффициента преломления )( rn


. 
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которое связывает две неизвестные действительные функции ( )rA


 и )( r


 , 

мало изменяющиеся на расстоянии l :  

( ) )()()( rArAlrAl


 ;      

  ( ) )()()( rrlrl


 .     (11)  

При выполнении условий (11) такая монохроматическая волна, образованная двумя 

связанными функциями, будет квазиплоской (т.е. плоской на каждом участке l ). Она 

может быть и однородной, если   

constrA =)(


                                     (12) 

на поверхности волнового фронта, которая определяется уравнением  

   constr = )(


.          (13) 

 

1.1.2. Вывод уравнений эйконала и переноса из уравнения Гельмгольца 

 

Подставляя (10) в уравнение (1) и используя последовательно две 

дифференциальные операции первого порядка (оператор Лапласа graddiv= ), 

( )  ( )
( )  ( ) ( )

( ) ( ) 

( ) ( ) ( ) −−−−=

=−−−

−−−=−

−−

AkiAkAkiAki

kiAkiAkidiv

kiAkiAkikiA

kiAgraddivkiA

22exp

expexp

expexpexp

expexp

 

получим (после вынесения за скобки общего сомножителя Ak 2 ) уравнение  

( )
( ) ( )  02 22

2
=−−


−


−


rn

k
i

Ak

A
i

Ak

A 
.   (14) 

В нём первый член в соответствии с (8) имеет порядок малости 2 , второй и третий 

имеют порядок малости   по отношению к членам, находящимся в квадратных 

скобках. Приравнивая нулю отдельно реальную и мнимую части (14) и пренебрегая 

членом второго порядка малости, получим  два уравнения  

   ( ) ( )rn
22

= ,       (15) 

    0)(2 =+ AA     (16) 

относительно двух неизвестных связанных функций ( )rA


 и )( r


 , имеющих 

разные размерности.  

Уравнение (15) через известное выражение коэффициента преломления )( rn


 

определяет фазу (или эйконал) и, следовательно, структуры волновых фронтов. Оно 

называется уравнением эйконала. В переводе с греческого языка эйконал обозначает 

изображение и введён в качестве термина в 1885 году Брунсом для обозначения 

связанных функций. Уравнение (16) определяет поведение амплитуды и называется 

уравнением переноса. Отметим ещё раз, что преобразование уравнения Гельмгольца 

(1) в два связанных уравнения (15) и (16) возможно только при условии (8).  

 

1.1.3. Понятие асимптотического разложения решения уравнения Гельмгольца 
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 Использованный метод получения приближённых уравнений, когда 

приходится пренебрегать их малыми членами, а не малыми членами их решений, не 

всегда корректен. Поэтому рассмотрим второй подход. Введём безразмерные 

координаты  

 ( )++= rzyxρ


000 ρ ,     (17) 

нормированные на внешний масштаб  . Используя очевидные соотношения  

=
ρ

;  = 2

ρ
,     (18) 

представим уравнение Гельмгольца (1) в безразмерных координатах  

( ) ( ) 0
~)(~

2

2

=+ 









U

n
U

ρ
.      (19) 

Решение (19) будем искать в виде асимптотического ряда по степеням малого 

параметра 

( ) ( ) ( ) ( ) ( ) 


−








+= 


=

1exp
~

1
0

iaaU
m

m

m ,   (20) 

где безразмерная фаза ( )


  и эйконал )( r


 , имеющий размерность длины, 

связаны соотношением   

 ( ) ( )= rr


.     (21) 

Подставляя (20) в (19) и приравнивая нулю суммы членов одного порядка малости, 

получим систему из бесконечно большого числа уравнений 

( )



















−=+

−=+

=+

=






 

−

.....................................................................

;~)~(2~
........................................................

;)~(2~

;0)(2

;

1

011

00

2

2

mmm aiaa

aiaa

aa

n

ρρρρ

ρρρρ

ρρρ

ρ



     (22) 

относительно неизвестных коэффициентов решения (20). Решение системы уравнений 

(22) происходит последовательно в несколько этапов. Вначале по известному 

выражению ( )
2n  определяется ( )


 , затем вычисляются ( )


0

a , ( )


1
a~  и 

т.д. Заметим, что ( )


0
a  и ( )


  – действительные величины, а ( )


1

~a  – 

комплексная величина. Поэтому ( )


  является фазой волны с точностью до 

членов первого порядка малости.  

С помощью соотношений (18) и  (21) из системы (22) получается полностью 

эквивалентная ей система дифференциальных уравнений  
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( ) ( )

















−=+

−=+

=+

=

−

,.............................................................

,
~

)
~

(2
~

........................................................

;)
~

(2
~

;0)(2

;

1

011

00

22

mmm
AiAA

AiAA

AA

rn


     (23) 

записанная в размерных переменных. В этих уравнениях все неизвестные функции 

( )rA
m

~
 связаны с функциями ( )


m

a~  системы (22) соотношениями  

 ( ) ( )( )m

mm
arA = 

 ~~
     (24) 

и в отличие от ( )


m
a~ , обладающих размерностью поля U

~
, имеют разные 

размерности. Первое и второе уравнения системы (23) совпадают соответственно с 

уравнениями эйконала (15) и переноса (16).  

Уравнения (15) и (16) справедливы даже в предельном случае, когда параметр 

→k  и когда формально все остальные уравнения системы (23) не могут быть 

получены. Эти уравнения называют также уравнениями геометрической оптики 

нулевого приближения для уравнения Гельмгольца. Третье и последующие уравнения 

системы (23) для амплитудных коэффициентов ( )rA


1

~
, ( )rA


2

~
 называются 

уравнениями переноса первого, второго  и т.д. приближений.  

Система (23) получается непосредственно из уравнения Гельмгольца (1), если 

его решение представляется в виде асимптотического ряда  

( ) ( )  )(exp)(
~

1)(
~

1

0 rkirAkirArU
m

m

m 
−









+= 


=

   (25)  

по степеням  малого параметра ( )k/1 , имеющего размерность длины. Несмотря на 

некоторые трудности, связанные с сопоставлением величин разных размерностей, 

именно такой подход широко используется в литературе, поскольку в конечном итоге 

приводит к той же системе уравнений (23), что и более строгий с математической 

точки зрения метод, в котором применяется безразмерный малый параметр  .  

Определение поля в приближении го находится в результате решения двух 

уравнений (15) и (16) в частных производных 1-го порядка. Оно оказывается проще 

решения уравнения Гельмгольца, поскольку сводится к решению обыкновенных 

дифференциальных уравнений.  

1.2. Вывод уравнений го из уравнений Максвелла 

 

Уравнения (15) и (16), являясь скалярными, не учитывают поляризационные 

эффекты в электродинамике (оптике). Поскольку даже в названии метода отражено 

его широкое использование для описания распространения электромагнитных волн, 

где роль поляризационных эффектов чрезвычайно велика, то представляется крайне 

необходимым получить уравнения  го  непосредственно из уравнений Максвелла.  

Воспользуемся системой уравнений Максвелла в форме (В.11), которая 

описывает гармонические процессы в неоднородной среде, а также следствием этой 
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системы, уравнением (В.13) для векторной комплексной амплитуды 

электрического поля E
~

2). В простейшем случае однородной ( 0==  ) и 

изотропной ( constnn ==


) среды система (В.11) имеет решение  

( )  rsnkiEE

−=

00
exp

~
 ; ( )  rsnkiHH


−=

00
exp

~
 ,   (26) 

которое описывает распространение однородной плоской волны электромагнитного 

поля в направлении орта 
0

s


. Каждая проекция полей E

~

 и H

~

 описывается 

формулой (2). Подставляя (26) в систему уравнений (В.11), получим четыре связанных 

между собой соотношения  

     0)(;0)(;;
0000000000
==−== sHsEEHsnHEsn


 ,  (27) 

из которых следует, что поля 
0

E


 и 
0

H


 ориентированы перпендикулярно 

направлению распространения 
0

s


 и ортогональны друг другу.  

Хорошо известное частное решение (27) даёт основание искать решение (В.11) 

для неоднородной среды в виде двух асимптотических рядов  

( ) ( )  )(exp)(
~

1)(
~

1
0

rkirEkirErE
m

m

m 
−









+= 


=

;   (28) 

( ) ( )  )(exp)(
~

1)(
~

1
0

rkirHkirHrH
m

m

m 
−









+= 


=

,   (29) 

в которых амплитуды 
00

HE


,  нулевого приближения действительные функции 

координат. Подставляя (28) и (29) в уравнения (В.11) и приравнивая нулю 

коэффициенты при различных степенях малого размерного параметра ( )k1 , 

получим систему уравнений нулевого приближения  

    0)(;0)(;;
000000

==−== HEEHHE


 ,  (30) 

из которой следует взаимная перпендикулярность векторов 
00

, HE


 и  . Если из 

первого уравнения (30) выразить 
0

H


 и подставить во второе, то с учётом третьего 

получится уравнение эйконала  

  ( ) ( )rn
2=  .     (31) 

Таким образом, уравнения (30) являются уравнениями го для электромагнитного поля. 

Из них можно получить, в частности, представление о поляризации поля. Как 

нетрудно увидеть, поля 
00

HE


,  связаны друг с другом так же, как в плоской волне, и 

образуют правую тройку с   (Рис. 2). Это представление носит локальный 

характер, т.е. в определённом ранее приближении справедливо на небольшом участке. 

Если ввести орт  

( ) ( )ns =
0


      (32) 

по направлению Ψ , то нетрудно убедиться, что (30) и (27) полностью совпадают по 

содержанию.  

 
2) Можно использовать также уравнение для векторной комплексной амплитуды магнитного поля 

H

~

, которое полностью эквивалентно (В.13) и получается из него на основании принципа 

двойственности с помощью замен (В.15). 
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Уравнения нулевого приближения для амплитуды поля 
0

E


 можно найти из 

условия совместности уравнений нулевого и первого  приближений3). Но практически 

проще использовать для этой цели уравнение (В.13). Подставляя (28) в (В.13), можно 

получить бесконечный ряд убывающих по малому параметру ( )ki1  членов, 

который приводится к виду  

 

  ( )   ( )   ( )   ( )     0
~ˆ~ˆˆ~ˆˆˆ

21

2

0

2

1

1

0

1

0 =+




 +−++−

−−−−



EKELkiEMkiEKkiELkiEK . (33) 

В качестве коэффициентов при степенях малого параметра в (33) выступают 

функционалы  

 

     AnAK

+−= 22)(

ˆ
;   (34) 

 

 

  ( )  −−= AAL


ln
ˆ

 

( ) ( ) AnA


+− ln2 ;     (35) 

 

    ( )  lnln
ˆ

−−= AAArotAM


.  (36) 

 

Приравнивая в (33) последовательно 

нулю все члены одного порядка малости, 

получим вначале из членов нулевого 

приближения (34) с учётом условия 0
0
E


 

уравнение эйконала в виде (15). Затем из 

равенства нулю членов первого порядка 

малости, учитывая уравнение эйконала, 

получим вытекающее из (35) уравнение для 

векторной амплитуды электрического поля  

 

( )  ( ) ( ) 02ln2ln
000
=−−− EnEE


 .  (37) 

 

Применяя принцип двойственности (В.15), найдём из (37) уравнение  

( )  ( ) ( ) 02ln2ln
000
=−−− HnHH


 .  (38) 

для векторной амплитуды магнитного поля.  
 

 

 

 

 

 

3) Такой способ получения уравнений для поля 
0

E


 использован в книге В.И.Бабича, В.С.Булдырева 

«Асимптотические методы в задачах дифракции коротких волн».  

Рис. 2 



 

const=1

 
const=2

 

const=3

 

0
E


 

0
H

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 § 2. Общие свойства и некоторые методы решения уравнения эйконала  

 

 Уравнение эйконала (1.15) является основным уравнением го. Это – нелинейное 

уравнение в частных производных первого порядка, которое имеет в общем случае 

три независимых переменных. В соответствии с общей теорией решения уравнений в 

частных производных первого порядка1) его удобно представить в виде нелинейного 

уравнения с 6-тью переменными величинами  

( ) ( ) ( ) ( ) 0,,,,,2
3

1

22

222

=−−











+












+













=

zyx
q

q
pppzyxFrnprn

zyx


,    (1) 

в котором символом ( )F  обозначена левая часть уравнения (1) и введены новые 

переменные по правилам 


=

++=











+












+














3
0

000000

1q
qqzyx

xpzpypxppz
z

y
y

x
x


.   (2) 

Для решения уравнения (1) используются также функции  

 ( ) ( )
qq

q
qq

q

PpppxxxP
p

F
XpppxxxX

x

F
=




=




321321321321

,,,,,;,,,,, .    (3) 

Решение уравнений типа (1) сводится к интегрированию системы 7-ми (в общем 

случае [2N+1]) обыкновенных  дифференциальных уравнений  

13

3

3

2

2

1

1

3

3

2

2

1

1

1

d

Pp

d

X

pd

X

pd

X

pd

P

xd

P

xd

P

xd

q
qq

=


=−=−=−===


=

,     (4) 

записанных в так называемой характеристической форме. Постоянные 

интегрирования должны быть выбраны так, чтобы удовлетворялись граничные 

условия. В уравнениях (4) все переменные (
qq

px , ) предполагаются зависящими от 

одного параметра 
1

 , смысл которого будет ясен из дальнейшего изложения. 

Индекс 1 в дифференциале 
1

d  отражает тот факт, что система (4) получена из 

уравнения (1), которое можно представить в разных формах.  

 

2.1. Аналогия эйконала и действия в механике 

 

 Нелинейное уравнение эйконала (1.15) имеет особенность. Его всегда можно 

разрешить относительно одной (любой) из частных производных первого порядка, так 

что представление (1) является его частным случаем. Будем считать, что уравнение (1) 

разрешено относительно 
3

pp
z
  и потому имеет вид  

( ) ( ) 0,,,,,ˆ,,,,
321321213213

2

1

2

2

2

3
=+−− pppxxxFppxxxHpppnp .    (5) 

Тогда в соответствии с (3) произойдут небольшие изменения в обозначениях  

( ) ( ) 1ˆ;,,,,ˆ
ˆ

;,,,,ˆ
ˆ

3213212,1

2,12,1

21321 ==








=









PppxxxP

p

H

p

F
ppxxx

q
X

q
x

H

q
x

F
,    (6) 

 
1) См., например, В.В. Степанов. Курс дифференциальных уравнений, Государственное издательство 

физико-математической литературы, Москва, 1958 г. 
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и система уравнений в характеристической форме (4) примет вид  

22

3

1

1

2

2

3

3

1

1

2

23

1

1
d

p

H
pp

d

x

H

pd

x

H

pd

x

H

pd

p

H

xd

p

H

xdxd

q q
q

=




+


=




−=




−=




−=




=




=


=

.   (7) 

Из (7) видно, что независимая переменная zx =
3

 в этой новой системе уравнений в 

характеристической форме2) играет роль произвольного параметра 
2

 . Поэтому 

число уравнений в характеристической форме в системе (7) оказывается на единицу 

меньше, чем в системе (4).  

Если в системе (7) независимую переменную, имеющую смысл изменяющегося 

параметра, временно обозначить новым символом  

tzx =
32

 ,       (8) 

то для переменных 
21,

x  и 
21,

p  из уравнений (7) получим систему уравнений  

q

q

q

q

x

H

td

pd

p

H

td

xd




−=




= ; ,    (9) 

которая именно в такой форме  встречается в теоретической механике и носит 

название канонической системы. В уравнениях классической механики функция 
( )H  называется функцией Гамильтона и является энергией механической системы 

материальных объектов, выраженной через обобщенные координаты 
q

x  и 

обобщённые импульсы 
q

p , а t  обозначает текущее время. Следует заметить, что в 

уравнениях (9) в отличие от уравнений классической механики используются три 

импульса (
zyx

pppppp ===
321

,, ) и только две координаты ( yxxx ==
21

, ).  

Если использовать обозначение (8) и представить 
3

p в виде  

( ) ( )txp 
33

,             (10) 

то (5) преобразуется и приобретёт смысл уравнения Гамильтона-Якоби  

 ( )

















−−=





q

qqq
x

xtHpxtH
t

,,,, ,   (11)  

в котором   играет роль действия, обозначаемого в механике обычно символом S .  

Последнее по счёту из уравнений в характеристической форме (7) позволяет 

получить для действия (или эйконала) уравнение первого порядка в виде  















−

=








+

=



=





 q

p
q

xtL
q

p
q

xtH

q q
p

H

q
p

t
q q

p

H

q
p

td

d

d

d
,,,,

11

22

2
, (12) 

в котором зависящая от координат правая часть (12) в классической механике имеет 

смысл функции Лагранжа ( )
qq

pxtL ,, .  

 Таким образом, решение уравнения эйконала и расчёт величины ( )
12

−  

при изменении параметра 
2

  в заданных пределах полностью эквивалентны 

вычислению действия за некоторый промежуток времени движения механической 

системы по её траектории в фазовом пространстве.  

 
2) Поскольку уравнения (1) и (5) имеют разные формы, то соответствующие им системы (4) и (7) 

обыкновенных уравнений в характеристической форме также отличаются друг от друга.  
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Рис. 3 

const=1
 

const=2
 

const=3  

0s


 

 

2.2.  Физический смысл эйконала и связанных с ним понятий 

 

Рассмотрим связанные с эйконалом понятия, а также подходы к решению 

уравнения (1.15).  

 1) Поскольку термин го возник в связи с распространением света, то вначале 

установим связь эйконала с потоком мощности электромагнитного излучения. 

Используя уравнения нулевого приближения (1.30) и принимая во внимание 

действительный характер векторных амплитуд электрического и магнитного полей, 

найдём среднее за период высокочастотного колебания значение вектора Пойнтинга в 

виде  

  ( ) 0

2

00000
888

sE
nс

EE
с

HE
с

П
Т 









=








==


.    (13) 

Из (13) следует, что направление усреднённого по времени вектора 

Пойнтинга совпадает с нормалью 

к геометроптическому волновому 

фронту. Это означает, что световые 

лучи, по которым распространяется 

световая энергия, можно определить 

как траектории (Рис. 3), 

ортогональные к геометроптическим 

волновым фронтам const= . Мы 

будем приписывать 

геометроптическим световым 

лучам направление 
0

s


, тем самым 

полагая, что в каждой точке оно 

совпадает с направлением 

усреднённого вектора Пойнтинга. 

Такое определение световых лучей, безусловно, справедливо в изотропных средах. (В 

анизотропной среде нормаль к волновому 

фронту в общем случае не совпадает с 

направлением вектора Пойнтинга.) Из 

определения луча становится понятным, что 

орт 
0

s


 можно назвать ортом лучевого 

вектора. Таким образом, линии, 

параллельные вектору 
0

s


, называются 

лучами, а сам вектор 
0

s


 – ортом лучевого 

вектора.  

2) Рассмотрим часть траектории луча 

на Рис. 4. Из рисунка следует определение 

вектора 
0

s


 как  

  
sd

rd
s



=

0
,   (14) 

Рис. 4 

r  
dr
 

ds  

0  

r dr+
 

0s

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где радиус-вектор ( )sr


 точки, расположенной на луче, рассматривается как 

функция длины s  дуги луча. Для определения траектории луча и, следовательно, 

длины дуги s  требуется знание эйконала  , который удовлетворяет нелинейному 

уравнению (1).  

 

2.3. Уравнение траектории луча 

 

 Обратимся к системе уравнений в характеристической форме (4) и в 

соответствии с (3) найдём знаменатели всех отношений 

2
3

1

2;2;2 nPppP
p

F

x

n
nX

x

F

q
qqqq

qq

q

q

==







−=





=

,     (15) 

образующих эту систему уравнений. Заметим, что каждое отношение в системе (4) 

можно умножить на один и тот же множитель, не равный нулю, и при этом все 

равенства сохранятся. Такой интегрирующий множитель во многих случаях 

упрощает процедуру решения уравнений, позволяя получить более простую форму 

параметрического представления характеристических линий. В нашем случае в 

качестве интегрирующего множителя удобно выбрать 2 ( )zyxn ,, , что позволяет 

представить уравнения (4) в следующей характеристической форме  

 
( ) 13

2  dnd
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xd
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q

q

q

q
=


=


=    (16) 

или в виде системы из 7-ми обыкновенных дифференциальных уравнений  

n
d

d

x

n

d

pd

n

p

d

xd

q

qqq
=




==

333


Ψ
;; .    (17) 

 Умножая первые шесть скалярных уравнений системы (17) на соответствующие 

орты 0

q
x


 и используя определения (2) и (1.32), можно получить два векторных  

уравнения. Одно из них получится в виде  
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d
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Оно полностью совпадает с (14) не только по форме, но и по существу. 

Следовательно, при определённом (целесообразном и оптимальном) выборе 

интегрирующего множителя решение системы обыкновенных дифференциальных 

уравнений в характеристической форме (3) можно искать в виде функций 

параметра s
3

 , имеющего смысл длины дуги траектории луча.  

 Второе векторное уравнение, которое получается из (17), имеет вид  
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Вместе с граничными условиями, задающими направление 
0

s


 луча в точке ( )0rr


= , 

оно определяет траекторию луча ( )srr


= . Используя определения градиента по 

поперечным координатам ( )−=
⊥ 00

ss


 и производной по направлению 

( ) ( )nssn =
0


, уравнение (19) можно преобразовать в уравнение второго 

порядка  
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n
sd

sd

sd

rd
ln0

2
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⊥
=


.                   (20) 

Оно представляет собой закон изменения траектории луча, т.е. описывает 

закономерности трансформации лучевого вектора.  

 

2.4. Длина оптического пути луча 

 

 Если уравнение (20) будет решено и траектория луча ( )sr


 будет определена, 

то фаза (или эйконал) определится из уравнения  

( ) ( )
f

cnsdd v= ,     (21) 

являющегося седьмым по счёту в системе (17). Изменение эйконала может быть 

найдено в виде криволинейного интеграла вдоль траектории луча  
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,            (22)  

пересекающего волновые фронты (Рис. 3). Величина этого интеграла, называемого 

длиной оптического пути луча, обратно пропорциональна фазовой скорости 
f

v  

волны и тем самым прямо пропорциональна времени 
12

T  распространения поля 

(света) между точками на волновых фронтах 
21,

  (Рис. 3). Таким образом, в 

неоднородной среде оптическая длина 

между точками луча, находящимися на 

двух волновых фронтах, равна 

произведению скорости в эталонной 

среде (скорости света в вакууме) на 

время распространения волны (света) 

от одного волнового фронта до другого.  

 Это свойство длины дуги вдоль 

траектории делает удобным 

использование координат, связанных с 

лучом. Точки на луче можно 

характеризовать оптической длиной 

(величиной эйконала или действия). 

Положение точки луча на поверхности 

волнового фронта позволяет определить 

направление лучевого вектора 
0

s


 и 

уравнение луча.  

 Выражение (22) для оптической 

длины пути луча  позволяет по заданной 

зависимости ( )rn


 установить 

зависимость ( )r
f


v , затем по 

известному начальному волновому 

фронту, используя соотношение   

( ) ( )
1212

v)( Trs
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
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,   (23) 

построить волновой фронт, ближайший к 
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нему, и, наконец, на этом качественном уровне определить тенденцию 

трансформации волновых фронтов и картину поведения лучей в такой среде. 

 Пример. На границу раздела сред с показателями преломления constn =  и 

( )xn  падает плоская волна (Рис. 5). Качественная картина поведения лучей в 

неоднородной среде, изображённая в нижней части рисунка, определяется по 

структуре волновых фронтов, расстояние между которыми согласно (23) 

пропорционально фазовой скорости 
f

v . В полном согласии с уравнением (19) лучи 

искривляются в сторону увеличения n (т.е. по направлению вектора n ).  

 

2.5. Принцип Ферма 

 

 Оптический путь и траекторию луча между 

точками (1) и (2) можно определить из условия 

минимума интеграла (22) по произвольному 

контуру (Рис. 6). Согласно принципу Ферма 

(принципу наименьшего действия в механике) 

оптический путь между точками (1) и (2) по 

действительному лучу (
s
 ) короче оптического 

пути по любому другому контуру (  ) между 

этими точками.  Докажем справедливость 

утверждения 

 
ГГ

dnsdn

s

,        (24) 

опираясь на свойство эйконала как потенциального поля.  

 Поскольку лучевой вектор является потенциальным вектором  
( ) 0

0
= nsrotrot


,       (25) 

то в соответствии с теоремой Стокса   

( ) ( ) 0
0

=•=• 
 L

Ldnsdrot


                  (26) 

получим, что интеграл от ns
0


=  по замкнутому контуру L  будет равен нулю. 

Представив длину контура L  в виде суммы 
s
+=L  пути по действительному 

лучу dss
0


 и дополнительному пути  


d  (Рис. 6), из последнего равенства получим 

выражение  

   ==

s s
Г Г ГГГ
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.     (27) 

Из (27) следует, что путь 
s
  по истинному лучу короче любого другого пути  . 

Поэтому траектория истинного луча может быть найдена с помощью решения 

вариационной задачи нахождения минимума определённого интеграла  

( )

( )

 =
2

1

0dsn ,         (28) 

в котором переменной является длина дуги s .  
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2.6. Дифференциальные уравнения второго порядка для лучей в форме 

уравнений движения материальной точки в классической механике 

 

 Как отмечалось выше, при интегрировании системы уравнений в 

характеристической форме (3), составляющими которой являются выражения (15), 

можно использовать различные интегрирующие множители. Для более глубокого 

понимания аналогии между системами уравнений, описывающими движение 

материальной частицы в потенциальном поле и траектории луча в неоднородной 

среде, удобно взять в качестве интегрирующего множителя в системе уравнений (3) 

постоянный коэффициент 2, что эквивалентно умножению на n  каждого из 7-ми 

уравнений (17). В такой новой системе уравнений  
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в качестве дифференциала параметра интегрирования  
( ) ( )

134
2  dnsdnddd == .    (30) 

следует выбрать величину  

 === tdsd
cn

sd
f

f
v

v
 ,       (31) 

имеющую размерность длины. Из (31) видно, что длину d  фазовый фронт 

проходит вдоль траектории луча за время td , необходимое для прохождения в 

вакууме расстояния sd .  

Умножая первые шесть скалярных уравнения системы (29) на соответствующие 

орты 0

q
x


 и используя определения (2) и (1.32), получим для описания изменения 

координат луча и градиента эйконала два векторных уравнения  
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Если уравнение (32) интерпретировать как определение импульса частицы с массой 

1=m , то (33) можно рассматривать как уравнение движения этой частицы, в кото 

ром изменение импульса происходит под воздействием внешней силы. Её роль играет 

векторная функция  
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которая направлена по 2n . Из (32) и (33) следует, что лучи искривляются в сторону 

увеличения показателя преломления среды. Роли потенциальной энергии и 

гамильтониана классической частицы играют величины  
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Таким образом, движение луча представляется как движение частицы в 

потенциальном поле, что означает наличие полной аналогии между геометрической 

оптикой и классической механикой материальной точки.  
 

§ 3. Уравнение переноса и законы изменения интенсивности в ГО 

 

 Уравнение переноса (нулевое приближение решения уравнения Гельмгольца)   

0)(2
00

=+ AA     (1) 

содержит частные производные второго порядка. Однако при известном эйконале 
( )s  оно фактически является обыкновенным дифференциальным уравнением 

первого порядка 
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+

n
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sd
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,      (2) 

в котором дифференцирование осуществляется по лучевой координате s . Умножая 

(1) на 0A  и принимая во внимание  соотношение  

( )BaaBaB +=


divdiv ,     (3) 

преобразуем (1) в уравнение  

     0divdiv
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0
= snAA


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для квадрата амплитуды поля волны. Прежде чем анализировать свойства этого 

уравнения и находить его решения, введём понятия интенсивности света и по 

аналогии интенсивности поля волны.  

 

3.1. Интенсивность  поля волны  и  закон сохранения энергии 

 

 В электромагнитной теории интенсивностью света I  называется поток 

энергии поля. Определяется I  как абсолютное значение от (введённого формулой 

(2.13)) среднего за период высокочастотного колебания вектора Пойнтинга:  
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Из курса электродинамики известно выражение для средней за период 

высокочастотного колебания плотности энергии электромагнитного поля  
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Подставляя (6) в (5), получим полное определение интенсивности света (волны 

электромагнитного поля) в виде  
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При отсутствии потерь (в непроводящей среде) и сторонних источников энергии 

(например, механической работы) справедлив закон сохранения плотности энергии 

высокочастотного электромагнитного поля, медленно изменяющегося на периоде 

высокочастотного колебания, в форме дифференциального уравнения 
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t
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.     (8) 



Глава 1, §§ 2, 3 26 

В стационарном случае форма закона упрощается до  

0divПdiv
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T 
.     (9) 

В стационарном случае применительно к нулевому приближению го закон 

сохранения энергии трансформируется в уравнение для интенсивности света  
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Подобно вектору Пойнтинга существует вектор Умова для волн звука. Его 

можно представить в виде нескольких эквивалентных друг другу выражений, каждое 

из которых пропорционально квадрату модуля амплитуды колебания некоторой 

физической величины: давления, плотности, одномерного смещения 

гидродинамических частиц или их скорости. Аналогичное выражение имеет место 

и для упругих волн. При отсутствии потерь и источников, возбуждающих колебания 

среды, уравнение в виде (4) как следствие закона сохранения энергии (и 

соответственно интенсивности потока энергии) будет справедливо для волнового 

движения любой физической природы.  

С помощью решения уравнения Гельмгольца (1.1), имеющего вещественный 

показатель преломления ( )rn


, образуем вектор в виде квадратичной формы  
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Прямым расчётом с использованием решения (1.10) уравнения (1.1), а также 

определения (1.32) лучевого вектора 
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s


 преобразуем вектор П
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 к виду  
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Если считать, что 
0

AA   является решением уравнения переноса (1), то согласно (4) 

получим, что вектор П


 удовлетворяет такому же уравнению (отсутствия 

источников)  
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как и вектор Пойнтинга. Это означает, что вектор П


 всегда можно принять в 

качестве меры плотности потока энергии или просто считать  
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интенсивностью поля волны. 

 

 

3.2. Законы изменения интенсивности в го 

 

 Выясним некоторые  свойства уравнения (4). Для этого рассмотрим поверхность  

const=
1

 и выделим на ней малую площадь 
1




d , ограниченную пучком лучей 

(Рис. 7). Проведём лучи до пересечения с поверхностью const=
2

, на которой 

пучок лучей, называемый лучевой трубкой, ограничивает площадь 
2




d . 

Проинтегрируем уравнение (4) по объёму V  лучевой трубки. Применим теорему 
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поверхность 

 

( )







=

=

0

div

00

2

0

0

2

0

dnsnA

dVsnA
V





.       

(15) 

В формуле (15) введён единичный 

вектор 
0

n


 нормали к поверхности 

 , внешний по отношению к 

рассматриваемому объёму. На торцах лучевой трубки имеем ( ) 1
2100




=
,

ns , на 

боковой поверхности – ( ) 0
00
= ns


. Поэтому из (15) с учётом определения 

интенсивности поля физической величины (14) получаем, что поток энергии  
constdIdIdI ===

2211
,       (16) 

переносимой вдоль лучевой трубки, остается постоянным. Если изменение ( )sd   

определяется, например, из решений уравнений (2.19) или (2.20), то интенсивность 

находится из закона сохранения потока энергии (16).  

Решение уравнений, описывающих изменение траектории луча при 

произвольной зависимости ( )rn


 от координат, может быть найдено только 

численными методами. Однако в некоторых простых случаях существуют 

аналитические решения этих уравнений.  

1) В однородной среде решением уравнений (2.18) и (2.20) является  

bssr


+=
0

.      (17) 

Из (17) следует, что лучи в однородной среде – прямые линии1).  

Из диффе-

ренциальной гео-

метрии известно, 

что в общем случае 

всякая поверхность 

в каждой своей 

точке имеет два 

различных главных 

радиуса кривизны 

и, следовательно, 

два центра 

кривизны (Рис. 8). 

Площадь 

выбранного 

 
1) Согласно принципу Ферма прямая линия в однородной среде – кратчайшее расстояние между 

двумя точками.  
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Рис. 9 

n
 

const=  

Рис. 10 

I →
 

n
 

элемента поверхности можно представить с помощью телесного угла  ddd   

как  

 KdddRRd /
21

=  ,     (18) 

где ( )
21

1 RRK =  называется гауссовой  кривизной поверхности. Это означает, что 

в однородной среде в соответствии с (16) интенсивность в лучевой трубке изменяется 

по закону  

Kconst
RR

const

d

const
I =


=

2

21

21    (19) 

и обращается в   в центрах кривизны волновых 

поверхностей при 0
1
=R  и 0

2
=R . Если иметь в виду 

некоторую часть поверхности волнового фронта (Рис. 9), 

то интенсивность волны обращается в   на двух 

поверхностях, являющихся геометрическими местами двух 

главных центров кривизны каждой точки этой 

рассматриваемой части волновой поверхности. Эти 

поверхности называются каустиками. На каустике 

сечение лучевой трубки 0→d  и, следовательно, интенсивность →I 2). На 

каустике соседние лучи касаются друг друга, поэтому каустики фактически являются 

огибающими лучей (Рис. 10). Это второе определение каустики более общее, т.к. оно 

годится и для неоднородной среды. Поскольку каустические поверхности являются 

огибающими лучей, то лучи за 

каустику не проникают, и в 

приближении геометрической 

оптики поле за каустикой 

равно нулю. 

При 
21

RR = , когда оба 

радиуса кривизны совпадают, 

каустики пересекаются. Если 

на всей волновой поверхности 

21
RR = , то пересечением 

обеих каустик оказывается 

единственная точка (фокус). 

Поле фокусируется в точку или выходит из фокуса в виде сферической волны 

( )  RkiRCU exp
~
= .      (20) 

В этом случае волновые поверхности поля – концентрические сферы.   

В качестве примера использования формулы (16) в однородной среде, имеющей 

показатель преломления 1=n , можно рассмотреть волну с цилиндрическим 

волновым фронтом. В этом случае эйконал имеет вид 
⊥

= r , лучи 

распространяются по прямым линиям 0

⊥⊥
= rrr


, и элемент поверхности лучевой 

 
2) В действительности обращения интенсивности в бесконечность, разумеется, не происходит. 

Интенсивность в точках каустики остается конечной, но очень большой. Формальное обращение 

интенсивности в бесконечность означает, что приближение геометрической оптики вблизи каустик  

становится неприменимым.  
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трубки dzdrd
⊥

=  пропорционален расстоянию до оси 
⊥

r . Применяя 

формулу (16), находим закон изменения интенсивности в лучевой трубке 

цилиндрической волновой поверхности  

constrI =
⊥

.        (21) 

2) Найдем изменение интенсивности вдоль лучей в неоднородной среде, 

полагая, что эйконал и, следовательно, вектор 
0

s


 известны. Подставляя в уравнения 

(9) или (13) выражение (1.32) для орта 
0

s


 лучевого вектора и преобразуя их левые 

части  

( ) 0divdiv 00 =















+=
















+=








=

n

I
sn

n

I

n

I

n

I

n

I
sI


,     (22) 

получим уравнение  

0ln =


+




nn

I

s
,       (23) 

описывающее изменение интенсивности вдоль лучевой координаты. Решение 

уравнения (23) в виде определённого интеграла  

( ) ( ) ( )
( ) 








 −=
s

s
dsnnInI

0
0
exp ,      (24) 

где ( )
0

nI  – значение величины ( )nI  в начальной точке траектории луча 

( )0ss = , по существу является законом изменения интенсивности вдоль лучевой 

координаты в неоднородной среде.  

В качестве простого примера применения формулы (24) рассмотрим 

распространение волны в направлении оси z  в плоскослоистой среде с показателем 

преломления )(zn . В этом случае эйконал зависит от одной координаты ( )z . Из 

уравнения эйконала (1.15) и уравнения (2.19), которое описывает изменение его 

компонент в направлении лучевого вектора, найдем  

z

n

z 


=




=

2

2

        (25) 

и далее из (24) получим  

( )
)()0(

)(
lnexpexp

)(

0

0
0

0 zn

I

n

zn

n

I
zd

n

zn

n

I

zn

I z
=








−








=









 


−







= .    (26) 

Из (26) следует, что интенсивность в лучевой трубке constII ==
0

 не изменяется. 

Объяснение в том, что в лучевой трубке, образованной параллельными лучами, 

площадь сечения остаётся неизменной в направлении распространения лучей.  

3) Существует ещё один способ получения закона изменения интенсивности в 

направлении распространения луча с помощью леммы Соболева и использования 

решений двух векторных уравнений (2.32), (2.33), которые устанавливают 

зависимость направления и величины лучевого вектора p


 (градиента эйконала) от 

координат точки на траектории луча.  

Содержание леммы Соболева формулируется следующим образом.  

 Если некоторое динамическое уравнение типа 
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( )rf
d

rd 
=


    (27) 

имеет решение  
( ) ,,rr


= ,   (28) 

Завися+щее от двух параметров 

(  , ), то  

( )


Df lndiv



=


,   (29) 

где  

( )
( )
( )


,,

,,




= 321

xxx
D   (30) 

– якобиан преобразования 

координат (x1, x2, x3) в 

координаты (, , ).  
Лучевое уравнение (2.33), 

являясь векторным уравнением второго порядка относительно координат (x1, x2, x3) 

точки луча r


, должно иметь решение, содержащее две произвольные постоянные 

величины. Если задана (Рис. 11) поверхность 
0

S  вместе со связанной с ней системой 

координат (  , ) и в каждой точке ( ) ( ) ,0 0rr


  пересечения луча с поверхностью 

0
S  задано направление луча ( ) ( ) ,0 0pp


= , то роль этих постоянных могут 

играть координаты  ,  точки выхода луча. Координаты  ,  могут быть выражены 

через координаты 321 ,, xxx  точки пересечения луча с поверхностью 
0

S  в исходной 

системе отсчёта, если на поверхности 
0

S  в новой координатной системе помимо 

нормали к поверхности n


 известны эйконал ( ) ,
0

=
S

 и составляющая 

импульса    = npn


, касательная к поверхности. В этом случае решение 

лучевого уравнения (2.33) можно представить в виде  

( ) ( ) ( ) ( ) ,,,,, pprr


= ,    (31) 

позволяющем использовать лемму Соболева.  

Положим == pf


 и в соответствии с (29) получим  

 ( )


Df lndiv



==


.    (32) 

Подставляя (32) в (24) и используя связь (2.30) между дифференциалами d  и sd , 

получим закон изменения интенсивности вдоль луча  

( ) ( )

( )
( )




 D

D

n

I
d

n

I
ds

nn

I

n

I s

s

0
expexp

0
0

0
0

0









=









 −







=












−







= .   (33) 

Из (33) видно, что интенсивность изменяется обратно пропорционально якобиану 

преобразования координат, величина которого в точках траектории луча определяется 

решением лучевого уравнения (2.33).  

 

 

Рис. 11 
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3.3. Изменение поляризации электромагнитного поля вдоль лучей 

 

Введем орт напряжённости электрического поля монохроматической волны 

электромагнитного излучения EEe


=
0

, который полностью определяет 

поляризацию поля и потому может быть назван вектором поляризации. Используя 

вектор поляризации 
0

e


, представим амплитуду электромагнитного поля, 

являющегося решением уравнений Максвелла в нулевом приближении го, в виде  

( )
0000

EEeE

= .      (34) 

Подставим (34) в третье слагаемое уравнения (1.37) для векторной амплитуды 

электрического поля и с учётом соотношения (1.32) для орта лучевого вектора 

преобразуем его к виду  

  ( )
( )

( )
s

EE

EE

en
EE

s

e
n

s

E
nE






+












=














= 00

00

0

00

00

0

2

2
222








.  (35) 

Подставляя (35) в уравнение (1.37) и ликвидируя общий сомножитель ( )
00

EE

 , 

преобразуем последнее в уравнение  

( )
( ) 02

ln
2

000

000 =+















 
−+




+




snee

s

EE
n

s

e
n







     (36) 

для вектора поляризации поля, зависящего от координаты s на траектории луча. 

Фигурная скобка в (36) согласно (10) равна нулю, фактически представляя собой закон 

сохранения энергии поля монохроматической электромагнитной волны. В результате 

(36) преобразуется в уравнение  

( )
00

0 ln sne
s

e 


−=



,     (37) 

определяющее изменение вектора 0e


 вдоль луча. Согласно (37) вектор поляризации 

поля 
0

e


, ортогональный лучевому 

вектору 
0

s


, при перемещении по 

траектории луча имеет тенденцию 

изменяться в направлении 
0

s


.  

 Для интерпретации возможных 

решений уравнения (37) введём в 

некоторой точке луча сопровождающий 

трехгранник из единичных векторов (Рис. 

12), в котором 
0

s


– касательный к лучу 

единичный вектор, 
0

k


 – 

ориентированный по направлению n
⊥

  

(нормальный к лучу) единичный вектор, 

 
000

ksb


=  – бинормальный к лучу единичный вектор. Вектор 
0

e


 лежит в 

плоскости ( )
00

bk


,  и образует угол   с нормалью 
0

k


, так что  

 sincos
000

bke


+= .          (38) 

n
 

 

Рис. 12  
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При движении по лучу направления векторов 
0

k


 и 
0

b


, а также угол   

могут изменяться. Поэтому в результате дифференцирования 
0

e


 по длине дуги s  

получим выражение  







 cossinsincos
00

000

s
b

s
k

s

b

s

k

s

e




+




−




+




=



 


.     (39) 

При преобразовании (39) учтём три (известные из аналитической геометрии) связи  







−=



+−=




=





T

k

s

b

T

b

R

s

s

k

R

k

s

s 0000000 ;;



    (40) 

между векторами трёхгранника, в которых R  – радиус кривизны луча и T  – 

коэффициент кручения луча. Подставим (39) с учётом (40) в уравнение (37) и 

спроектируем его на направления 
0

k


 и 
0

b


, ортогональные 
0

s


. Проекции правой 

части уравнения (37) при этом равны нулю. Проекции левой части уравнения на 

направления 
0

k


 и 
0

b


 согласно (39) дают одинаковый результат:  

  ( ) ( )Ts 1−= .         (41) 

Проекция на бинормаль 
0

b


 изменения ( )sk 
0


 нормали 

0
k


 согласно (40) имеет 

вид соотношения  ( ) ( )Tskb 1
00

= /


. Знаки производных  ( )skb  /
00


 и 

( )s  противоположны. Это означает, что угол   меняется не из-за 

изменения положения вектора 0
e


, а за счёт закручивания траектории луча. Все 

изменения векторов 
0

k


, 
0

b


 и угла   в плоскости, ортогональной орту 
0

s


, 

обусловлены исключительно закручиванием луча.  

 Если ( ) 0= s , то положение вектора поляризации поля 
0

e


 в плоскости 

векторов 
0

k


 и 
0

b


 сохраняется. Согласно (41) и (40) в этом случае траектория луча 

оказывается плоской ( =T ).  

Из (37) с учётом (39) и (40) находим, что вектор поляризации поля волны 
0

e


 по 

мере распространения по траектории луча изменяется только в направлении вектора 

0
s


, оставаясь постоянным в плоскости векторов 
0

k


 и 
0

b


, ортогональной орту 
0

s


. 

Чтобы установить закон изменения вектора 
0

e


, воспользуемся уравнением (2.20) и 

первым соотношением (40) 

R

k
n

sd

sd 00 ln



== ⊥ .         (42) 

Сопоставляя два последних равенства в (42), получим выражение для радиуса 

кривизны луча  

( ) ( )nknk
R

lnln
1

00 = ⊥


     (43) 

и найдём, что вектор радиуса кривизны луча в каждой точке определяется 

изменением коэффициента преломления в данной точке траектории луча. 

Используя (43) и (38), получим из (37) закон изменения вектора поляризации в 

виде  
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( ) ( ) ( )
00000000

0
cos1

lnln s
R

s
R

kesnesne
s

e 



−−−=−=




⊥

.   (44) 

В однородной среде ( 0=n ) радиус кривизны =R , и лучи представляют 

собой прямые линии (17).  

 

 

§ 4. Отражение и преломление волн на границе раздела сред 

 

До сих пор предполагалось, что показатель преломления n  является 

непрерывной функцией координат. 

Рассмотрим предельный случай тонкого 

переходного слоя вдоль криволинейной 

поверхности раздела двух однородных сред 

с различными показателями преломления 

(т.е. резкую границу).  

Любая сложная задача об отражении 

волн от криволинейной границы раздела 

сред в приближении го сводится к  

существенно более простой задаче о 

совокупности локальных отражений 

плоской волны или луча от плоской 

границы. В нулевом приближении го 

отражение волны в каждой точке границы 

происходит так, как если бы падающая 

волна была плоской, а криволинейная 

граница была бы заменена касательной плоскостью. В этом состоит так называемый 

принцип локальности.  

Рассмотрим поведение лучей, пересекающих поверхность раздела двух сред с 

различными показателями преломления. Найдём граничные условия для лучей на 

границе раздела двух сред 1 и 2, в каждой из которых справедлива геометрическая 

оптика (Рис. 13).  

Для установления законов преломления и отражения лучей на границе раздела 

сред применим тождество (2.25), которое было использовано для доказательства 

принципа Ферма. С этой целью вначале заменим поверхность раздела переходным 

слоем, в котором величины n,,   меняются быстро, но непрерывно от своих 

значений на одной стороне границы до своих значений на другой её стороне. Далее в 

плоскости, образованной нормалью к поверхности 
12

n


 в точке падения луча на 

границу раздела сред и лучевым вектором 
1

s


, рассмотрим плоский замкнутый контур 

L , две стороны которого параллельны границе, а две другие  перпендикулярны ей  

(Рис. 14).  

Используя (2.25) и теорему Стокса, позволяющую заменить интеграл по 

площади выбранного элемента поверхности от ротора вектора на интеграл от вектора 

Рис. 13 


 

1n
 

2n
 

12n
 


 


 

1s
 

2s
 преломленный

луч

 

падающий

луч

 

отраженный

луч
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по замкнутому контуру вдоль границы рассматриваемой площади, получим 

интеграл по контуру L  от лучевого вектора  

( ) ( ) 0
0

== 
 L

Ldnsdrot


.       (1) 

При вычислении интеграла по контуру L  

устремим к нулю размеры сторон  контура, 

ориентированные перпендикулярно границе 

раздела сред. Введём вектор 
0



, касательный к 

границе и образующий правую тройку с 

векторами 


d  и 
12

n


. Тогда из  (1) получим 

граничное условие в виде  

( ) ( )
01010202



= snsn ,   (2) 

которое означает, что тангенциальная компонента 

лучевого вектора ( )τsn  непрерывна при 

переходе через границу раздела сред. Это 

граничное условие чаще записывается в виде  
( )  0

10120212
=− snsnn


.     (3) 

В плоскости падения луча граничное условие (3) преобразуется в соотношение   

  sinsin
21

nn = ,       (4) 

которое связывает показатели преломления обеих сред в точке падения с 

направлениями распространения падающего и проходящего через границу лучей. 

Смысл формулы (3) заключается в том, что преломлённый луч лежит в плоскости, 

образованной падающим лучом и нормалью к поверхности раздела (плоскости 

падения), а формулы (4) – в том, что отношение синуса угла преломления к синусу 

угла падения равно отношению показателей преломления. В электродинамике и 

оптике однородных сред аналогичная связь называется законом Снеллиуса. Хорошо 

известный закон Снеллиуса был выведен для частного случая падения 

электромагнитной плоской волны (имеющей произвольную частоту  ) на плоскую 

отражающую поверхность.  

 Настоящий закон относится к волнам различной физической природы с 

произвольной структурой волнового фронта и отражающим поверхностям более 

общей формы при условии, что длина волны достаточно мала ( 0→ ). Последнее 

условие практически означает, что радиусы кривизны волнового фронта и 

поверхности раздела должны быть велики по сравнению с длиной волны падающего 

физического поля.  

 Как и в случае отражения плоских электромагнитных волн следует ожидать, что 

на границе появится отражённая волна физического поля. Для отраженных лучей 

необходимо положить 
21

nn = . Тогда из (4) получим, что отражённый луч лежит в 

плоскости падения и его направление образует с нормалью 
12

n


 угол 
R

 , связанный 

с углом падения соотношением  

  
R

 sinsin = .         (5) 

Рис. 14 

1  
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
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Формула (5) позволяет определить угол отражения   

      −=
R

     (6) 

и тем самым установить закон отражения в го.  

 

§ 5. Геометрическая  оптика  слоисто-неоднородной  среды 

 

Рассмотрим несколько примеров применения го для исследования 

распространения волн в слоисто-неоднородных средах и, в частности, в сферически-

слоистых и плоскослоистых средах. Примером таких сред в некотором приближении 

являются земная атмосфера, вода в океане, земная кора и т.д.  

 

5.1. Сферически-слоистая среда 

 

Задача о распространении лучей в сферически-слоистых неоднородных средах 

помимо очевидного случая распространения волн в околоземном пространстве может 

встретиться также при анализе прохождения оптического излучения через прозрачные 

капли, газовые пузырьки в твёрдых телах и жидкостях, тепловые ореолы 

поглощающих частиц. 

1) Рассмотрим поведение лучей в среде, обладающей центральной симметрией. 

В такой среде показатель преломления  

 ( ) ( )rnrn =


      (1) 

зависит только от расстояния r  от начала координат до фиксированной точки. 

Найдём изменение вектора    
0

snrr


  вдоль траектории луча. 

Дифференцируя  
0

snr


  по длине дуги луча и учитывая определение лучевого 

вектора (2.14), а также уравнение (2.19) траектории луча в центрально-симметричном 

поле, получим  

      0)(
00000

=+







+








= nrsnssn

sd

d
rsn

sd

rd
snr

sd

d 



.   (2) 

Из (2) следует закон сохранения вектора  

    Mprsnr


=
0

           (3) 

вдоль траектории луча1). Выражение (3) является уравнением плоскости, проходящей 

через траекторию луча и центр симметрии. Из (3) следует, что все лучи, являясь 

плоскими кривыми,  лежат в плоскости, проходящей через начало координат. Вдоль 

каждого луча (Рис. 15) выполняется 

условие  

( ) constMdnrrn =


sin ,      (4) 

где   – угол между радиус-вектором 

r


 и касательной, а величина 

 
1) Закон (3) можно получить, опираясь на аналогию го и движения материальной точки. Из 

аналитической механики известно, что в поле центральных сил ( )rUF −=


 момент количества 

движения   constprM =


 сохраняется.  

r
 

s
 


 


 

d 

О 

Рис. 15 


 



Глава 1, §§3,4,5 36 

sinrd =  равна расстоянию от начала координат до касательной. Луч идёт таким 

образом, что в любой точке луча постоянна величина Mdn


= .  

Соотношение (4) называют иногда формулой или законом Бугера и часто 

используют для построения хода лучей. Соотношение (4) представляет собой закон 

Снеллиуса для сферически-слоистой среды. Постоянная M


 может быть определена 

из граничных условий в точке 0=s  на траектории луча. Например, если известно 

решение ( )srr


=  уравнения (2.19) и луч попадает в такую среду из эталонной среды 

(вакуума), имеющей показатель преломления ( ) 10
0
== nsn , под некоторым 

заданным углом ( )
0

0  =s  в точке ( )0r


 на расстоянии ( )0
0

rr


=  от 

центра сферической симметрии, то (4) преобразуется в удобную для расчётов формулу  

( ) drrrnM ==
00

sinsin 


.     (5) 

В этой форме закон Бугера часто используется для описания распространения  

коротковолнового излучения в атмосфере Земли. 

 2) Опираясь на аналогию уравнений го и уравнений движения материальной 

точки, рассмотрим поведение луча в сферически-слоистой среде как движение в 

потенциальном центрально-симметричном поле инертного тела, имеющего в 

соответствии с (2.35) гамильтониан  

( )
( )

( )
( )

0
22

1

22

1 22

=−− H
rn

pp
rn 

.      (6)  

Энергия эквивалентной частицы равна нулю, поскольку в го гамильтониану 0=H  

точно соответствует уравнение эйконала с такой правой частью.  

Введём в плоскости, в которой находится траектория луча, полярную систему 

координат ,r  с началом координат в центре сферической симметрии (Рис. 15). 

Импульс эквивалентной частицы, направленный по касательной к траектории 
0

s


, 

можно разложить на две ортогональные составляющие  

( )
00000

cossin rnrpppsn
r





++= .    (7) 

Движение по координате   согласно Рис. 15 и формуле (4) определяет проекция 

импульса  

rMnpp


=== 


sinsin ,     (8) 

где M


 имеет смысл сохраняющегося в центрально-симметричном поле момента 

количества движения. Радиальное движение определяет проекция импульса 
r

p . 

Подставляя (7) с учётом (8) в (6), представим уравнение эйконала в виде 

гамильтониана элементарной частицы с массой 1=m   

( )  ( ) 0
2

1

22

1

2

1 2

2

2
2222 =









−+−+= rn
r

M

r
prnp

r
pH

 .    (9) 

 В аналитической механике выражение в фигурных скобках представляет собой 

эффективную потенциальную энергию радиального движения ( )rU
фэ

, в котором 

первое слагаемое ( )22 2rM  называют центробежной энергией. Из (9) видно, что    
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n 

1r
 

2r
 

n=1 
d 

Рис. 16 

радиальное движение ( )rp
r

 возможно там, где 0
фэ

U . Если эффективная 

потенциальная энергия ( )rU
фэ

 равна нулю, то радиальное движение отсутствует 

( 0=
r

p ). Точки 0=
r

p  (или 0/ = r ) являются «точками поворота» 

траектории движения частицы (или луча) по радиусу. Таким образом, радиальная 

составляющая лучей 0/  r  эквивалентна радиальному движению 

материальной точки в поле с потенциальным рельефом ( )rU
фэ

. 

Поскольку в сферически-слоистой среде траектория луча всегда плоская, то все 

приведённые выше формулы и их следствия полностью применимы также для 

описания одного частного случая распространения лучей в цилиндрически-слоистых 

средах, когда траектория луча находится в плоскости, перпендикулярной оси 

симметрии. Такие среды часто встречаются во многих оптических приборах.  

1) В качестве первого примера рассмотрим падение луча в плоскости constz =   

на диэлектрический цилиндр (Рис. 16), имеющий постоянный показатель преломления 

1n . Полагая, что вне цилиндра среда отсутствует ( 1=n ), применим закон Бугера в 

форме (5) для определения дальнейшего хода луча. 

Траектория луча 

изменится на двух 

границах элемента. Внутри 

цилиндра луч пойдет по 

прямой линии, и в каждой 

точке этой траектории 

будет справедлив закон 

Бугера (5). Когда 

траектория луча будет 

находиться на 

минимальном расстоянии 

от оси цилиндра (угол 
090= ), то расстояние 

до траектории будет ( )ndr =
1

. Можно сказать, что внутри цилиндра луч пойдет по 

касательной к окружности радиуса ( )ndr =
1

. В свободном пространстве после 

выхода из цилиндра луч пойдёт по траектории, продолжение которой  будет 

касательной к окружности радиуса dr =
2

.  

2) Расчёт распределения 

интенсивности световой накачки 

внутри активного элемента 

твердотельного лазера является 

вторым примером эффективного 

использования закона Бугера в 

форме (5).  

Рассмотрим лазерный 

активный элемент в виде 

цилиндрического стержня, 

диэлектрическая среда которого 

n=1 

Рис. 17 

n 

n

R
rn =

 
R 

A 
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Рис. 19 

 

2R

n
 

r 

Рис. 18 

 

n

R
rn =

 

 В 

имеет коэффициент преломления n , в диффузном световом поле накачки и 

определим его освещённость в центре и на краях. Рассмотрим распределение лучей 

накачки в лазерном стержне в плоскости, перпендикулярной оси цилиндра. В точку 

A  на поверхности цилиндра лучи накачки приходят из окружающего пространства 

со всех направлений с равномерной угловой плотностью (Рис. 17). В цилиндре эти  

лучи с равномерной плотностью распределяются внутри угла  

( )n0

max
90sinarcsin2= ,    (10) 

в который вписывается окружность радиуса ( )nRr
n
= . В область внутри 

окружности  попадают лучи из всех точек поверхности активного элемента. 

В каждую точку B , находящуюся внутри цилиндра на расстоянии r  от его 

оси (Рис. 18), попадают лучи из светящихся точек только двух дуг на поверхности 

цилиндра. Их границы определяют две хорды, касающиеся окружности радиуса  
n

r . 

Они, пересекаясь в точке B,  образуют угол  

 ( ) ( ) ( )rnRrrr
n

arcsin2arcsin2 = .    (11) 

Таким образом, в точках центральной области цилиндра (
n

rr  ), куда лучи 

попадают из всех точек освещённой поверхности, плотность энергии световой накачки 

больше, чем в точках периферийной области (
n

rr  ). В итоге, освещённость внутри  

цилиндра (Рис. 19) изменяется по закону  
( )  ( ) ( )rnRIrII arcsin/2/

00
=  ,   (12) 

который достаточно хорошо описывает реальное распределение плотности энергии 

накачки в активной среде твердотельного лазера. 

 

5.2. Плоскослоистая среда  

 

Модель плоскослоистой среды, показатель преломления которой зависит лишь 

от одной декартовой координаты, часто используется при исследовании 

распространения электромагнитных волн в тропосфере и ионосфере Земли, звуковых 

волн в океане и атмосфере, упругих волн в земной коре. 
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В плоскослоистой среде показатель преломления n  зависит от одной 

декартовой координаты. Для определённости без уменьшения общности можем 

считать, что этой координатой будет координата z  вдоль вертикально 

ориентированной оси OZ , так что  

    ( )znn = .      (13) 

Для простоты расчётов будем также полагать, что в точке 0=z  на поверхности 

Земли, где начинается траектория луча, показатель преломления среды не отличается 

от показателя преломления вакуума: ( ) 10
0
= nn . Поскольку траектория луча будет 

плоской, как и в случае сферически-слоистой среды, то тоже без уменьшения 

общности можно считать, что луч распространяется в плоскости ZOX .  

 Подставим в векторное уравнение траектории луча (2.19) выражение для 

лучевого вектора  

00000
sincos xpzpxnznsn

xz


++=     (14) 

и рассмотрим изменение его проекции на ось OX , используя уравнение  

( ) 0sin =



=

x

n
n

sd

d
 .      (15) 

Из (15) получим закон сохранения горизонтального компонента лучевого вектора 

( ) ( ) ( ) ( ) ( ) constnzznxpx == 0sin0sin0sin  ,   (16) 

аналогичный по форме и содержанию закону сохранения Бугера в виде (5). Из (14) и 

(16) получается уравнение траектории луча  в виде выражения  

( )
0

22

0

22 sin

sin






−
=

−
==

znpp

p
tg

p

p

x

x

z

x    (17) 

для угла наклона лучевого вектора к вертикали. Из (17) видно, что угол наклона луча 

к вертикали по мере распространения в слоистой среде изменяется, т.е. лучи 

искривляются по мере их удаления от поверхности Земли. Такое искривление лучей в 

неоднородной атмосфере называется рефракцией.  

 Воспользуемся уравнением (17) для описания распространения радиоволн в 

лучевом приближении в неоднородной по высоте земной атмосфере. Вначале 

преобразуем уравнение Бугера (5) для сферически-слоистой среды в уравнение, в 

котором переменной является декартова координата z  и которое поэтому более 

корректно с геометрической точки зрения для описания поведения лучей в 

плоскослоистой среде. С этой целью введём в формуле (5) новые переменные 

величины   

  
0

Rrz − ,   ,      (18) 

где z  – высота, отсчитываемая от поверхности Земли, 
0

R  – радиус Земли,   – 

угол, отсчитываемый от вертикальной оси OZ , и будем использовать при 0=z  

граничные условия ( )
0

0 Rzr ==  и ( )
0

0  =z . При очевидном (для 

околоземного пространства) условии  

 
0

Rz        (19) 

из закона Бугера (5) получим закон Снеллиуса для плоскослоистой среды 

 ( ) ( )  ( ) ( ) ( )
00

sinsinsin1  =+ zznzRzzn
E

,   (20)  
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Рис. 20 

ds
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который по своему содержанию является обобщением закона сохранения 

поперечного компонента лучевого вектора (16). Обозначая расстояние вдоль 

поверхности Земли через x , найдём, что траектория радиолуча над земной 

поверхностью будет выражаться формулой (17), в которой роль ( )zn  будет играть 

приведённый показатель преломления околоземного пространства  

   ( ) ( ) ( ) 
0

1 Rzznzn
E

+ .     (21) 

Таким образом, при условии 
0

Rz   распространения лучей в сферически-слоистой 

среде может быть описано как распространения лучей в плоскослоистой среде с 

приведённым показателем преломления (21).  

Абсолютное значение ( )zn  и градиент этой величины существенно 

различаются в разных слоях (ионосфере, тропосфере) околоземного пространства. В 

условиях так называемой нормальной рефракции  
( ) 0zdnd     (22) 

учёт члена ( )
0

Rz  в приведённом показателе преломления в некоторых случаях (в  

 тропосфере) изменяет не только абсолютную величину ( )zn
E

, но и знак градиента 

( )zn
E

.  

 Рассмотрим поведение 

лучей в плоскослоистой среде в 

приближении го (Рис. 20). 

Учитывая закон сохранения (16) 

для  x-проекции лучевого 

вектора и уравнение эйконала 

(1.15), получим зависимость 

−z проекции лучевого вектора 

от вертикальной координаты z  

в виде 

  0

222
sincos  −= EE nn . (23) 

В соответствии с (2.32) по 

известным проекциям лучевого 

вектора (градиента эйконала) 

нетрудно получить записанные в параметрической форме уравнения для координат 

луча2)  

( ) 0sin  =dxd ;       (24) 

( ) ( ) 0

22 sin  −= zndzd E .     (25) 

Уравнение (24) элементарно интегрируется, и его решение в виде  

00
xx +=  sin        (26) 

позволяет установить однозначное соответствие между параметром   и координатой 

x  точки на траектории луча. В результате интегрирования уравнения (25) получаем 

выражение 

 
2)  В качестве переменного параметра можно использовать длину дуги s . В этом случае  следует 

воспользоваться проекциями уравнения (2.14). 
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( )









−
=

−


=

z

z

xx

zn

zd

E0 0

0

0

22 sinsin 
     (27) 

для определения величины   в разных точках луча в зависимости от координат z  

или x . Знаки в (25) и в (27) перед корнем означают, что по лучу можно двигаться как 

в сторону увеличения координаты z  (т. е. вверх), так и вниз в сторону её 

уменьшения. Знак (+) соответствует восходящей ветви ( ) 0dzd , знак (–) 

отвечает нисходящей ветви ( ) 0dzd . Направление начального движения луча 

определяется начальным значением угла места 
0

 . Если 0

0
90 , то первая часть 

траектории является восходящей ветвью и, следовательно, перед интегралом 

выбирается знак (+).  

 В точке ( )
0R

sin=zn
E

, где производная ( ) 0=dzd , происходит поворот 

луча. Точка 
R

z называется точкой поворота (символ R – начальное от return). Точка 

поворота существует только в том случае, если при перемещении по траектории 

приведённый показатель преломления убывает, т.е. знак изменения координаты z  

противоположен знаку 
E

n . (В частности, если 0

0
90  и 

E
n  направлен по z , 

то точки поворота не будет. В этом случае угол   лучевого вектора с осью OZ  

уменьшается, т. е. луч загибается (вверх) в направлении вектора 
E

n .)  

Найдем интенсивность в различных точках восходящей ветви траектории луча. 

В качестве поверхности 
0

  возьмем плоскость ( )XOY  и определим на этой 

поверхности начальные координаты луча 
00

yx ==  , . Движение по 

восходящей ветви траектории луча в координатах zyx ,,  описывается уравнениями  




++==−=
00000

22 sinsin,,sin xxyyn
d

zd
E

,  (28) 

которые имеют смысл связей координат zyx ,,  с новыми координатами  ,, . 

Якобиан преобразования координат zyx ,, в координаты  ,,   

( )
( )
( ) 0

22

0

22

0

sin

sin00

010

sin01

,,

,,















−=

−

=







=





E

E

n

nzzz

yyy

xxx
zyx

D   (29) 

обращается в нуль в точках поворота луча. Подставляя (29) в (3.33), получим 

зависимость  интенсивности радиолуча в околоземном пространстве от вертикальной 

координаты z  в виде  

( ) ( )
( )
( )

0

22

0

22

0
sin

sin0





−

−









=

zn

n

n

I
znzI

E

E

E

E
.           (30) 
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Рис. 21 

каустика
 zR 

z 

x 

nE(z) 

Как следует из (30), на восходящей ветви траектории луча, где ( ) 0 zn
E

, 

знаменатель подкоренного выражения будет убывать в направлении распространения 

луча и может обратиться в нуль в некоторой точке 
R

z . Все параллельные  лучи 

имеют одну точку поворота по 

координате z . Совокупность этих 

точек образует линию поворота 

(Рис. 21), которая является 

границей каустики (каустической 

поверхности) в плоскости ZOX .  

На каустике интенсивность 

обращается в бесконечность. В этом 

можно убедиться, рассчитав  

поперечное сечение лучевой 

трубки d  в точке поворота, 

где ( ) 0=D . Для этого 

представим фиксированный 

элемент объёма лучевой трубки dzdydxVd   в криволинейных координатах, в 

качестве одной из которых выберем длину дуги s , а в качестве двух других –   и 

 . По определению элемент объёма лучевой трубки в криволинейных координатах 

 ,  , s  в соответствии с (29) и с учётом (2.30) можно представить в виде  

( )
( )

( )
( )

=








 sddd

s

zyx
zdydxddV 





 ,,

,,

,,

,,
   

 ( ) ( ) ( ) sddsdddnDdddD
E

==  1 .  (31) 

Из (31) видно, что при приближении к точке поворота, когда ( ) 0→D , элемент 

объёма лучевой трубки sddVd =  и площадь поперечного сечения лучевой 

трубки  

( )  dd
n

Dd
E

=
1

     (32) 

также стремятся к нулю. Из закона сохранения величины энергии в лучевой трубке 

(3.16) нетрудно увидеть, что именно из-за уменьшения площади поперечного сечения 

d  до нуля интенсивность ( )zI  в точке поворота (на каустике) обращается в 

бесконечность.  

Каустика – это область, где происходит фокусировка поля за счет сжатия 

лучевых трубок, где якобиан преобразования координат ( )D  обращается в нуль. 

Поэтому  
( ) 0=D       (33) 

является общим условием определения каустических поверхностей, и задача 

отыскания каустик сводится к отысканию корней 
k
 =  уравнения (33).  

В приближении го на каустике =I , и это означает, что приближение го для 

расчёта поля на этой поверхности неприменимо.  
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5.3. Аксиально-симметричная среда 

 

Показатель преломления аксиально-симметричной среды в цилиндрической 

системе координат zr ,,
⊥




 не зависит от  . Вначале рассмотрим среды, 

показатели преломления которых  

   ( )nn =       (34) 

зависят только от поперечной координаты  . Многочисленными примерами таких 

сред могут служить разнообразные элементы оптических систем, через которые 

проходит пучок лазерного излучения. Теряя часть своей мощности, пучок создает в 

объёме оптического тракта аксиально-симметричный градиент температуры и, 

следовательно, градиент показателя преломления.  

Лучевое уравнение (2.33) с учётом определения (2.32) лучевого вектора 

(градиента эйконала) в рассматриваемом случае ( )nn =  имеет вид  

0

2
2

0002

2

2

1

2

1






















==









++=
n

nz
d

zd

d

d

d

d

d

d

d

rd

d

pd
    (35) 

и полностью аналогично по своему содержанию уравнению движения материальной 

частицы  массы 1=m , находящейся  в потенциальном поле ( ) ( ) ( ) 221 nU −= . 

В соответствии с (2.35) гамильтониан такого движения материальной точки  

( ) ( ) ( )  ( ) 0
2

1

2

1 2222
=−++= 


nzH    (36) 

не содержит координат z  и  . Соответствующие этим циклическим координатам 

обобщённые импульсы (компоненты лучевого вектора) согласно общей теории 

интегрирования уравнений движения будут сохраняться: 

( ) ( )00222


















=







=


















M

d

dH
;   (37) 

 

( ) ( )00





zpp
d

zd
z

z

H

z



=








=


















.   (38) 

Эти первые интегралы двух последних (из трёх) скалярных уравнений (35) имеют 

абсолютные постоянные значения M  и p , которые определяются в начальной 

точке движения (при 0= ).  

Выражения (37) и (38) могут играть роль обыкновенных дифференциальных 

уравнений первого порядка в полных производных, с помощью которых 

рассчитываются координаты траектории луча как функции  . Выражая  из (37) и 

подставляя в (36) величину 

 ( ) ( )2 Mdd = ,     (39) 
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нетрудно представить с учётом (38) гамильтониан (36) в виде 3)   

( ) ( ) ( ) 0
2

1

2

1 222
2

=−












++







= 




 npM

d

d
H    (40) 

и далее получить ещё одно обыкновенное дифференциальное уравнение первого 

порядка в полных производных  

 ( ) ( ) 222 pMn
d

d
p −−=











   (41) 

для координаты   световой точки, движущейся по траектории луча.  

Согласно (38) движение вдоль оси z  будет равномерным. По начальным 

условиям эта координата луча находится как линейная функция параметра  : 

 ( ) ( )
0

0 zpzpz ++=  .      (42) 

Подобно аналогичному решению (26) для случая плоскослоистой среды оно 

позволяет установить однозначное соответствие между параметром   и 

координатой z  точки на траектории луча в аксиально-симметричной среде.  

Интеграл уравнения (41), представленный в форме  

( ) p

zz
ρ

ρ pMn

d 0

222

0

−
=

−−


= 






 


 ,     (43) 

позволяет определить величину   в зависимости от смещения  луча от оси 

симметрии и установить взаимнооднозначное соответствие координат z  и   в 

разных точках траектории луча.  

 Стоящие перед интегралом знаки означают, что луч может распространяться 

как в сторону увеличения координаты   (т. е. от оси симметрии на периферию), так 

и в сторону её уменьшения. Знак (+) соответствует увеличению  , поскольку 

0
τ

 , а знак (–) – его уменьшению ( )0

 . Направление начального движения 

луча определяется  начальным значением ( )0
τ

 . Если ( )0

 > 0 , то первая часть 

траектории является "восходящей" ветвью и знак перед интегралом (+).  

 В точке 
R

 , где производная 0=

 , происходит поворот луча. Координата 

R
  определяется из уравнения  

( ) ( ) 222

pMn RR +=  .     (44) 

При движении по "нисходящей" ветви траектории точка поворота луча существует 

всегда, поскольку "эффективная потенциальная энергия ( )2M  радиального 

движения" (по терминологии аналитической механики) при 0→ неограниченно 

растёт и условие (44) обязательно выполняется. При возрастании   точка 

 
3) Полезно сравнить гамильтониан (40) с абсолютно аналогичным по смыслу гамильтонианом (9) 

для случая движения луча в сферически-слоистой среде (или движения материальной точки в 

центрально-симметричном поле).  
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поворота луча существует только в том случае, если показатель преломления 

( )2n  убывает быстрее, чем ( )2

M . В противном случае траектория луча будет 

уходить от оси симметрии и, как говорят, станет инфинитной (неограниченной).  

 Исключая из уравнений  (39) и (41) переменную  , можно найти явное 

выражение для производной ( ) dd , которое имеет смысл обыкновенного 

дифференциального уравнения первого порядка. Его решение  

( ) ( )
( )
( ) ( )







 −−


=−



 




0

0
222

2

pMn

dM
   (45) 

устанавливает прямую однозначную связь координат   и   световой точки на 

траектории луча.  

 Рассмотрим некоторые частные случаи 

траекторий лучей в аксиально-симметричной среде, 

обусловленные различием начальных условий. Они 

помогут глубже понять закономерности 

распространения силовых полей в аксиально-

симметричной среде и установить их общность с 

закономерностями распространения волн в других 

слоисто-неоднородных средах.  

 1. Расположение траектории луча  в 

плоскости ( )0
0

 =  (Рис. 22) 

осуществляется в частном случае, когда в 

начальной точке траектории отсутствует проекция 

градиента эйконала (обобщённого импульса в 

терминологии классической механики) по 

направлению орта 
0




. В этом случае первый 

интеграл (37) равен нулю ( 0=M ), и 

траектория луча имеет лишь одну точку 

поворота на внешней каустике, если 

вообще выполняется условие её 

образования (44). Если коэффициент 

преломления ( )n  уменьшается с 

ростом  , то радиус каустической 

поверхности 
R

  будет тем больше, 

чем меньше будет начальная проекция 

эйконала p  на направление оси 

симметрии. В общем случае траектория 

луча располагается  в меридиональной 

плоскости, многократно пересекая ось. 

Чем больше 
R

 , тем меньше 

расстояние между точками пересечения 

оси траекторией луча. 

Рис. 23 

Область  

тени 

2
 

1
 

Рис. 22 

z  

  

( )n 
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2. Расположение траектории луча  в плоскости ( )0
0

zzz =  осуществляется в 

частном случае начальных условий ( ) ( ) 000 =


zpp
z

 , когда в точке старта 

отсутствует продольная компонента эйконала (луч направлен перпендикулярно оси). 

В этом случае траектории лучей в плоскости полярных координат   и    точно 

совпадают с траекториями лучей в сферически-симметричной среде (Рис. 23), где 

роль поперечной координаты   играет расстояние r  до центра симметрии. Луч в 

плоскости, перпендикулярной оси z , будет совершать ограниченное движение 

между внутренней и внешней каустиками, разделяющими области света и тени. Поле 

локализовано между каустиками и не попадает в области тени. 

3. Если аксиально-симметричная среда состоит из слоёв конечной толщины, в 

каждом из которых показатель преломления является постоянной 

величиной, то в соответствии с (35) внутри каждого q-того слоя 

скалярное уравнение для радиальной координаты луча  имеет вид  

( ) 0
2

1

2

1 2

0

2

=



=









q

q
n

n

d

d

d

d









.  (46) 

Если в начальной точке траектории луча проекция градиента 

эйконала на радиальное направление отсутствует ( ) 00 =
τ

 , то 

уравнение (46) имеет решение  

 ( ) ( )
ρ

const=
0

0  ,    (47) 

и траектория луча располагается на расстоянии 
0

  от оси 

симметрии. Если в начальной точке траектории две другие 

проекции лучевого вектора отличны от нуля (т.е. луч направлен по 

касательной к поверхности цилиндра радиуса 
0

 ), то траектория 

луча будет винтовой линией, охватывающей цилиндрическую поверхность радиуса 

0
  (Рис. 24).  

5.4. Линзоподобные (фокусирующие) среды 

  

Линзоподобными называют аксиально-симметричные среды, в которых 

зависимость показателя преломления 

от поперечной координаты ( )n  

имеет колоколообразный вид, 

напоминающий по форме функции 

Лоренца или Гаусса (Рис. 25). Если 

ограничиваться рассмотрением малых 

значений    и реальную функцию 

( )n  приближённо представить 

параболой, то в среде обнаружатся 

новые свойства и, в частности, 

способность фокусировать оптическое 

излучение.  

Рис. 25 


 

n
 

парабола

 
0
 

Рис. 24 

z  
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1. Рассмотрим симметричные решения уравнения эйконала. Соответствующие 

им лучевые векторы  не содержат составляющих, направленных по азимутальному 

углу  . В этих случаях 0=M , и траектория каждого луча располагается в 

плоскости, проходящей через ось симметрии. Поэтому без уменьшения общности 

можно ограничиться рассмотрением двумерной задачи (например, в плоскости XOZ). 

Для описания траектории луча, имеющего в  точке траектории 

( ) ( ) ( ) ( )
000

0;0;0;0  nnzz =  два компонента 

( ) ( ) ( ) ( )
00

sin0sin00 


nnp =  и ( ) ( ) ( ) ( )
00

cos0cos00  nnp
z

=  лучевого 

вектора, следует воспользоваться решением (43). Положив в нём 0=M  и 

произведя замену ( )
00

cosnp → , получим в виде  

( ) ( ) ( )
00

0

0

2

0

22 coscos0








n

zz

nn

d −
=

−


= 








   (48) 

однозначную связь координат z  и   во всех точках траектории луча. 

Если в отмеченной на Рис. 25 области показатель преломления среды 

аппроксимировать параболической зависимостью  

( ) ( )22222 1  − nnn ,     (49) 

то в векторном уравнении (35) радиальная составляющая лучевого вектора 
( )


 p  будет изменяться  по закону  








22n
d

d

d

d
−=








,        (50) 

который можно рассматривать как обыкновенное дифференциальное уравнения 

второго порядка относительно поперечной координаты луча  . С учётом (48) оно 

преобразуется  в уравнение осцилляторного типа  

( )





−

−
−= 2

0

22

0

2

2

2

2

cos1
ML

K
zd

d
.        (51) 

Уравнение (51) устанавливает однозначную аналитическую связь поперечной 

  и продольной z  координат каждой точки на траектории луча. Волновое число 

ML
K  определяет пространственный период  

( ) ( )
0

2

0

2 cos122  −==
MLML

K    (52) 

изменения поперечной координаты траектории луча в линзоподобной среде (Lens 

Medium) в зависимости от свойств среды (  ) и направления лучевого вектора 

(
0

cos ) в начальной точке (
00

, z ) траектории. Амплитуда колебания поперечной 

координаты луча устанавливает границу области, в которой располагается траектория 

луча. Точка траектории на границе является  точкой поворота  луча. Её координата  

( ) ( )2

00

2

0
cossin  +=

R
    (53) 

находится из уравнения  

( ) ( ) ( ) 2

0

22

0

22

0

22

0

2222 cos1cos1 pnnnn −=−  ,    (54) 

которое согласно (41) является условием поворота траектории луча.  
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5.5. Параксиальные лучи в аксиально-симметричных средах  

 

Параксиальные лучи – это лучи, которые распространяются почти параллельно 

оптической оси системы. В каждой точке траектории параксиального луча угол 

наклона лучевого вектора к оси симметрии   должен удовлетворять приближению 

параксиальности  

   1 ,      (55) 

позволяющему во всех расчётах считать корректными замены  

1cos;sin  tg ; 
zd

Fd

zd

Fd

sd

zd

zd

Fd

sd

Fd
== cos .    (56)  

Используя приближение параксиальности, можно преобразовать основное 

векторное уравнение траектории луча (2.19) к виду  

nz
z

n

zd

rd
n

zd

d
⊥

+













0




.         (57) 

В уравнении (57) роль лучевой координаты s  играет  координата оси системы z . 

Подставляя в (57) вектор координат точки на траектории луча  

   
⊥

+= rzzr


0
,         (58) 

можно преобразовать (57) в уравнение  

n
zd

rd
n

zd

d
⊥

⊥ 









         (59)  

для вектора 
⊥

r


, определяющего смещение луча от оси системы координат.  

Существует несколько распространённых частных случаев, когда лучевые 

уравнения (57) и (59) могут иметь более простые формы записи.  

1) Весьма распространённым является случай, когда переменная часть 

коэффициента преломления  

 ( ) ( )znnzn ,~,  +=          (60) 

оказывается много меньше постоянной составляющей:  

 ( ) nzn ,~  .      (61) 

Подставляя (60) в (59) и пренебрегая в левой части малым членом, уравнение для 

координат луча в параксиальном приближении получим в  виде  

  ( )zn
zd

rd
n ,~

2

2


⊥

⊥ 


.       (62) 

2) Рассмотрим симметричные эйконалы ( )zr ,
⊥


 и отвечающие им 

плоские траектории лучей. В этих случаях ( ( )
0

 = constz ) лучевые векторы 

(  ) не содержат составляющих, направленных по азимутальному углу  . Это 

означает, что векторное уравнение (59) можно записать в скалярной форме  
















 n

zd

d
n

zd

d
.     (63) 
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 3) Распространение параксиальных лучей в аксиально-симметричной среде с 

параболическим рельефом показателя преломления имеет ещё одну особенность. В 

приближении параксиальности (55) пространственный период изменения 

поперечной координаты траектории луча 

  ( ) ( ) 2

0

2122  −=
MLML

K    (64) 

не зависит от направления 
0

  лучевого вектора в начальной точке (
00

, z ) 

траектории и оказывается одинаковым для всех лучей, выходящих под малыми 

углами. Это значит, что все параксиальные лучи через период 
ML

 собираются в 

одну точку и для них выполняется условие идеальной фокусировки.  
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6. Матричный метод описания распространения лучей 

в центрированных линиях передачи силовых полей 

 

Центрированной оптической системой или открытой линией передачи 

оптического излучения называется совокупность отдельных элементов или участков 

разнообразных аксиально-симметричных сред, оси которых на границах разделов 

имеют общие точки. Такими элементами могут быть, например, тонкие линзы, 

сферические поверхности раздела и зеркала, состоящие из нескольких слоёв разных 

диэлектриков, границы раздела двух сред и, конечно, участки пространства, 

заполненного аксиально-симметричной средой. Помимо оптики подобные линии 

передачи могут использоваться в акустике, а также для транспортировки других 

силовых полей. Математической основой матричного метода описания 

распространения лучей в таких системах является параксиальное приближение 

(5.55) и (5.56) геометрической оптики. 

 

6.1. Математические основы матричного метода описания 

распространения параксиальных лучей  

 

В параксиальном приближении траектория луча задаётся в виде функции 

координаты z  (а не координаты s ) точки на его оптическом пути. При этом для 

определения координат точки луча (при известных начальных условиях) согласно 

(5.58) достаточно задать только поперечный компонент 
⊥

r


вектора r


. 

Используя запись координат точки луча в виде (5.58) и формулу (2.14) для орта 

лучевого вектора 
0

s


, найдём справедливое в параксиальном приближении 

выражение для орта лучевого вектора  

( )
⊥

⊥

⊥
++=+ sz

zd

rd
zrzz

zd

d

sd

rd
s








0000

,   (1) 

в котором поперечная составляющая 
⊥

s


 полностью определяет направление 

распространения луча. Модуль вектора 
0

s


 оказывается несколько больше единицы, 

но в рамках приближения (5.55) эта разница вполне допустима:   

( ) ( ) 1111 22

00
++=+

⊥⊥
tgssss


.   (2) 

Из уравнений (5.57) и (5.59) следует, что внутри отдельного элемента 

центрированной системы изменение лучевого вектора 
0

sn


  можно 

полностью определить по изменению его поперечного компонента  

  ( )
⊥⊥

 snzdrdn


.     (3) 

Поэтому в параксиальном приближении (5.55) вектор 
⊥

sn


 имеет свойства и смысл 

лучевого вектора. Вектор ⊥r


 и вектор 
⊥

sn


 полностью определяют координаты 

луча и направление лучевого вектора (направление наибыстрейшего изменения 

эйконала).  

С помощью (3) из (5.59) можно получить модифицированное уравнение для 

параксиальных лучей  

   ( ) nsn
zd

d
⊥⊥




,      (4) 
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которое описывает изменение лучевого вектора в неоднородной среде. Согласно 

(4) направление распространения луча не изменяется, если показатель преломления 

среды не зависит от поперечной координаты ( 0=
⊥
n ).  

 

6.2. Матрицы преобразований координат луча 

 

Рассмотрим оптическую систему (Рис. 26), имеющую ось симметрии и 

расположенную между двумя сечениями О  и  О’ . Луч s


, проходящий через 

сечение О, попадает внутрь оптической системы и выходит из неё в сечении O’ под 

другим углом. За координаты луча возьмём вектор 
⊥

r


, определяющий расстояние 

от оси ОО’ до точки пересечения луча с плоскостью, перпендикулярной оси ОО’; и 

вектор 
⊥

sn


, определяющий направление луча в этой точке. Эти векторы могут 

лежать в разных плоскостях.  

Разрабатывая аппарат, связывающий координаты луча 
⊥

sn


, 
⊥

r


на входе 

системы (в пространстве объектов) с его координатами 
⊥
sn


, 

⊥
r


 на выходе (в 

пространстве изображений), примем в качестве аксиом, не уменьшающих 

общности рассмотрения, следующие положения (Рис. 27).  

1. Поле (в оптике свет) распространяется в +Z-направлении оси OZ. Это 

направление называется положительным. 

2. На границе раздела сред, имеющей кривизну, радиус кривизны 

отсчитывается от вершины поверхности к центру кривизны. Если нормаль к границе 

Рис. 26 
 

оптическая 

система 

пространство 

объектов 
пространство 

изображений 

r⊥  r⊥  

s  
s  

O  O  

свет 
z 

O 

1n  2n  

а 

0k


 

б 

поле 

z O′ 

R<0 

0k


 

n2 
n1 

Рис. 27  
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раздела 
0

k


, направленная к центру кривизны, совпадает с направлением 

распространения поля (света), то радиус кривизны 0R  (а на Рис. 27), в 

противном случае – 0R  (б на Рис. 27).  

Введем вектор-столбец координат точки траектории и поперечных 

компонентов лучевого вектора 

⊥

⊥
=

r

sn
Q 




,              (5) 

определяющий в каждом сечении положение и направление луча. Вектор-столбец в 

общем случае имеет 4 скалярные величины. Конкретные связи между входными и 

выходными координатами луча будем устанавливать с помощью матриц. Очевидно, 

что однозначную связь между 4-мя входными и 4-мя выходными координатами 

луча  

( ) ( )

⊥⊥

⊥⊥

⊥

⊥

⊥

⊥

+

+
=•=






rDsnC

rBsnA

r

sn
S

r

sn
Q 











        (6) 

можно установить с помощью матрицы 

DC

BA
S =


,          (7) 

состоящей из 4-х действительных элементов.  

 

6.2.1. Матрица преобразования координат луча на участке  

однородной среды 

 

В однородной среде лучи прямолинейны (Рис. 28). Поскольку векторы s


 и 

s 


 имеют одно направление, то связь выходных и входных координат луча 

устанавливается двумя простыми соотношениями  

( )



+=

=

⊥⊥⊥

⊥⊥

nLsnrr

snsn




,  (8)  

где LT   – длина траектории 

луча в параксиальном 

приближении (5.55).  

Соотношения (8) можно 

переписать в виде (6) с помощью 

4-элементной S-матрицы  

( ) 






=
nL

G
nL

S ˆ
1

01
, (9) 

которая называется матрицей 

перемещения. Матрица 

перемещения имеет собственное 

обозначение и норму 

( ) 1ˆ =
nL

G .  
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O
 

L
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r⊥
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s
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Рис. 28 
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6.2.2. Матрица преобразования координат луча на плоской границе  

раздела сред, перпендикулярной оси симметрии 

 

Представим границу раздела сред как центрированную (оптическую) систему 

с бесконечно близкими сечениями  О  и  О'.. Тогда в точке траектории на границе 

получим связь координат отклонения  луча от оси системы  

⊥⊥
= rr


.      (10) 

Подставим параксиальное приближение орта лучевого вектора (1) в граничное 

условие (4.3) и преобразуем его к виду  

( ) ( ) ( )
⊥⊥⊥⊥

=



1122

)( snsnsnsn


.   (11) 

Из (10) и (11) следует, что искомая матрица, называемая также матрицей  

преломления на ортогональной границе раздела сред, является единичной матрицей  

IS ˆ
10

01
ˆ == .         (12) 

 

 

6.2.3. Матрица преобразования координат луча в многослойной среде 

 

 

Лучи 

распространяются в среде, 

свойства которой дискретно 

меняются (Рис. 29) вдоль оси 

z . Предполагается, что 

отражения на границах 

разделов сред малы и не 

учитываются.  

 Используя матрицы 

перемещения (9) и 

преломления (12), вначале 

найдём матрицу преобразования координат луча после прохождения двух слоёв  

2

2

1

1

1

1

2

2

1

1

2

2

ˆ
1

01

1

01

1

01
ˆˆˆˆˆˆ

1

1

2

2

1

1

2

2

n

L

n

L

n

L

n

L

n

L

n

LOO G

n

L

n

L

n

L

n

LGGGIGS
+

 =+=•===   (13) 

и фактически получим закон образования матрицы перемещения в слоистой среде. 

Приведённый результат нетрудно обобщить на третий и последующие слои, что 

позволяет получить матрицу перемещения для координат луча через 

многослойную (N  слоев) систему и среду-систему с плавно изменяющимся 

показателем преломления  

Рис. 29 
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( )
1

01
ˆ

1

01
ˆ

01

01


=


=


= 







=

LN

i
i

i

zn

zdG

n

LG
L

zn

dzN

i in

iL
.    (14) 

 

6.2.4. Матрица преобразования координат луча на плоской наклонной  

границе раздела сред 

  

Расчёт элементов матрицы преломления на наклонной плоской границе (Рис. 

30) целесообразно начать с применения параксиального приближения (5.55) к 

условиям на границе раздела сред. С этой целью подставим орт лучевого вектора 

(1) в граничное условие (4.3) и преобразуем его к виду  
( )    ( ) ( )  0

1122121201210120212
=−+−−

⊥⊥
snsnnnnznsnsnn


.  (15) 

 Ограничимся изучением случаев относительно малых углов падения на 

границу. Будем считать, что угол   между пограничной плоскостью и 

плоскостью, перпендикулярной 

оси OZ , имеет такой же порядок 

малости, какой имеет угол   

наклона луча к оси системы. Это 

означает, что нормаль к границе 

можно представить в таком же 

виде  

⊥
+ nzn


012
,   (16) 

в котором представлен в 

формуле (1) орт лучевого 

вектора 
0

s


.  

 Подставляя (16) в (15) и ограничиваясь учётом членов одного порядка 

малости, преобразуем (15) с помощью такого "дважды параксиального 

приближения" геометрической оптики в граничное условие для компонентов 

лучевого вектора на наклонной границе 
 ( ) ( )  ( )   0

121122011221212012
=−−−−+−

⊥⊥⊥⊥⊥
nnnsnsnzsnsnnnnzn


.  (17) 

Используя (17) и рассматривая наклонную границу раздела сред в точке 

падения на неё луча как центрированную (оптическую) систему с бесконечно 

близкими сечениями  О  и  О', получаем связь координат луча в виде  

( ) ( ) ( ) ( ) ( ) ( ) 







=

+−+−+=




⊥⊥

⊥⊥⊥⊥⊥⊥⊥

rr

rbsnannsnnnnsnsnsn



;12121122
. (18) 

Из (18) нетрудно найти необходимую систему двух векторных линейных уравнений 

для определения двух неизвестных коэффициентов a  и b . Для любого 

произвольного значения вектора 
⊥

n


 эти уравнения всегда имеют решение 

   
⊥⊥⊥⊥

= snranr


;     
⊥⊥⊥⊥

= rsbns


,   (19*) 

если вектора 
⊥

r


 и 
⊥

s


 не параллельны друг другу. Если в (19*) приравнять 

проекции на направление 0z


, то простые преобразования позволяют представить 

матрицу трансформации координат луча на наклонной плоской границе в виде  

Рис. 30 
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
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.  (19) 

 

6.2.5. Матрица преобразования координат луча на сферической 

границе раздела сред  

 

Из геометрии 

изображённых на Рис. 31 

векторов следует, что в точке 

падения луча на сферическую 

границу раздела сред в 

использованном выше "дважды 

параксиальном приближении" 

геометрической оптики 

поперечная составляющая 

нормали к границе находится в 

виде  

R

r
n ⊥

⊥
−=




.  (20)  

Подставляя (20) в (18) в 

качестве компонента нормали к касательной плоскости, преобразуем (18) в пару 

векторных соотношений  

( ) ( )








=

−
−

−
−=





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r
R

nn
snr

R

nn
snsnsn



 1212
11222

,   (21) 

которые связывают координаты луча в двух бесконечно близких сечениях 

центрированной системы, состоящей из двух разграниченных сферической 

поверхностью пространств. Из четырёх скалярных линейных уравнений (21) 

получим S-матрицу преобразования координат луча на сферической границе 

раздела сред 

( ) 












 −


−−

=
Rnn

T
Rnn

S
12

12

10

/1 
.      (22) 

Она имеет собственное обозначение 
b

T̂  и называется матрицей преломления на 

сферической границе. Матрица 
b

T̂  имеет норму  1=
b

T


.  

При расчёте матрицы преломления на сферической 

границе 
b

T̂  сферическая поверхность границы была заменена  

плоскостью (Рис. 32). Тем самым оказался неучтённым и 
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считается несущественным набег фазы на оптическом пути луча от плоскости до 

сферической поверхности.  

 

 

6.2.6. Матрица преобразования координат луча в толстой линзе  

 

Матрица преобразования координат луча в толстой линзе (Рис. 33) 

 

 

 

 

находится в результате трёх последовательных преобразований координат с 

участием двух матриц преломления на сферической границе раздела сред и одной 

матрицы перемещения:  
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В распространённом случае 
21,

RL   малыми  величинами 
21,

/ RL  в 

элементах матрицы (23) можно пренебречь, и она примет вид  

Рис. 33 
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Преобразование координат луча такой толстой линзой с относительно небольшой 

толщиной слоя среды с показателем преломления 
2

n  описывается с помощью двух 

векторных соотношений  
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.           (25) 

Из (25) видно, что при прохождении линзы под углом к оси системы луч 

дополнительно смещается в поперечном направлении  на величину 
( ) ( )

⊥
snnL


12
.  

 

6.2.7. Матрица преобразования координат луча тонкой линзой 

 

При практических расчётах оптических трактов широко распространено 

использование формул (25) в приближении тонкой линзы  

⊥⊥
 rr


;   ( ) ( )
⊥⊥

 rsnnL


12
,    (26) 

которое означает, что смещение луча на толщине линзы пренебрежимо мало по 

сравнению с первоначальным отклонением луча от оси. Это приближение 

выполняется для параксиальных лучей тем лучше, чем дальше они отстоят от оси 

симметрии. Таким образом, тонкая линза считается бесконечно тонким 

корректором, который меняет фазовый фронт поля и направление распространения 

луча, но не производит дополнительного смещения луча в поперечном направлении. 

Матрица преобразования координат луча тонкой линзой совпадает по форме с 

матрицей преломления на сферической границе и представляется в виде 

10

1

10

1 1 b
TF

n

T
b

F

n

−
=

−
=


,   (27) 

где фокусное расстояние тонкой линзы F  определяется выражением  









−

−
=

211

12
111

RRn

nn

F
.   (28) 

Если на тонкую линзу (Рис. 34) 

падает пучок лучей, параллельных 

оптической оси ( 0=
⊥

s


), то каждый 

луч на выходе линзы в сечении O  

согласно (25) будет иметь направление 

распространения  F  0s⊥ =  

s⊥  r⊥
 

Рис. 34 
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( )Frs
⊥⊥

−=


.   (29) 

В случае 0F  все лучи собираются в одну точку на оси системы на расстоянии 

F  от линзы. Таким образом, линза  с 0F  будет фокусирующей. Согласно (28) 

фокусирующее свойство линзы образуется, в частности, в тех случаях, когда её 

показатель преломления больше показателя преломления окружающей  среды 

(
12

nn  ) и радиус кривизны первой поверхности линзы положителен ( 0
1
R ), a 

второй поверхности отрицателен ( 0
2
R ).  

Матрицы преобразования координат луча тонкой линзой и преломления на 

сферической границе 
b

T̂  имеют два важных свойства, которые проверяются 

простым перемножением матриц. Одним из них является  свойство аддитивности  

2121 bbbb
TTT

+
=


.      (30) 

Оно имеет точно такой же физический смысл, как аналогичное свойство (13) 

матрицы перемещения 
a

Ĝ .  

Матрица преобразования координат луча тонкой линзой 
b

T̂ имеет 

обратную матрицу 1−

b
T̂ , которая (как и любая обратная матрица) определяется из 

основного соотношения   

 ITT
bb

ˆˆˆ 1 = − .      (31)  

Подставляя (27) в левую часть соотношения (31) и (12) в его правую часть, 

получим четыре линейных уравнения относительно 4-х неизвестных элементов 

обратной матрицы, в результате решения которых найдём обратную матрицу 1−

b
T̂ в 

виде  

 
bb

T
b

T
−

=−


10

1
1 .       (32) 

Заметим, что формулу (32) можно получить, комбинируя (30) и (31) с учётом 

определения (12) единичной матрицы. 

Матрица 
b

T̂  преломления лучей на сферической поверхности (27) и матрица 

a
Ĝ  перемещения лучей (9) являются основными матрицами преобразования 

координат луча в центрированных системах. Используя комбинации двух основных 

матриц, можно получить несколько важных физических следствий преобразования 

координат луча в центрированных системах, которые в математическом аспекте 

представляют собой особые S-матрицы таких преобразований.  

 

6.2.8. Матрица преобразования Фурье 

 

Образуем матрицу  

0

0 1

11 a

a
TGTФ

a

a

a

а

−−
==


     (33) 

и выразим через её элементы новые координаты луча в сечении O   
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( ) ( )
⊥⊥⊥

−

⊥
=−=


snarrasn


,1 .     (34) 

Из (34) можно увидеть, что матрица 
а

Ф


 осуществляет преобразование угловых 

координат луча в пространственные координаты, и наоборот. Поэтому матрица  

а
Ф


 называется  матрицей преобразования Фурье. Если положить ( )nFa = , 

то геометрический образ матрицы преобразования Фурье 

F

n

n

F

F

n

n

F
TGTФ


=  

окажется совершенно наглядным (Рис. 35), а само преобразование – 

экспериментально осуществимым.  

 

Применим матрицу ( )
1

1

−

a
Т


, обратную 

матрице 





 a

Т
1


, к обеим сторонам соотношения 

(33), определяющего матрицу преобразования 

Фурье. В результате получим ещё одну важную 

формулу   
11

11

−








−








=
aаaa

ТФТG


,  (35) 

устанавливающую связь матриц 
а

Ф


, ( )
1

1

−

a
Т


 и 

перемещения лучей 
a

Ĝ .  

 

 

6.2.9. Матрица преобразования масштаба 

 

Проведём последовательно два Фурье-преобразования и увидим, что с 

помощью получившейся матрицы  

( )

( ) −−
=

−

−
=









АA

ba

ab
ФФ

abbа



0

0
    (36) 

координаты луча преобразуются по правилам  

( ) ( ) ( ) ( ) ( )




−
−

=


−−=


⊥⊥⊥⊥⊥⊥
rbarrsnabsnsn





1
; .     (37) 

Преобразование (37) уменьшает расстояние изображаемой точки луча от оси 

в ( )ab  раз и меняет её положение относительно оси на противоположное. 

Угол наклона луча к оси системы, наоборот, увеличивается в ( )ab  раз, при 

этом также изменяется его знак. Изображение 

получается перевёрнутым и уменьшенным (или 

увеличенным в зависимости от величины  ) в 

( )ab  раз. Матрица такого 

преобразования, изменяющая размеры 

изображения, называется матрицей 

преобразования масштаба.  

 

Рис. 35 

F
 

F
 

L F=  

Рис. 36 

O
 

O  

L  

n  
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6.3. Пример применения матриц 

 

В качестве примера рассмотрим применение матриц для расчёта 

преобразования лучей системой (Рис. 36), состоящей из линзы и участка свободного 

пространства. Найдем матрицу преобразования координат луча  

 

F

L

n

L
F

n

F

n

n

LTGS

F

n

n

LOO

−

−
=

−
•==

1

1

10

1
1

01
     (38) 

и соответствующие связи  

( )

( )

















−+=

−=


⊥⊥⊥

⊥⊥⊥

r
F

L
sn

n

L
r

r
F

n
snsn





1

      (39) 

лучевых координат в сечениях O  и O .  

В частном случае FL =  из (39) определяется фокус линзы в среде. Нужно 

обратить внимание на два следствия этого преобразования.  

1) Если лучи  распространяются параллельно оптической оси системы 

( 0=
⊥

sn


), то в фокальной плоскости (на расстоянии FL = ) они собираются 

фокусе (в точке 0=
⊥

r


 на оси).  

2) Если лучи  распространяются параллельным пучком под некоторым углом 

к оптической оси системы ( 0
⊥

sn


), то на расстоянии FL =  в фокальной 

плоскости линзы они собираются в одной точке на расстоянии ( )
⊥⊥

= sLr


 от оси.  

 

6.4. Свойства матриц преобразования координат луча 

 

Представленные в этом параграфе 4-элементные S-матрицы (7) имеют несколько 

общих свойств.  

1) Все S-матрицы имеют одинаковую норму  

1=−= CBDAS


.    (40)  

Это свойство матриц преобразования координат луча похоже на закон 

сохранения и на самом деле является законом сохранения. Из курса теоретической 

механики известно, что при описании движения материальных частиц в 

потенциальном поле имеет место закон сохранения элемента фазового объема в 

фазовом пространстве, который называется теоремой Лиувилля. Поскольку 

уравнения го по существу совпадают с уравнениями движения материальной точки, 

то и в го существует аналогичный закон сохранения (40).  

2) Поскольку 1=S


, то нетрудно убедиться прямым расчётом, что каждая 

обратная матрица 1−S имеет вид  

AC

BD
S

−

−
=−1


.     (41) 
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Это свойство позволяет установить простые соотношения  

aa
GG
−

=
−


1

,
аabb

ФФТТ
−−

== −−


11 , .    (42) 

между прямыми и обратными матрицами основных преобразований координат 

луча.  

3) Табличный вариант совокупности матричных тождеств  
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
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
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



  (43) 

 

по существу представляет собой алгебру матричных преобразований координат 

луча. С помощью (43) рассчитываются матрицы преобразований координат лучей, 

прошедших сколь угодно сложные центрированные системы. Тождества (43) можно 

использовать для упрощения расчётов не только в этих случаях. Они также 

позволяют устанавливать эквивалентность оптических систем, содержащие разные 

элементы. Так на основании тождества 
аabba

ФTGФ


2
=  можно сделать вывод об 

эквивалентности систем, описываемых матрицами 
ba

GФ


 и 
аab

ФT


2
. 

 

6.5. Сопоставление матриц и оптических систем 

 

Поскольку элементы каждой  S-матрицы преобразования координат луча,  

имея норму 1=S


, удовлетворяют соотношению (40), то фактически в каждой 

S-матрице имеется только три независимых коэффициента-параметра. Ровно 

столько же независимых коэффициентов-параметров имеют S-матрицы, которые 

описывают преобразование координат луча в изображённых на Рис. 37  двух 

А 

ˆ
bG  

Б 

ˆ
cG  

ˆ
aG  

c
T̂  

a
T̂  

b
T̂  

Рис. 37 
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центрированных системах А и Б. Эти S-матрицы являются особыми в том смысле, 

что они скомбинированы из основных матриц преобразования координат луча 

(матриц перемещения и преломления лучей в тонкой линзе), параметры которых 

имеют прозрачный физический смысл.  

Рассмотрим ограничения на возможности сопоставления произвольной S-

матрицы с S-матрицами преобразования координат луча в одной из двух эталонных 

оптических систем и тем самым на возможность приведения в соответствие друг с 

другом параметров сопоставляемых систем.  

Вариант А. Матрица преобразования координат луча, прошедшего через 

изображённую на Рис. 37 эталонную систему А, имеет вид  

( )

DC

BA

bcb

aabcab
TGTS

cbaА
=

−

−−−−
=••=

1

11
.    (44) 

Из (44) следует, что элементы a, b, c этой эталонной системы А связаны с 

элементами A, B, C, D произвольной системы следующими соотношениями  

C

D
cCb

C

A
a

−
==

−
=

1
,,

1
.      (45) 

Из (45) видно, что однозначное выражение параметров эталонной системы А через 

параметры преобразования координат луча в произвольной центрированной системе 

возможно при выполнении условия  

  0C .     (46) 

Если A = 1 или D = 1, то эквивалентная система А будет состоять только из двух 

элементов (будет отсутствовать одна из линз). 

Вариант Б.  −
Б

S матрица преобразования координат луча, прошедшего 

центрированную оптическую систему Б, имеет вид  

 

( ) DC

BA

ababca

bbc
S
Б

=
−−+

−−
=

11

1
.   (47) 

 

Из сопоставления соответствующих элементов −
Б

S матриц преобразования 

координат луча в произвольной и эталонной системах находим, что они должны 

быть связаны соотношениями  

B

A
cBb

B

D
a

1
,,

1 −
=−=

−
= .   (48) 

В этом случае однозначное выражение параметров эталонной системы 
Б

S  через 

параметры преобразования координат луча в произвольной центрированной системе 

возможно при  выполнении условия  

  0B .       (49)  

Поскольку ограничения на коэффициенты произвольной матрицы S


 в двух 

рассмотренных случаях разные, то произвольную оптическую систему практически 

всегда можно сопоставить с одной из двух систем, представленных на Рис. 37, или с 

любой из них.  
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§ 7. Распространение лучей в цилиндрических линиях передачи 

(периодических центрированных системах)  

 

В общем случае периодическая система состоит из бесконечной 

последовательности одинаковых (элементарных) оптических систем (Рис. 38), 

каждая из которых характеризуется 4-элементной S-матрицей (6.7). В таких 

системах возможны два типа поведения луча. 

Если луч на неограниченно большой длине 

периодической системы находится вблизи оси 

системы, оставаясь в ограниченной области, то 

такое финитное движение луча является 

поведением первого типа. Второй тип поведения – 

апериодическая раскачка колебаний луча или 

инфинитное движение.  

Типичные примеры периодических систем 

изображёны на Рис. 39. Резонатор из двух одинаковых зеркал с радиусами кривизны 

R , в котором луч должен находиться неограниченно долго, полностью 

эквивалентен бесконечно длинной последовательности одинаковых линз, имеющих 

фокусные     расстояния ( )2RF =  и находящихся на расстоянии длины 

резонатора L  друг от друга. Эту последовательность линз луч будет проходить 

также неограниченно долго, а S-матрица преобразования координат луча на периоде 

линзовой линии и S-матрица преобразования координат луча, прошедшего два раза 

половину длины резонатора и отразившегося при этом от одного зеркала, 

совершенно одинаковы.  

Цель настоящего параграфа заключается в разработке теории, которая 

позволяет различать два типа поведения луча по виду элементарной S-матрицы, 

играющей роль одной ячейки в бесконечной периодической центрированной 

системе. Разрабатывая эту теорию, нужно иметь в виду, что поведение луча 

полностью определяет закономерности распространения реального силового поля в 

такой периодической центрированной системе, которую в электродинамике 

называют цилиндрической линией передачи. 

Закономерности трансформации произвольного поля, распространяющегося в 

цилиндрической линии передачи, определяются структурами полей собственных 

волн (мод), которые фиксированы во всех сечениях линии или периодически 

Рис. 39 

  

R  R  

2

R
 2

R
 2

R
 

2

R
 

  

Ŝ  Ŝ  Ŝ  Ŝ  Ŝ  

m  1m+
 

Рис. 38 
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повторяются, а также их постоянными распространения. Таким модам (собственным 

волнам) в приближении го  должны соответствовать "собственные лучи" 

центрированной линии передачи. Эти собственные лучи должны обладать особым 

свойством: их лучевые координаты должны периодически повторяться.  

Для нахождения "собственных лучей" в неограниченной периодической 

системе, изображённой на Рис. 38,  вначале с помощью матрицы преобразования 

координат луча Ŝ  на одном элементе установим связь  

mm
QSQ


=
+1

        (1) 

между координатами луча на входах  (m+1)-го и m-го элементов. Поскольку все 

элементы центрированной линии передачи равноправны и в этом смысле 

неразличимы, то результат преобразования (1) не должен зависеть от номера  m 

элемента, выбранного в качестве первого. Поэтому потребуем, чтобы координаты 

луча в этих двух сечениях совпадали с точностью до постоянного  множителя  

 
mm

QQ



~

1
=

+
,       (2) 

где 
~

 – постоянное и в общем случае комплексное число. После подстановки (2) в 

(1) последнее соотношение преобразуется в матричное уравнение  

( ) 0ˆ~ˆ =− QIS


 .      (3) 

Чтобы получить собственные решения этого уравнения, отвечающие лучам с 

повторяющимися через период координатами, необходимо найти собственные 

значения 
k

~

 матрицы Ŝ  и собственные вектор-столбцы 
k

Q


. Таким образом, 

определение устойчивости центрированной оптической системы сводится к 

решению матричного уравнения (3).  

Уравнение (3) по существу представляет собой систему из двух линейных 

однородных алгебраических уравнений с постоянными коэффициентами, роль 

которых играют элементы S-матрицы, относительно двух неизвестных векторов 

k
sn )(
⊥


и ( )kr

⊥


. Однородная система линейных алгебраических уравнений будет 

иметь нетривиальные решения, если будет равен нулю её детерминант  

0~

~

=
−

−





DC

BA
.      (4) 

Из (4) получается характеристическое уравнение второго порядка  

( ) 01
~~2 =++− DA      (5) 

относительно коэффициента преобразования координат луча (или поля) 
~

 на 

периоде центрированной системы. Из (5) видно, что для определения 
~

 

достаточно знать сумму двух диагональных элементов  S-матрицы или, как говорят, 

её след DASSp +ˆ .  Два решения уравнения (5) в виде  

( )
~

exp
~

sin
~

cos
~

,
ii

DADA
−







 +


+
= 1

22

2

21
  (6) 

имеют смысл двух разных собственных значений матрицы Ŝ .  

а) В случае  
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( ) ( ) 121ˆ21 + DASSp ,     (7)  

величина 
~

 будет действительной (  
~

). Абсолютные значения обоих 

комплексных коэффициентов преобразования координат луча на периоде системы 

будут одинаковы: 1
21
=

,

~
 .  

б) Во втором случае   

2ˆ + DASSp ,      (8) 

когда величина  i−=
~

 оказывается чисто мнимой, собственные значения 

( )  exp
2,1

 матрицы Ŝ   будут действительными положительными 

величинами, обратно пропорциональными друг другу.  

в) В третьем случае  

2−+ DASSp ˆ      (9) 

решения (6) выражаются через  комплексное значение  +−= i
~

. Собственные 

значения  матрицы Ŝ  будут обратно пропорциональными друг другу 

действительными отрицательными величинами ( ) − exp
2,1

.  

Во всех трёх случаях оба собственных вектор-столбца 
k

Q


 матрицы Ŝ  

определяются из системы линейных однородных уравнений  

( )
( )





=−+

=+−

⊥⊥

⊥⊥

0)(
~

)(

,0)()(
~

kk

kk

rDsnC

rBsnA

k

k








.      (10) 

Из (10) для двух разных k = 1, 2  определяется величина отношения  

( )

C

D

A

B

r

sn k

kk

k




~

~
)(

−
−=

−
−=

⊥

⊥





    (11) 

поперечных компонентов лучевого вектора и вектора, определяющего поперечное 

смещение луча от оси в каждом вектор-столбце. В результате решения (10) каждый 

собственный вектор-столбец 
k

Q


, имеющий смысл моды лучевода, определяется с 

точностью до несущественной произвольной постоянной величины, которая не 

содержит никакой информации о свойствах периодической центрированной 

системы.  

Компоненты 
k

sn )(
⊥


 и 

k
r )(
⊥


 обоих вектор-столбцов 

k
Q


 определяются по 

значениям компонентов вектор-столбца конкретного луча на входе центрированной 

системы 0=z  и потому являются индивидуальными характеристиками каждого 

луча в рассматриваемой линии передачи. Если в сечении 0=z  луч  смещён от оси 

на величину ( ) 



⊥ 0

r  и имеет составляющую лучевого вектора ( ) 


nsn 
⊥ 0

, то 

суммы соответствующих компонентов двух вектор-столбцов 
2,1

Q


 должны 

удовлетворять этим начальным условиям  
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






=
−

−
−

−

=+

⊥⊥

⊥⊥










nr
C

D
r

C

D

rr

2

2

1

1

21

)(

~

)(

~
,)()(

.     (12) 

и определяться по формулам  

( )

( )












−
−=

−

−+
=

−
−=

−

−+
−=

⊥⊥⊥

⊥⊥⊥

2

2

2

12

1

2

1

1

1

12

2

1

)(

~

;~~
)

~
(

)(

;)(

~

;~~
)

~
(

)(

r
C

D
sn

DnC
r

r
C

D
sn

DnC
r























.   (13) 

Каждый полученный из (12) и (13) собственный вектор-столбец 
2,1

Q


 имеет смысл 

возбуждённой моды конкретной линии передачи. С помощью 
2,1

Q


 реализуется 

возможность транспортировки в рассматриваемой центрированной системе 

оптического излучения, заключённого в лучевой трубке конкретного луча.   

Произвольное решение на m-ном элементе представляется суммой двух 

собственных частных решений 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )






−++=


−++=


⊥⊥⊥⊥⊥

⊥⊥⊥⊥⊥

212211

2)12211

~
exp

~
exp

~~

;
~

exp
~

exp
~~

rmirmirrr

snmisnmisnsnsn

mm
m

mm
m








,   (14) 

в которых  компоненты ( )
2,1⊥

sn


 и ( )
2,1⊥

r


 собственных вектор-столбцов 

определены выражениями (13).  

1. В случае (7), когда модуль следа Ŝ -матрицы относительно невелик, 

отклонение луча от оси на входе m-го элемента периодической системы в 

соответствии с (13) и (14) можно найти в виде  

( ) ( ) ( )   sin/1sinsin −−+=


⊥
mmnCDr m


.  (15) 

Из (15) следует, что координата луча остается на ограниченном расстоянии от оси 

системы. Это соответствует финитному или устойчивому распространению луча в 

центрированной периодической линии передачи.  

2. В случае (8), когда след S-матрицы больше 2 и выполнено условие 

возбуждения ( ) 0
1


⊥
r


 первого вектор-столбца 
1

Q


(первой моды лучевода) 

( ) 0−+
−


 

eDnC ,     (16) 

координата луча монотонно растёт от элемента к элементу1). В результате, на входе 

m-го элемента отклонение луча от оси  

( ) ( ) ( )   shmshmshnCDr m 1−−+=


⊥


   (17) 

 

1) Второй вектор-столбец ( )
2

Q


 в качестве второй моды линии передачи согласно (6), (8) и (14) 

вносит в решение (15) вклад, величина которого монотонно уменьшается с ростом номера 

элемента m периодической центрированной системы и асимптотически стремится к нулю. 

Поэтому при ( ) 0
1
=

⊥
r


 движение луча будет ограниченным. 
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будет монотонно увеличиваться с ростом  m. Поэтому второму случаю 

соответствует неограниченный уход луча от оси системы, т.е. так называемое 

инфинитное движение луча.  

3. В третьем случае (9) знак координаты луча при переходе от одного 

элемента системы к другому будет изменяться. Вместе с переменой знака с ростом 

номера элемента периодической центрированной системы  m  будет  увеличиваться 

абсолютное значение отклонения луча от оси 2)  

( ) ( ) ( ) ( )   shmshmshnCDr m
m 11 1 −++−=
 +

⊥


. (18) 

Т.о., условие (7) в общем случае является условием финитного движения 

или условием устойчивости лучей в периодической центрированной системе.  

4. В распространённом случае, когда S-матрица связывает в линии передачи 

два симметрично расположенных сечения, её элементы  A  и  D  равны друг другу, и  

каждый из них называется параметром фокусировки.  

В заключение отметим, что результаты этого параграфа имеют важное 

практическое значение при расчёте характеристик линий передачи силовых полей (в 

частности, оптического излучения) и мод резонаторов со сферическими зеркалами.  

 

§ 8. Матричный метод описания распространения лучей  

в разъюстированных (нецентрированных) линиях передачи 

 

В реальных случаях при 

создании центрированных 

систем возможны 

экспериментальные ошибки, в 

результате которых один (или 

несколько) оптических 

элементов оказываются 

смещёнными с оптической оси 

z . Так при юстировке 

лазерных устройств отдельные 

элементы оптических 

резонаторов могут оказаться 

смещёнными или 

перекошенными относительно оси, проходящей через центры зеркал. Для  примера 

на Рис. 40 в качестве  нецентрированного элемента изображена линза внутри 

резонатора, имеющего сферические зеркала. Оптическая ось симметрии линзы z  

смещена на вектор 


 относительно оптической оси системы z , вдоль которой 

размещены остальные элементы.  

 

2) Если будет выполнено условие ( )  0exp =−++ 


DnC , то мода лучевода ( )
1

Q


 

согласно (9) и (13) не будет возбуждаться. В случае ( ) 0
1
=Q


 отклонение луча от оси, оставаясь 

знакопеременным, в соответствии с (14) будет экспоненциально уменьшаться с ростом номера 

элемента  m. 

Рис. 40 

O  

O  Q


' 

Q


 

z 

z' 




 

qQQ


−=  
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Возможные траектории движения ультракороткого светового импульса во 

внутреннем пространстве любого резонатора можно найти и исследовать их 

свойства с помощью изучения характеристик траекторий лучей в соответствующей 

резонатору центрированной периодической системе. Изображённому на Рис. 40 

резонатору будет соответствовать периодическая система из бесконечно большого 

числа одинаковых элементов, которые состоят из пяти линз, разделённых двумя 

парами промежутков свободного пространства. Две крайние и центральная линзы в 

каждом элементе находятся на оси симметрии системы z . Ось симметрии двух 

линз z  смещена относительно оси z  на вектор 


. S-матрица такого сложного 

элемента периодической системы состоит из произведения S-матриц девяти простых 

элементов (5-ти матриц преобразования координат луча тонкой линзой 
qb

T̂  и 4-х 

матриц перемещения 
qa

G ). Семь S-матриц из девяти (три 
qb

T̂ и четыре 
qa

G ) 

описывают преобразование компонентов вектор-столбца каждого луча в 

цилиндрической системе координат, ось которой совпадает с осью симметрии z  

периодической центрированной системы.  

Для описания преобразования координат луча S-матрица каждой 

разъюстированной линзы может использоваться в форме (6.27) (т.е. в форме 

матрицы 
b

T̂ ) только в той системе цилиндрических координат, ось которой 

совпадает с осью z  её собственной симметрии. Поэтому при вычислении  S-

матрицы элемента периодической системы можно использовать форму 
b

T̂  для S-

матрицы нецентрированной линзы, если ввести на её  входе новые поперечные 

координаты (относительно оси z ) и выразить их через основные поперечные 

координаты, определённые относительно оси z . Для этого можно ввести вектор-

столбец q


 координат смещения (и в общем случае перекоса) оси z относительно 

оси z . Тогда факт смещения элемента с основной оси можно описать как 

смещение на входе и выходе нецентрированного элемента координат луча на 

вектор-столбец q


, определяющий координаты его собственной (новой) оси z .  

 

8.1. Оператор смещения координат луча 

 

Для формального описания поведения лучей в нецентрированных системах 

введём оператор смещения    










−

−
=−=

⊥

⊥

r

nsn
qQQП

q
ˆ ,     (1)  

смещающий вектор-столбец координат луча Q


 относительно прежнего положения 

на вектор-столбец   

 






 n
q =  .     (2) 
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В силу линейности матриц Ŝ  и П̂  справедливы соотношения  

( ) ( )QSПqSQSqQSQПS
qSq


 ˆˆ =−=−= ,   (3) 

( ) ( ) 







=−=−=

−

− QПSqSQSqQSQSП
qSq




1

1 ˆˆ ,   (4) 

из которых следуют два важных свойства оператора смещения:  

 
qSqqSq

ПSSПSППS 


1
ˆˆ,ˆˆ

−
== .      (5) 

 

8.2. Эквивалентность центрированных и нецентрированных систем 

 

Установим эквивалентность центрированных и нецентрированных систем. 

Для этого вначале рассмотрим возможные изменения S-матрицы  известного 

элемента в результате  её трансформации с помощью оператора смещения в S-

матрицу, которая описывает преобразование компонентов вектор-столбца луча при 

его прохождении через этот элемент, находящийся  в нецентрированном положении 

(т.е. по траектории, не совпадающей с осью симметрии элемента).   

В качестве примера найдём матрицу преобразования компонентов вектор-

столбца луча тонкой линзой, смещенной с оси z  на вектор 


(Рис. 40). Новая S-

матрица тонкой линзы, смещённой с оси системы, находится с помощью 

использования в двух операциях преобразования координат на входе и выходе 

нецентрированного элемента оператора смещения 
1

q
П 


, в котором вектор-столбец 

задаётся в виде 




 0
1
=q ,        (6) 

и с учётом свойств (5) оператора 
1

q
П 


 приобретает форму 

bqbqIbTbq
b

Tqbq
b

Tqqbqb
TПTПTПTПППTПT

T


 ====














−+−−−

11111111 ˆ

~̂
.           (7) 

Эта форма означает, что луч вначале прошёл через несмещённый элемент, а 

затем приобрёл дополнительное смещение на вектор-столбец:  

( )
T

q
bb

qIT
b








−

=•
−

=•−
0

0

00

0
ˆ

1




.    (8) 

Вектор-столбец ( )
1

ˆ qITq
bT


•−  не имеет элемента, определяющего 

смещение с оси, но имеет элемент, устанавливающий угловое смещение луча. Это 

значит, что в эквивалентной системе луч должен приобрести угловое смещение. 

Таким образом, пространственно смещенный элемент действует как несмещенный, 

но создающий дополнительное угловое смещение луча.  

Если в системе имеется элемент типа оптического клина, то его действие тоже 

описывается оператором смещения 
q

П ˆ , в векторе-столбце q


 которого имеется 

вектор 


n  углового смещения луча.  
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Если на траектории луча имеется несколько смещённых элементов, то 

матрицу преобразования координат луча в такой оптической системе можно 

представить в виде произведения нескольких S-матриц типа (7). Используя свойства 

(5) оператора смещения 
q

П ˆ  на каждом участке траектории, где находится 

нецентрированный элемент, это произведение можно преобразовать к относительно 

простой форме с единственным оператором смещения:  

===
1231231

1123123

ˆˆˆˆˆˆˆˆˆˆ~̂
SППSПSΠSПSПSПSΠSS

qSqqqqqqqmm m
m

m





    

123123
1122

311223

ˆˆˆˆˆˆˆ SSПSΠSSSППSΠS
qSqSqqmqSqSqqm mm





 
















+++

== .              (9) 

Таким образом, любую не полностью отъюстированную систему можно 

свести к юстированной, а фактор разъюстировки учесть позднее.  

 

8.3. Устойчивость разъюстированных периодических систем 

 

Резонатор с неотцентрированными (или перекошенными) зеркалами можно 

представить в виде периодической разъюстированной системы линз. В этом случае 

преобразование компонентов вектора-столбца  луча Q


 отдельным элементом 

разюстированной лучеводной линии осуществляется в соответствии с (7) с 

помощью трансформированной матрицы S
~̂

 и заключается фактически в двух 

независимых преобразованиях. Одним из них является преобразование координат 

луча матрицей Ŝ  элемента периодической идеально отцентрированной системы, 

соответствующей идеально отъюстированному резонатору или отдельному 

элементу центрированной линзовой  линии. Вторым преобразованием согласно (7) и 

(9) является смещение компонентов вектор-столбца луча, прошедшего через 

элемент центрированной системы, на вектор-столбец 
S

q


. Такое преобразование с 

учётом определения оператора смещения (1) имеет вид соотношения  

S
S

qQSQSПQS
q


 −= ˆˆˆ~̂

,     (10) 

которое можно рассматривать как определение свойств матрицы S
~̂

. 

Матричное уравнение типа уравнения (7.3), из которого рождается 

характеристическое уравнение типа уравнения (7.5) и определяются собственные 

векторы, в этом случае будет иметь форму  

QQSП
Sq


 

~ˆ = .        (11) 

Его решение можно искать в виде 

QПPQQ
P

−=


ˆ        (12) 

вектора-столбца Q


, который смещён относительно вектора-столбца Q


, 

связанного с осью симметрии системы z , на постоянный вектор-столбец P


. 
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Фактически это означает, что искомый вектор-столбец Q


 “привязан” к новой оси 

z , смещённой относительно оси системы z  на постоянный вектор-столбец P


.  

Подставим (12) в (11) и, используя соотношение (4), найдём в новой 

координатной системе его левую  

QSПQПSПQSП
PSqPqq

SSS

==
+




ˆ
ˆˆˆˆ      (13) 

и правую  

 ( ) QПPQQПQ
PP

−==


 


~ˆ~ˆ~~
~      (14) 

части. Полученное в результате этих преобразований соотношение  

QПQSП
PPSqS

=
+


 



~ˆˆ
~

ˆ
      (15) 

вполне может рассматриваться как матричное уравнение. Оно превращается в 

уравнение типа уравнения (7.3) относительно вектор-столбца Q


, связанного с 

новой центральной осью, если действующие на обе части соотношения (15) 

операторы смещения будут одинаковыми. Такая возможность всегда существует, 

поскольку неизвестный вектор-столбец P


 можно определить из алгебраического 

уравнения  

 PPSq
S



~

=+ .       (16) 

записанного в матричном виде. Оно практически всегда имеет однозначное решение 

(за исключением не представляющего интерес случая тождественного 

преобразования, когда 1=
~

 и PPS


 ).  

Нетривиальное решение уравнения (16) фактически позволяет определить 

новую оптическую ось, относительно которой остаётся справедливым прежнее 

матричное уравнение в форме (7.3). Это значит, что решение (знание корней
2,1

~
 ) 

матричного уравнения (7.3) для периодической центрированной системы, состоящей 

из отъюстированных элементов резонатора заданной конфигурации, однозначно 

отвечает на вопрос об его устойчивости в режиме эксплуатации с 

разъюстированными зеркалами.  
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Глава 2. Квазиоптика однородных линейных сред 

 
 

Квазиоптика однородных линейных сред – это теоретическое описание 

закономерностей распространения полей в той части области 

коротковолновой асимптотики, в которой (в отличие от геометрической 

оптики) существенны дифракционные явления.  

Как отмечалось выше, помимо внутреннего масштаба (длины волны  ) 

поле физической величины u~  (возбуждённое какими-либо источниками в 

некотором замкнутом или открытом объёме) всегда имеет другие 

пространственные (внешние) масштабы 
k

 , на которых существенно 

изменяется среднее за период T  высокочастотного колебания значение 

плотности энергии 
T

u
2~ . В неоднородной среде таким масштабом 

k
  

является размер неоднородностей среды. В однородной среде внешним 

пространственным масштабом 
k

  в большинстве случаев оказывается 

размер области, в которой поле возбуждено (определено)1). Квазиоптическое 

описание распространения пучков коротковолнового излучения в однородной 

среде справедливо в области коротковолновой асимптотики  (
k

  >>  ). 

Для осознания закономерностей распространения силового поля с короткой 

длиной волны λ  в свободном однородном пространстве вначале 

целесообразно рассмотреть дифракцию однородной плоской волны на 

прямоугольном отверстии в плоском непрозрачном экране, размеры которого 

велики по сравнению с длиной волны. 

 

§ 1. Элементы теории дифракции скалярных и векторных полей  

 

1.1. Дифракция и рассеяние 

 

Термины дифракция и  рассеяние обозначают различные стороны 

одного и того же физического явления. Суть дифракции в том, что волны 

могут огибать препятствия, и поэтому не существует идеально резких границ 

между ”светом” и “тенью”, т.е. силовым полем и его полным отсутствием. Из-

за дифракции реальное распределение силового поля в однородном 

пространстве, содержащем различные препятствия для распространяющихся 

волн, отличается от того, которое можно получить теоретически, используя  

приближение геометрической оптики.  

В теории дифракции силовое поле u~ , которое образуется в реальном 

пространстве и которое называется дифрагированным, определяется как 

суперпозиция  

 
1) В приближении геометрической оптики в областях однородного пространства за 

пределами каустик интенсивность поля обращается в нуль.  
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 Ruuu ~~~ += 0       (1)  

невозмущенного поля 0u~ , которое существовало бы при тех же источниках в 

отсутствие препятствий, и рассеянного неоднородностями поля Ru~ . Задачей 

дифракции является отыскание поля u~  или поля Ru~  в некоторой заданной 

части пространства.  

В дифракционной задаче сторонние источники обычно считаются 

гармоническими  ( )tiexp~ , что в силу линейности уравнений Максвелла 

фактически не ограничивает общности её постановки. Как правило, сторонние 

источники предполагаются далеко расположенными от рассеивающих 

препятствий, а пространство, в котором размещены объекты, рассеивающие 

поле, обычно считается однородным и изотропным. Это позволяет 

невозмущённое поле 0u~  считать известным и в большинстве случаев 

полагать его плоской волной. Типичной дифракционной задачей является 

задача определения рассеянного (или дифрагированного) поля в 

полупространстве вне объекта на достаточно большом расстоянии от него 

(например, рассеяние электромагнитного поля на непрозрачном экране или 

дифракция на отверстии в экране).  

 

1.2. Принцип Гюйгенса  

 

Для понимания закономерностей распространения волн и применения 

этих законов в расчётах дифракционных полей большое значение имеет 

принцип Гюйгенса, согласно которому волна распространяется в результате 

действия создаваемых ею вторичных источников. Теорема Гюйгенса (1690 

г.) имеет следующую формулировку: 

Каждый элемент волнового фронта можно рассматривать как центр 

вторичного возмущения, порождающего вторичные сферические волны. 

Волновым фронтом в любой последующий момент времени служит 

огибающая волновых фронтов  

вторичных сферических волн.  

Если сторонний источник 

Q , создающий в пространстве 

силовое поле u~ , является 

элементарным точечным 

источником, то невозмущённое 

поле 0u~  будет сферической 

волной (Рис. 41), волновым 

фронтом которой служит 

сферическая поверхность радиуса 

0
R . В соответствии с теоремой Гюйгенса каждая точка 

S
Q  этого 

волнового фронта 
R

S  в момент времени t является элементарным 

вторичным источником, также излучающим сферическую волну. Через 

Q 

QS 

0
R


 

R


 

P 

θ 

R
S

 

R
S 

 

Рис. 41 

P
* 
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промежуток времени ttt −=Δ  волновые фронты сферических волн, 

рождённых вторичными источниками 
S

Q , образуют огибающую 


RS , 

которая также будет сферой, имеющей радиус  tcRR Δ+=
0

. По принципу 

Гюйгенса положение волновой поверхности 


R
S  в момент времени 

t полностью определяется состоянием поверхности 
R

S  в 

предшествующий момент времени t  и не зависит от предыстории 

волнового процесса, от волн в других областях пространства и пр.  

К недостаткам принципа Гюйгенса следует отнести его описательный 

(качественный) характер и отсутствие какой-либо интерпретации смысла и 

роли второй огибающей волновых фронтов вторичных источников 
S

Q , 

которая смещёна в сторону источника Q .  

 

1.3. Принцип Гюйгенса-Френеля 

 

В 1818 году Френель уточнил принцип Гюйгенса и смог объяснить 

явление дифракции, дополнив построение Гюйгенса утверждением, что 

вторичные волны интерферируют между собой. Суть расчётов Френеля, 

называемая принципом Гюйгенса-Френеля, состоит в следующем.  

По Френелю амплитуду поля u~ , создаваемую в точке 
S

Q  волнового 

фронта 
R

S  точечным источником Q , можно представить в виде  

 ( ) ( ) ( )
000

exp/~~ RkiRuQu
S

−= ,     (2) 

где 
0

u~  – амплитуда поля на расстоянии единицы длины от источника Q . 

Вклад, вносимый в поле ( )Pu~  в точке наблюдения P  элементом площади 

волнового фронта Sd  вблизи точки 
S

Q , определяется как  

( ) ( ) ( ) ( )  ( ) SdfRRkiRkiRuPud −−= expexp/~~
000

. (3) 

Функция ( )θf , называемая коэффициентом наклона, определяет 

зависимость амплитуды вторичных сферических волн от угла θ  между 

направлением вектора R


 и нормалью к волновой поверхности в точке 
S

Q  

(вектором 
0

R


) и фактически имеет смысл диаграммы направленности 

вторичного источника. Наличие в (3) коэффициента наклона по существу 

является вторым важнейшим теоретическим вкладом Френеля в 

содержание принципа Гюйгенса.  

Полное поле в точке наблюдения P  находится как интеграл  

( ) ( ) ( )  ( ) +−=

RS

SdfRRkiRRuPu 
000

exp/~~   (4) 

по замкнутой поверхности 
R

S  волнового фронта (которая в рассмотренном 

на Рис. 41 случае является сферой). Надлежащим выбором функции ( )θf  

можно добиться, чтобы вторичные источники излучали только в одну 
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сторону и чтобы поле отсутствовало в точках 


P  внутри поверхности 
R

S  

( ( ) 0~ =


Pu ). Френелю не удалось дать убедительного обоснования тому или 

иному выбору функции ( )θf  и, следовательно, отсутствию волны, 

распространяющейся назад. Однако оказалось, что результаты расчёта поля 

волны, распространяющейся вперёд, практически не зависят от конкретного 

выбора функции ( )θf . Достаточно считать, что ( )θf  уменьшается с 

ростом θ .  

 

1.4. Принцип Гюйгенса-Кирхгофа 

 

1) Кирхгофом получена (1882 г.) строгая формулировка принципа 

Гюйгенса на основе точного решения однородного скалярного уравнения 

Гельмгольца (В.3) для комплексной амплитуды волнового поля u~  в области 

2, свободной от источников (Рис. 42). Интегрирование (В.3) осуществлено с 

помощью функции Грина ( )rrG 


,
~

, которая является решением уравнения 

Гельмгольца с точечным источником в правой части  

( )rrδGkG −=+
~~ 2Δ .      (5) 

O 

P 

Q 

r


 

r 


 

R


 

0
S  


S  

n


 

n


 

1 

2 

Рис. 42 

n


 

1 

n

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В общем случае решение (5) зависит от граничных условий на 

поверхности 


+= SSS
0

, ограничивающей свободную от источников область 

2. В  

однородной изотропной безграничной среде функция Грина имеет вид  

( )
R

Rki
G

4

exp~
0

−−
= ,         (6) 

где  

rrRR −=


       (7) 

– расстояние между точкой источника ( )rQ 


 и точкой наблюдения ( )rP


. 

Функция Грина (6) является решением уравнения Гельмгольтца (В3) для 

безграничного пространства1). Она удовлетворяет условию излучения 

Зоммерфельда  

0
~

~

lim 0

0 =












+





→

Gki
R

G
R

R

,     (8) 

играющему роль граничного условия.  

Интегрирование уравнения (В.3) производится стандартным способом 

при помощи второй формулы Грина  

  ( ) ( )  SdunGGnuVduGGu
V S

−=− 
2

~~~~~~~~ 
,  (9) 

в которой используется произвольная функция Грина G
~

, удовлетворяющая 

уравнению (5). В формуле (9) дифференцирование и интегрирование 

производятся по штрихованным координатам точки Q , находящейся в 

области 2, n


 является внешней нормалью к поверхности 


+= SSS
0

, 

ограничивающей область 2.  

Производя в уравнении (5) замену rr 


 и подставляя G
~

Δ  и u~Δ  

в левую часть (9), получим (после вычисления объёмного интеграла), что 

левая часть (9) равна значению поля в точке наблюдения ( ) ( )Puru ~~ 


.  

Вычисление поверхностного интеграла, находящегося в правой части 

(9), зависит от выбора конкретной функции Грина G
~

, удовлетворяющей на 

поверхности 


+= SSS
0

 определённым граничным условиям. Если в качестве 

G
~

 выбрать функцию Грина 
0

~
G  и вместо внешней нормали n


 

использовать нормаль  

 nn −=


,       (10) 

 

1) Прямой подстановкой можно убедиться, что 
0

~~ Gu   является решением уравнения 

Гельмгольца 0~
~1 22

2
=+
















uk

R

u
R

RR
 в сферической системе координат.  
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направленную внутрь области 2, то поле ( ) ( )Puru ~~ 


 в точке P  

определится в результате вычисления интеграла  

( )
( ) ( )

( ) Sdun
R

Rki

R

Rki
nuru

S





















 −
−




















 −
= 

~expexp~

4

1~ 


  (11) 

по замкнутой поверхности 


+= SSS
0

, на которой заданы значения u~  и 

u~ .  

2) Из общих физических соображений ясно, что интеграл (11) может 

быть отличен от нуля только в том случае, если вне поверхности 


+= SSS
0

 

имеются источники. Если источники вне поверхности 


S  (включая 

источники на бесконечности) отсутствуют, то интеграл по поверхности 


S  

будет равен нулю вне зависимости от её формы и местоположения. Интеграл 

по поверхности 


S  не изменится, если форма поверхности 


S  будет 

трансформирована или объём области 2  будет изменён (в частности, 

неограниченно увеличен). В этом случае поле ( ) ( )Puru ~~ 


 в точке 

P будет отлично от нуля только при условии, что источники имеются внутри 

поверхности 
0

S . Причём поле ( )Pu~  не изменится, если будет 

трансформирована форма поверхности 
0

S , но внутри ограниченной ею 

области 1 источники поля останутся неизменными (как по величине, так и по 

расположению). Разумеется, при этом будут изменяться значения ( )
0

~
Su  и 

( )
0

~
Snu   на поверхности 

0
S , но величина интеграла (11) останется 

постоянной.  

В поверхностном интеграле (11) величины ( )
0

~
Snu   и ( )

0

~
Su  

играют роль вторичных поверхностных источников, а именно плотности 

поверхностного заряда и плотности поверхностного дипольного слоя 

соответственно. По своему действию эти вторичные поверхностные 

источники полностью эквивалентны реальным объёмным источникам, 

находящимся в области 1 внутри 
0

S . Фактически принцип Гюйгенса 

заключается в этой формулировке, и потому она называется принципом 

Гюйгенса-Кирхгофа.  

3) Для определения диаграммы направленности вторичных 

поверхностных источников рассмотрим внутри области 1 точечный 

источник, создающий сферическую волну, и выберем в качестве поверхности 

0
S  сферическую поверхность её волнового фронта. При такой геометрии 

границы раздела областей Рис. 42 фактически трансформируется в Рис. 41. В 

поверхностном интеграле (11) поле ( )
0S

u~  на поверхности 
0

S
R

S  примет 

вид поля (2) сферической волны в точке 
S

Q , и будут справедливы 

следующие выражения для находящихся под знаком интеграла  векторных 

функций: 

( )
000

RRRn =


; ( )RRR


−= ;  ( ) θRRRR cos
00

=


.   (12) 
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В приближении волновой зоны  

 1;1
0
 RkRk ,      (13) 

когда расстояния 
0

, RR  велики по сравнению с длиной волны, из (11) с 

учётом (12) получим поле в точке наблюдения P  в виде  

( ) ( ) ( ) ( ) ( ) ( ) ++−

RS

SdRRkiRRukiPuru  cos1exp/~4~~
000


.  (14) 

Интеграл в (14) вычисляется по точкам поверхности сферы радиуса 
0

R  и по 

форме совпадает с интегралом (4). Роль коэффициента наклона в (14) играет 

функция  
( ) ( )( )θπkiθf cos+= 14 ,     (15) 

которая имеет смысл диаграммы направленности вторичных источников. 

Функция (15) уменьшается с ростом угла   и тем самым удовлетворяет 

необходимому условию для формирования поверхностными вторичными 

источниками одной сферической волны, распространяющейся от источника.  

4) Если вместо объёмных источников в области 1 разместить на 

поверхности 
0

S  вторичные поверхностные источники (поверхностные 

плотности заряда и дипольного момента), точно соответствующие 

значениям ( )
0

~
Su  и ( )

0

~
Snu  , то поле в области 2 (вне 

0
S ) не 

почувствует этой подмены и не изменится ни в одной точке. Воспользуемся 

такой гипотетической возможностью и перенесём точку наблюдения из 

области 2 в область 1, произведя замену P  на симметрично расположенную 

относительно P  точку 


P  (Рис. 41). При этом в интеграле (11) векторы n


 

и R придётся заменить на противоположно направленные векторы n


  

и 


R , так что поле в точке 


P  можно будет рассчитать с помощью 

поверхностного  интеграла (14), в котором следует сделать две замены:  


→ RR ;    +→


.    (16) 

Роль коэффициента наклона в этом случае будет исполнять функция  

( ) ( )( ) ( )( ) cos14cos14 −=+=


kikif ,     (17) 

которая в отличие от (15) растёт при увеличении угла  . Строгий расчёт 

поля в точке 


P  с помощью интеграла (14) с функцией (17) в качестве 

коэффициента наклона даёт  

( ) ( ) ( ) ( ) ( ) =−+−=


RS

SdRRkiRRukiPu 0cos1exp/~4~
000

 .   (18) 

Таким образом, поле ( )Pu~ , которое создаётся в области 2 

вторичными источниками, расположенными на ограничивающей область 

поверхности 
0

S , точно совпадает с тем истинным полем, которое создают в 

точке P  реальные объёмные источники, размещённые в области 1. Столь 

же определённо вторичные источники в каждой точке 


P  области 1 не 

создают никакого поля. Другими словами, поле, создаваемое вторичными 
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источниками, терпит скачок на той граничной поверхности 
0

S , на которой 

эти вторичные источники размещены. Физическая причина этого скачка 

заключена в особенностях диаграммы направленности излучения, 

создаваемого вторичными источниками.  

В современной теоретической оптике приближенные решения 

дифракционных задач практически всегда находятся с помощью принципа 

Гюйгенса-Кирхгофа. При этом приближённый характер получаемых 

результатов обусловлен в основном тем, что в интеграл (11) подставляются 

приближённые значения ( )
0

~
Su  и ( )

0

~
Snu  .  

 

1.5. Электродинамический принцип Гюйгенса 

 

Для формулировки электродинамического принципа Гюйгенса 

нужно воспользоваться интегралом Кирхгофа (11) для каждой отдельной 

декартовой составляющей электрического E

~

 и магнитного H

~

 полей. После 

некоторых (достаточно трудоёмких) математических преобразований можно 

получить векторные аналоги поверхностного интеграла (11), с помощью 

которых будут вычисляться E

~

 и H

~

 поля. Если в эти поверхностные 

интегралы подставлять истинные значения полей 
0

)
~

(
S

E


 и ( )
0

~
SH


 на 

поверхности 
0

S , то в результате вычислений всегда получатся правильные 

(истинные) поля ( )rE


~
 и ( )rH


~

 в каждой точке P  в области 2 и 

соответственно «вакуумное» поле E

~

= 0
~
=H


 в каждой точке 


P , 

находящейся внутри поверхности 
0

S  в области 1. Это значит, что 

электрическое E

~

 и магнитное H

~

 поля при переходе через поверхность 
0

S  

терпят скачок и что в силу существующих в электродинамике законов 

(требующих выполнения граничных условий) по поверхности 
0

S  должны 

течь поверхностные электрический и магнитный  токи с плотностями  

( ) 
0

0

~

4

~

S
e

S
Hn

c
j


=


;  





 −=

00

)
~

(
4

~

S
m
S

En
c

j



,  (19) 

где 
0

)
~

(
S

E


 и ( )
0

~
SH


 – истинные значения полей на поверхности 

0
S 2).  

Применительно к электродинамике поверхностные токи (19) являются 

именно теми вторичными источниками, физический смысл и значение 

которых были определены в принципе (теореме) Гюйгенса. Каждый 

элемент поверхности 
0

S , по которому текут токи (19) и размеры которого 

 

2) Скачки нормальных компонент векторов индукций D


 и B


 можно рассматривать как 

наличие на поверхности 
0

S электрических и магнитных зарядов, которые однозначно 

определяются с помощью уравнений непрерывности из выражений (19).  
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малы по сравнению с длиной волны, фактически представляет собой единую 

пару электрического и магнитного диполей. Векторные комплексные 

амплитуды диполей этого элементарного вторичного источника 

монохроматического электромагнитного излучения жёстко связаны между 

собой уравнениями Максвелла, которым удовлетворяют поля 
0

)
~

(
S

E


 и ( )
0

~
SH


 

на поверхности 
0

S .  

Поскольку произвольное электромагнитное поле можно представить в 

виде суперпозиции плоских волн, то самым элементарным будет вторичный 

источник на элементе  dnd


 поверхности 
0

S , на который по 

направлению нормали n


 падает плоская волна. Такой простейший 

вторичный источник в виде двух ортогонально ориентированных диполей  

( ) ( )  
( ) ( )   ( )








−=

−=

00

0

~
4

~
4

~
1~

;
~

4
~

1~

EidcHnidcdjipd

Enidcdjimd

e

m












 (20) 

называется элементом Гюйгенса. В сферической системе координат с 

центром в середине элемента d  плотность потока мощности излучения 

(вектор Пойнтинга) двух связанных диполей (20) находится в виде  

( )
0

2
2

0

2

cos1
~

48
rE

r

dkc
Sd

T 







+







 








= .  (21) 

Из диаграммы направленности ( )2
cos1 +  потока мощности (21) следует, 

что излучение элемента Гюйгенса в направлении πθ =  отсутствует. Как 

отмечалось выше, этого достаточно для того, чтобы не появилась волна, 

распространяющаяся в сторону источника первоначального поля, и, в 

конечном счёте, не появилось поле в области 1.  

Основное содержание электродинамического принципа Гюйгенса 

заключается в том, что он позволяет заменить задачу об определении поля 

внутри области 2 по заданным на границе 
0

S  полям 
0

)
~

(
S

E


 и ( )
0

~
SH


 на 

эквивалентную задачу об излучении в свободном безграничном пространстве 

сторонних токов, определяемых по формулам (19).  

 

1.6. Модификации электродинамического принципа Гюйгенса для задач 

дифракции  на плоских объектах 

 

Для расчёта излучения из 

отверстия в плоском экране (Рис. 43) 

удобно воспользоваться 

электродинамическим принципом 

Гюйгенса в его строгой формулировке, 

которая предполагает введение по 

S 

X 

Y 
Z 

2 

0
S  

Рис. 43 



Глава 2, §1 81 

формулам (19) поверхностных токов, излучающих в свободном 

пространстве. Поскольку в этом случае излучающие в свободном 

пространстве токи создают в каждой точке 


P  полупространства 1 так 

называемое «вакуумное поле» E

~

= H

~

= 0, то с полной очевидностью в 

области 1 не произойдет ни каких изменений, если плоскость 0=Z   
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виртуально заменить на поверхность, идеально отражающую излучение. 

Тем самым задача об излучении поверхностных токов в свободном 

пространстве преобразуется в задачу об излучении поверхностных токов в 

полупространство 2, плоская граница которого является идеальным 

проводником или идеальным магнетиком.  

1) Излучение источников в полупространство 2, ограниченное идеально 

проводящей плоскостью 0=Z , согласно методу отражения токов 

эквивалентно излучению в свободном пространстве реальных и 

дополнительных  “фиктивных” токов. Компоненты “фиктивных” источников 

располагаются в пространстве 1 определённым симметричным образом по 

отношению к компонентам реальных источников, находящихся в области 2. 

Если реальные источники являются токами, текущими по поверхности 0=Z , 

то “фиктивные” электрические поверхностные токи будут одинаковы по 

величине и противоположны по направлению реальным поверхностным 

электрическим токам, а “фиктивные”  поверхностные магнитные токи, 

напротив, будут совпадать с реальными не только по величине, но и по 

направлению. В результате амплитуда излучающего в свободном 

пространстве полного магнитного поверхностного тока возрастёт в два 

раза, а полный электрический поверхностный ток будет равен нулю:  

;0
~

0
=

=
e
z

j


  




 −=

= 0

)
~

(
4
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Поскольку при замене вторичных источников (19) на источники (22) 

поле в области 2 не изменяется, то это значит, что располагающиеся на 

плоской поверхности 
0

S  электрический e

S
j

0

~
 и магнитный m

S
j

0

~
 

поверхностные токи вносят совершенно одинаковые вклады в поле в правом 

полупространстве, излучая (в область 2) одинаковую мощность в фазе друг с 

другом. В левое полупространство (в область 1) эти токи излучают в 

противофазе и потому полностью подавляют друг друга.  

2) Если в качестве идеально отражающей плоскости 0=Z  

используется поверхность из идеального магнетика, то совокупность 

реальных и “фиктивных” источников, формирующих истинное поле в 

области 2, будет иметь вид  
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Результаты расчёта истинного поля в области 2 абсолютно одинаковы 

(идентичны) для трёх разновидностей (19), (22) и (23) поверхностных токов, 

протекающих по плоской поверхности 
0

S .  

 

1.7. Приближённые методы решения дифракционных задач 

 

Изложенная выше теория вычисления дифракционных полей является 

строгой, и поля в области 2 определяются абсолютно точно, если точно 
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известны поля на поверхности 
0

S . Но они (практически всегда) не могут 

быть определены точно и поэтому задаются приближённо.  

Исторически развитие дифракции началось с решения оптических задач. 

В оптике измеряются не мгновенные значения векторов E


 и H


, а 

интенсивность света (плотность потока мощности, усреднённая за большое по 

сравнению с периодом колебания время и по площади приёмного устройства, 

большой по сравнению с квадратом длины волны 2λ ). Эта характеристика 

поля является скалярной величиной, и поэтому для описания большинства 

дифракционных явлений в оптике оказалось вполне пригодным приближение 

скалярной теории. Типичным примером применения такой теории является 

расчёт излучения из отверстия в плоском экране (Рис.43), который 

расположен в плоскости  Z = 0. По существу расчёт поля в полупространстве 

0Z сводится к вычислению поля в произвольной точке P  в области 2, 

которая ограничена замкнутой поверхностью 


+ SS , состоящей из 

плоскости 0=Z  и полусферы бесконечно большого радиуса S  с центром 

в начале координат (0, 0, 0). Поверхность полусферы и участки плоскости за 

пределами области 
0

S  образуют поверхность S , на которой вторичные 

источники либо отсутствуют, либо в силу своей малости не дают никакого 

вклада в поле в точке P .   

 

1.7.1. Приближение Кирхгофа для скалярного поля  

 

Кирхгоф предложил рассчитывать поле в области 2 по формуле (11), 

подставляя в неё в качестве ( )
S

u~  и ( )
S

nu  ~  разрывные функции  

( )
S

u~ ; ( )
S

nu  ~ =
( )









,,

;~,~

0

0

00

00 SSдля

SSдляnuu
   (24) 

где 
0

S – площадь плоской поверхности отверстия, 
0

zn


  – нормаль к 

плоскости, проходящей через поверхность экрана, 0u~  – создаваемое 

источником невозмущённое поле, падающее на отверстие (и экран) слева из 

области 1. Граничные условия (24) являются основным содержанием 

приближённой скалярной теории дифракции Кирхгофа. Использованные 

Кирхгофом для решения дифракционных задач граничные условия (24) имеют 

два существенных недостатка.  

 Во-первых, они избыточны, ибо для однозначного решения уравнения 

Гельмгольца вполне достаточно задать на границе области значение ( )
S

u~  

(задача Дирихле) или только ( )
S

nu  ~  (задача Неймана). Если задать на 

0
S  обе величины независимо, то решение внутри объёма области 2 не 

сойдётся к этим значениям на поверхности.  

 Во-вторых, предположение о равенстве нулю на части внутренней 

поверхности S  (на экране) функции ( )
S

u~ и её производной ( )
S

nu  ~  

фактически означает разрыв непрерывности u~  на контуре, ограничивающем 
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отверстие 
0

S . Разрыв непрерывности скалярного поля u~  противоречит 

условиям применимости интеграла (11), поскольку решение уравнения 

Гельмгольца получено с помощью формулы Грина, которая справедлива 

исключительно для функций, непрерывных на всей поверхности S .  

 

1.7.2. Метод физической оптики  

 

Метод физической оптики заключается в том, что при решении задач 

с помощью электродинамического принципа Гюйгенса для определения 

поверхностных токов на границах области 2 используются для векторов E

~

 

и H
~

 приближённые граничные условия  

( )
S

E

~

; ( )
S

H

~

=
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
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SSдля

SSдляHE
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   (25) 

аналогичные по своему физическому смыслу условиям (24). В соответствии с 

(19) вводятся приближённые значения сторонних поверхностных токов и 

рассчитываются поля в свободном пространстве. Метод физической 

оптики широко применяется для модификаций электродинамического 

принципа Гюйгенса. Он имеет те же недостатки, которые присущи 

приближённой скалярной теории дифракции Кирхгофа.  

 Несмотря на внутреннюю противоречивость, приближённая теория 

Кирхгофа позволяет получить удовлетворительные решения многих 

дифракционных оптических задач, потому что все неточности граничных 

условий (24) и (25) при ( ) 1
0

Sλ  выглядят как малые 

математические погрешности.   

 

§ 2. Основные закономерности распространения дифрагированных  

коротковолновых полей  

 

Для выявления и осознания закономерностей распространения 

коротковолнового излучения вначале следует рассмотреть дифракцию 

однородной плоской волны оптической частоты на прямоугольном отверстии 

YX
AAS =

0
 в плоском непрозрачном экране (Рис. 43), размеры которого 

YX
A

,
 велики по сравнению с длиной волны.  

 

2.1. Диаграмма направленности простейшего излучателя  

коротковолнового диапазона  

 

На основании модифицированного электродинамического 

принципа Гюйгенса поле в области 2 будем искать в виде поля излучения в 

безграничной однородной среде стороннего электрического тока (1.23), 

текущего по плоской поверхности S . Это – типичная задача об излучении 
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антенны, имеющей большую апертуру. Воспользуемся приближением 

физической оптики (1.25), полагая, что волна падает нормально на 

поверхность S  и её магнитное поле поляризовано по оси OY. В этом случае 

в соответствии с (1.23) роль стороннего источника, излучающего в 

свободном пространстве, будет играть поверхностный электрический ток  
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где 
0

~
H  – комплексная амплитуда напряженности магнитного поля 

падающей на экран из области 1 однородной плоской волны.  

Поле излучения такого тока (простейшего излучателя оптического 

диапазона) в дальней волновой фраунгоферовой зоне рассчитывается по 

стандартной схеме. Вначале определяется вектор-потенциал  
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в котором угловой спектр вектора излучения ( )
0

~
,

~
xNN

  выражается 

через посредство двух безразмерных компонентов волнового вектора   
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зависящих от угла места   и азимутального угла   сферической системы 

координат. Затем находятся магнитное  поле  
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и средняя за период оптического колебания величина вектора Пойнтинга1)  
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Чтобы оценить угловую ширину диаграммы направленности излучающей 

апертуры, следует найти из (5) и (3) нули её главного лепестка в плоскостях 

 
1) При расчёте (5) следует  воспользоваться формулой  
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000000  

для скалярного произведения двух векторных произведений. 
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OX и OY. Полагая поочерёдно 0=  и ( )2 = , из (3) получим в 

каждой плоскости  координаты первого нуля диаграммы направленности  

( ) ( )YXYXYXYX AA ,,,, /sin  = .       (6) 

Поскольку интенсивность излучения в ближайших боковых лепестках 

(соседних с главным) в 2  раз меньше, то можно считать, что основная 

часть (около 90%) всей излучаемой мощности сосредоточена внутри 

телесного угла YX  = 44 , образованного главным лепестком 

диаграммы направленности.  

По определению ширина диаграммы направленности оценивается по 

уровню излучения половины максимальной мощности в главном 

лепестке. Это значит, что ширина диаграммы направленности 

рассматриваемой гигантской антенны ( 
YX

A
,

) в соответствии с (6) 

есть  

( ) ( )0

22 SAA YXYX  = ;    (7) 

Совершенно очевидно, что абсолютно идентичными свойствами 

обладает излучение плоского идеально отражающего зеркала (имеющего 

размеры 
YX

AAS =
0

), на которое из области 2 по нормали к его 

поверхности падает плоская волна2).  

В оптическом диапазоне ( см5105 − ) отверстие размером 

смА 5.0= , подсвеченное из области 1 плоской волной, излучает как 

гигантская антенна, имеющая очень узкую диаграмму направленности с 

угловой шириной ( ) радA YXYX

4

,, 10−=  . Поперечные размеры 

объёма пространства 
⊥

 , в котором находится энергия, излучаемая 

основным лепестком диаграммы направленности этой антенны, будут 

незначительно расти по мере удаления от светящейся поверхности. Даже в 

зоне Фраунгофера на расстоянии ( ) смArFR

42 10510 =   от антенны 

поперечные размеры основного лепестка её диаграммы направленности, 

рассчитанные по уровню излучения половины максимальной мощности, 

будут только в 10 раз больше размера апертуры: 

( ) ( ) смAAArFR 51010 2 == ⊥⊥  .  

 

2.2. Параксиальные волновые пучки гауссовой формы 

 

В оптике имеют дело не с плоскими волнами, а с пучками конечной 

ширины, в которых интенсивность поля уменьшается в направлении 

периферии освещаемой апертуры. Пучок такого типа, имеющий огромные по 

 
2) В этом случае в соответствии с (1.1) необходимо рассмотреть рассеянную часть 

электромагнитного поля 
RR HE


~

,
~

 и именно для неё сформулировать задачу об излучении 

стороннего тока в свободном пространстве.  
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сравнению с длиной волны   поперечные размеры a
⊥

, представляет 

собой суперпозицию плоских волн, волновые векторы которых образуют 

узкий конус вокруг основного направления распространения пучка вдоль оси 

OZ. Каждая из этих волн по правилам го может рассматриваться как 

отдельный луч. Если направления всех лучей близки направлению оси OZ и 

удовлетворяют приближению параксиальности (1.5.55), (1.5.56), то 

образованный этими плоскими волнами пучок называется параксиальным 

волновым пучком.  

Параксиальные волновые пучки могут иметь различные поперечные 

структуры. Поперечную структуру поля параксиального волнового пучка и 

соответственно спектральный состав образующих его плоских волн (лучей) 

определяют зависимости амплитуды и фазы от поперечных координат.  

Особую (важную) роль в теории распространения коротковолнового 

излучения играют параксиальные волновые пучки с так называемой 

гауссовой зависимостью амплитуды поля от поперечных координат  

( ) 







−


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2

exp
~

2
exp

~
0,,~

a
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U

a
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Uyxu .   (8) 

Интенсивность поля гауссова пучка, пропорциональная 
2

u~ , уменьшается в 
1e  раз на расстоянии ar =

⊥
, поэтому а  можно считать шириной пучка 

на уровне  0.36  по мощности. Гауссовы пучки (как будет показано позднее) 

являются собственными типами волн в открытых центрированных 

линиях передачи силовых полей. При распространении в линии передачи в 

промежутках между линзами (или зеркалами) фазовый фронт и ширина 

гауссова пучка меняются в небольших пределах. Линзы (или зеркала) 

корректируют эти изменения. Поэтому внутри каждой отдельной ячейки, из 

совокупности которых состоит линия передачи, имеется сечение, в котором 

поле гауссова пучка имеет плоский фазовый фронт. В этом особом сечении, 

условно обозначенном 0=z , комплексная амплитуда поля параксиального 

симметричного гауссова пучка представляется в виде (8).  

Спектр пространственных частот волнового гауссова пучка находится 

как Фурье-преобразование поля (8) и представляется в виде  

( )
( )

( ) 


−

⊥

⊥⊥⊥ 






 −
=









+
+

−=
2

exp
2

~

2
exp

2

~
~

222

0

2

22

2

0
kaaU

ydxdrki
a

yxU
kU




.  (9) 

При расчёте спектра (9) и аналогичных выражений используется 

определённый интеграл  

( ) ( ) 0~Re,~4
~

exp~
~~exp 22 =+−



−





 приxdxx ,  (10) 

разные формы которого можно найти в математических справочниках3).   
 

3) Смотрите, например, формулы 3.462 (с. 351), 9.242 (с. 1078) и 9.254 (с. 1081) в 

справочнике И.С. Градштейна и И.М. Рыжика «Таблицы интегралов, сумм, рядов и 

произведений».  
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Из выражения (9) видно, что основная часть спектральной плотности 

энергии   

( ) ( ) ( )2222
2

0

2

exp2
~~

⊥⊥ −= kaaUkU 


   (11) 

находится внутри области ( )ak 1
⊥


, на границе которой интенсивности 

плоских волн (лучей), образующих пучок, составляют около 36% от 

интенсивности центрального луча. За пределами области ( )a2  энергия 

спектра практически равна нулю.  

Применительно к гауссову пучку условие  
( ) ( )21  ka      (12) 

фактически означает приближение параксиальности. Условие (12) 

позволяет установить простые связи между шириной гауссова пучка, 

шириной его пространственного спектра и длиной волны. Примерно такие же 

соотношения между этими параметрами имеют место в параксиальных 

волновых пучках с иной поперечной структурой поля.  

 

2.3. Угол дифракционной расходимости и дифракционная длина 

 

Угловая ширина диаграммы направленности зависит от распределения 

плотности тока по поверхности апертуры антенны, т.е. от распределения 

амплитуды и фазы поля на освещаемой поверхности отверстия 
YX

AAS =
0

 

в экране. При падении на отверстие в экране гауссова пучка (8), имеющего 

конечную ширину ASa 
0

, диаграмма направленности эффективной 

антенны оказывается заметно уже по сравнению со случаем плоской волны.  

Для оценки угловой ширины диаграммы направленности неоднородно 

освещённой апертуры рассмотрим дифракцию на отверстии 
YX

AAS =
0

 в 

плоском непрозрачном экране (Рис. 43) одномерного параксиального пучка, 

который распространяется вдоль оси OZ и в плоскости экрана 0=z  имеет 

комплексную амплитуду магнитного поля   

( )22

000
2exp

~~
axHyH −=


.     (13) 

Воспользуемся формулами (1) – (5). Для упрощения вычислений будем 

считать, что поперечный размер отверстия по координате x  существенно 

больше поперечного размера пучка ( aA
X
 ). Это допущение позволяет 

при нахождении вектора излучения N

~

 расширить пределы интегрирования 

по координате x  до бесконечности и, используя определённый интеграл 

(10), получить выражение для векторного потенциала в виде  

( ) ( )
0

22

0
2

exp2
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2
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~
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ka
aAH

c
rki
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Y
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


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Сопоставляя (14) и (2), можно по аналогии с (5) найти аналитическое 

выражение для вектора Пойнтинга и соответствующую диаграмму 

направленности этой излучающей апертуры  

( ) ( ) 222222

2

cossin1cossinexp
sin

max
−−












=








kaSS

Y

Y
TT 

.  (15) 

Подставляя в (15) обозначения (3), нетрудно установить, что в 

приближении параксиальности xx
 sin  ширину диаграммы 

направленности в плоскости 0=  определит условие   

aka
x

k
x

ak fd = sin1 .      (16) 

Именно на основании условия (16) принято считать, что шириной 

диаграммы направленности вторичных источников, образованных полем 

параксиального волнового пучка, является величина  

( ) ( ) ( )
⊥

=  221 aak
fd

,    (17)  

которая называется углом дифракционной расходимости излучения с 

апертуры a  (где 
⊥

a  – характерный поперечный размер пучка).   

Поскольку плоскую поверхность волнового фронта 0=z , на которой 

определено поле (8) гауссова пучка, можно рассматривать как апертуру 

антенны, на которой задано распределение вторичных источников, то 

понятие угловой дифракционной расходимости полностью применимо к 

волновым пучкам, распространяющимся в свободном пространстве. Из 

сопоставления (17) и (12) следует, что параксиальные волновые пучки 

должны иметь очень небольшие углы дифракционной расходимости:  

( ) ( ) ( ) 1121 =
⊥

kaak
fd

 .     (18) 

Расстояние до зоны Фраунгофера, в которой поперечные размеры 

пучка увеличиваются примерно в 10 раз, малоинтересно для 

коротковолновых полей, потому что на такой большой длине излучение 

сильно рассеивается и затухает. В оптике волновых параксиальных пучков в 

связи с углом дифракционной расходимости (17) вводится понятие 

дифракционной длины  

 22

⊥
=





= kakal

fdfd
 ,     (19) 

на которой ширина гауссова пучка увеличивается в два раза.  

В геометрооптическом приближении (без учёта дифракции) на длине 

fd
l  площадь сечения лучевой трубки увеличивается в 4 раза, и, 

следовательно, в отсутствие поглощения и рассеяния можно ожидать 

уменьшения в 4 раза интенсивности поля. Дифракция вносит некоторую 

коррекцию, уменьшая ослабление вплоть до значения 2 для гауссовых 

пучков. Поэтому 
fd

l  можно рассматривать как характерный 

пространственный масштаб по направлению распространения 

параксиального пучка 
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  22 akkl
fd

=
⊥

,    (20) 

на котором интенсивность его поля уменьшается в пределах от 2 до 4 раз.  

Расстояние 
fd

l  также весьма велико, если иметь в виду оптические 

экспериментальные установки. Значительно больший интерес представляют 

такие расстояния от излучателя  

( ) ( ) ( ) ( )nlnnanAL
fdn

 2222 ==
⊥

,   (21) 

с которых его апертура представляется площадкой, состоящей из нескольких 

( n ) зон Френеля. На таких расстояниях 
n

L  ширина пучка и абсолютная 

величина интенсивности поля изменяются незначительно. Но все 

закономерности трансформации поля сохраняются, включая характерный 

масштаб его изменения по направлению распространения 

( 22 akk =
⊥

).  

 

2.4. Параксиальное приближение теории дифракции скалярного поля на 

отверстии в плоском экране. Дифракционная формула Френеля 

 

Для расчёта скалярного поля в области 2 в соответствии с принципом 

Гюйгенса-Кирхгофа воспользуемся интегралом (1.11). Будем считать, что 

источник скалярного поля u~ , освещающий отверстие 
YX

AAS =
0

 в экране 

(Рис. 43), находится в области 1 достаточно далеко от границы 0=z  и на 

поверхности апертуры создаёт поле  

( ) ( )zkiruu −= exp~~
0

0 
,      (22) 

которое представляет собой ограниченный по поперечным координатам 

параксиальный волновой пучок, распространяющийся вдоль оси OZ. 

Комплексная амплитуда ( )ru


0

~  этого поля предполагается функцией 

координат, которая мало изменяется на масштабе   по всем направлениям.  

Воспользуемся приближением Кирхгофа (1.24) и подставим в (1.11) в 

качестве ( )
S

u~  и ( )
S

nu  ~  невозмущённые значения падающего поля 

(22) и нормальной производной от него по направлению 
0

zn


= . При 

вычислении производной учтём незначительность вклада от медленно 

меняющейся в z-направлении амплитуды 
0

u~  и получим  

( ) ( ) 0
0

00

0

0

~exp~
~~~

=
=

−








−







−




=

























z

z

ukizkiuki
z

u

z

u

n

u

SS

.  (23) 

Поле вторичных источников в области 2 будем искать в точках P , 

находящихся в волновой зоне ( 1Rk ). Используя (1.12) для R , 

получим поле в точке P  в виде   

( ) ( )
( )

( ) ydxd
R

Rki
ru

ki
Pu

S

+






 −
=  ⊥




cos1
exp

0,~

4

~

0

0


,   (24) 
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который напоминает полученную ранее аналогичную по содержанию 

формулу (1.14). В отличие от (1.14) в (24) поверхность 
0

S  плоская (а не 

сферическая), и поле на поверхности 
0

S  не постоянное, а произвольным 

образом зависит от поперечных координат. В (24) диаграмма направленности 

каждого элементарного вторичного источника ( ) )cos1(~  +f  по-

прежнему имеет вид кардиоиды. Но в отличие от (1.14) в формуле (24) угол 

  образован направлением на источник и нормалью к плоскости 0=z , а 

не к сферическому волновому фронту, как это имеет место в формуле (1.14).  

В параксиальном приближении (1.5.55), (1.5.56) интеграл (24) 

упрощается. Во-первых, в этом приближении следует считать 1cos  . 

Во-вторых, при выполнении условий (1.5.55), (1.5.56) можно разложить в ряд 

по малому параметру  

( ) ( ) 22222
 −

⊥⊥
tgzrrLa


    (25) 

функцию  

...+
−

−
−

+












 −
+=−+=

⊥⊥⊥⊥⊥⊥

⊥⊥ 3

42

2

2

22

82
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zrrzR




.(26) 

и далее использовать это разложение для преобразования функции Грина 

(1.6) в выражение, упрощающее вычисление интеграла (24). В соответствии с 

условиями (1.5.55), (1.5.56) в амплитудном сомножителе функции Грина 

следует оставить только первый член разложения (26). В фазовом 

сомножителе ( )Rki−exp , кроме первого, необходимо учитывать второй 

член разложения (26). Его учёт изменяет фазу поля, создаваемого 

вторичным источником в точке P  на расстоянии 
n

L , на достаточно 

большую величину порядка  

 ( ) ( ) nLlLak
nfd

 222 .    (27) 

Третьим членом разложения можно пренебречь, поскольку его вклад в 

изменение фазы поля, создаваемого вторичным источником в области 2 на 

расстоянии 
n

L  (т.е. в реальном случае), оказывается несущественным:  

( ) ( )( ) ( ) ( )2488 2234  == nLaLlLak
nnn fd

.    (28) 

Таким образом, в параксиальном приближении функция Грина для 

безграничного объёма (1.6) преобразуется к виду  
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
,   (29) 

а выражение (24) после всех упрощений и сокращения правой и левой частей 

на несущественный сомножитель ( )zki−exp  приобретает форму  

( ) ( ) ( ) ydxd
z

rrki
ru

z

ki
zruPu

S



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
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,   (30) 
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которая носит название преобразования или дифракционной формулы 

Френеля4). Функция  

( ) 










 −
−+−=

⊥⊥


z

rrki

z

ki
GzkikiG

2
exp

2

~
exp2

~
2

0




, (31) 

в дифракционной формуле Френеля играет роль функции Грина для 

уравнения, которому удовлетворяет медленно меняющаяся комплексная 

амплитуда ( )zru ,~
0 ⊥




 поля параксиального волнового пучка, называемая 

также лучевой амплитудой. 

 

 
4) Если в формуле (30) поле ( )0

0
,~

⊥
ru


 пучка заменить на поле плоской волны ( )0~
0

u , 

то каждый одномерный интеграл преобразуется в две хорошо изученные и 

табулированные функции ( ) ( ) ( ) ( ) tdtitzSizC
z

 +=+
0

22 sincos2  , 

называемые интегралами Френеля. В оптике преобразование и интегралы Френеля 

используются для расчёта освещённости за экраном (в области света и полутени) в 

случаях, когда поле наблюдается под малыми углами к направлению облучения.  
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§3. Дифференциальный метод квазиоптического описания 

распространения коротковолновых полей 

 

3.1. Параболическое (диффузионное) уравнение для лучевой 

амплитуды параксиального волнового пучка в однородной среде 

 

Дифференциальный подход оказывается очень полезным и 

плодотворным для описания распространения параксиального  волнового 

пучка 
( ) ( ) ( ) ( )zkizruruPu −=

⊥
exp,~~~

0


,     (1) 

комплексная амплитуда ( )zru ,~
⊥


0

 поля которого изменяется в поперечном и 

продольном направлениях на масштабах 
⊥

  и 


 , значительно 

превышающих длину волны   и удовлетворяющих соотношению (2.20).  

Подставим (1) в уравнение Гельмгольца (В.3) и после 

дифференцирования по координате z  получим уравнение  
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для амплитуды ( )zru ,~
⊥


0

 параксиального волнового пучка. Оценивая члены 

уравнения (2) по порядку величины 
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найдём, что второй член существенно меньше двух других, которые в 

соответствии с (2.20) имеют примерно одинаковую величину. Это означает, 

что вторым членом можно пренебречь и что изменение поля параксиального 

волнового пучка можно описывать уравнением  

0~

2

~

0

0 =+











⊥

u
k

i

z

u
.     (4) 

Оно имеет характер параболического уравнения. К уравнениям такого типа 

относится уравнение диффузии  
( ) NDtN = ,      (5) 

описывающее расплывание возмущения концентрации N  частиц в плотном 

газе. Однако в отличие от уравнения (5), в котором концентрация N  и 

коэффициент диффузии D  действительные величины, в уравнении (4) 

амплитуда поля ( )zru ,~
⊥


0

 комплексная функция, а коэффициентом 

диффузии является мнимая величина  

( )kiD 2
~

−= .       (6) 

Кроме того, в уравнении (4) вторые производные вычисляются только по 

двум поперечным координатам. Параболическое уравнение (4) с двумерным 

лапласианом и мнимым коэффициентом диффузии называется уравнением 

диффузии комплексной лучевой амплитуды поля.  
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При распространении параксиального волнового пучка (1) медленно 

меняющаяся комплексная амплитуда поля ( )zru ,~
⊥


0

, удовлетворяющая 

уравнению (4), изменяется так (Рис. 44), как будто происходит диффузия 

амплитуды в направлении, перпендикулярном оси OZ. Локализованное 

распределение поля диффундирует в область, где его не было. Причем 

наряду с диффузией абсолютной величины амплитуды наблюдается 

диффузия фазы: по мере расплывания пучка происходит искривление его 

фазового фронта. На Рис. 44 

сплошными линиями изображено 

сечение плоскостью, содержащей 

ось OZ,  поверхности, на которой 

интенсивность поля пучка в 

определённое число раз меньше 

интенсивности поля на оси. 

Пунктирными линиями указаны 

сечения волновых фронтов.  

Решение параболического 

уравнения (4) заключается в 

определении комплексной 

амплитуды поля ( )zru ,~
⊥


0

 в 

произвольном сечении constz =  по заданному значению ( )0
0

,~
⊥
ru


 в 

плоскости 0=z . Непосредственной подстановкой можно убедиться, что 

(2.30) является решением уравнения  диффузии комплексной лучевой 

амплитуды поля (4). Это означает, что функция 
0

G
~

, представленная 

выражением (2.31), является функцией Грина уравнения (4).  

Поскольку решение уравнение (4) эквивалентно интегральному 

преобразованию Френеля (2.30), то оба подхода к описанию закономерностей 

распространения пучков в однородных средах, приводящие к одинаковым 

результатам, не имеют преимущества друг перед другом. Поле можно 

определить как из интегрального преобразования (2.30), так и с помощью 

дифференциального уравнения (4). Однако в иных случаях и, в частности, в 

плоскослоистой неоднородной среде, где интегральный подход совершенно 

не развит, целесообразно искать поле ( )zru ,~
⊥


0

, решая дифференциальное 

уравнение так называемым  методом прямых. Задавая поле в сечении 0=z  

и делая шаг на z , можно с помощью нескольких малых шагов определить 

поле в новом сечении.  

 

3.2. Соотношения между компонентами векторной комплексной  

амплитуды параксиального волнового пучка  

 

Будем считать, что поле волнового параксиального пучка 

электромагнитного излучения в области, заполненной  однородной 

изотропной средой, может быть представлено в виде  

z 

Рис. 44 

( )zru ,~
⊥


0

 

( )zru ,~arg
⊥


0
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( ) ( ) ( )zkizrErE −=
⊥

exp,
~~

0


,     (7) 

где по аналогии с (1) векторная комплексная амплитуда ( )zrE ,
~

0 ⊥


, 

имеющая (в общем случае) три ортогонально поляризованных компонента, 

мало изменяется в поперечном и продольном направлениях на длине волны 

 . Рассмотрим область свободного пространства, где поле (7) не имеет 

сторонних источников и, следовательно, удовлетворяет уравнению  

( ) 0
~

div =rE


.      (8) 

Используем уравнение (8) для определения связи продольных и 

поперечных составляющих электрического поля. Подставляя в (8) выражение 

(7), после простых математических операций получим связь  

0

0

0

~
~

~
div

z

z
Eki

z

E
E =




+

⊥⊥


      (9) 

поперечных и продольных компонентов поляризации поля в параксиальном  

пучке. Поскольку производная от продольной составляющей поля 0

~
zE по 

продольной координате мала по сравнению с правой частью (9), то этим 

членом в левой части можно пренебречь. В результате, соотношение 

продольного и поперечных компонентов поля в волновом параксиальном 

пучке электромагнитного излучения получается в виде 

00

~
div

1~
⊥⊥

 E
ki

E
z


.       (10) 

Согласно (10) абсолютная величина продольной составляющей поля 

параксиального пучка оказывается малой по сравнению с абсолютными 

величинами поперечных компонентов:  

( ) 11~
~~

00









⊥⊥ fdz
kEE 


.      (11) 

Таким образом, поперечные компоненты векторной комплексной лучевой 

амплитуды параксиального волнового пучка электромагнитного поля 

определяются из решения  

( ) ( )























 −
−=

⊥⊥

⊥⊥⊥⊥  ydxd
z

rrki
rE

z

ki
zrE

S 2
exp0,

~

2
,

~
2

00

0





   (12) 

параболического уравнения  

0
~

2

~

0

0 =+

















⊥⊥

⊥ E
k

i

z

E 


,    (13) 

для двухкомпонентной векторной величины 
0

~
⊥

E


, а продольная составляющая 

0

~
zE  находится из соотношения (10).  
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3.3. Критерии применимости квазиоптического описания  

 

Условия применимости квазиоптического описания определяются в 

результате сопоставления свойств решений параболического уравнения (4) и 

уравнения Гельмгольца (В.3). 

Необходимые для сопоставления 

свойства в полной мере содержат 

функции Грина этих уравнений 

для безграничного однородного 

пространства, которые 

представляют собой поле 

точечного источника, 

расположенного в начале 

координат.  

1) Сравним свойства 

функции Грина (1.6) уравнения 

Гельмгольца и её параксиального 

приближения (2.29), которое с 

точностью до несущественного сомножителя ( )zki−exp  совпадает с 

функцией Грина параболического уравнения (4) для комплексной лучевой 

амплитуды волнового пучка.   

Поверхности равных амплитуд 

функций (1.6) и (2.29), являющиеся 

соответственно сферой радиуса 

LR =  и плоскостью Lz = , имеют 

общую точку касания (Рис. 45). Как 

видно из рисунка, амплитуды решений 

двух уравнений совпадают в 

параксиальном приближении в 

пределах малого угла 1 .  

Поверхностью постоянной 

фазы функции Грина (1.6), созда-

ваемой находящимся в начале коор-

динат источником, является сфера 

радиуса LR = , изображённая на Рис. 

46 сплошной линией. Уравнение поверхности постоянной фазы 

параксиального приближения (2.29) функции Грина (1.6) имеет вид  

( )  Lconstzrz =−+
⊥

20
2

,     (14) 

где постоянная в правой части определена из условия, что по направлению 
0=

⊥
r


 изменение фаз обеих функций Грина одинаково. Смещая начало 

координат по оси z  на ( )2L  и вводя ( )2Lzz −= , преобразуем (14) 

к виду поверхности элипсоида вращения 

z 

θ 

Рис. 46 

x 

z 

x 

θ 

L 

Рис. 45 
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( )
( )
( )

1
42 2

2

2

2

=


+⊥

L

z

L

r
.      (15) 

сечение этой поверхности плоскостью 0=y  изображено на Рис. 46 пунк-

тирной линией. Как следует из рисунка, фазовые фронты решений двух 

уравнений совпадают в параксиальном приближении 1 .  

 

3.3.1. Изочастотные поверхности дисперсионных уравнений  

 

Дисперсионным уравнением называется соотношение, которое 

устанавливает связь волнового числа с частотой (происходящего в среде) 

волнового процесса, описываемого линейным дифференциальным 

уравнением. Дисперсионное уравнение получается как условие 

существования монохроматического решения линейного однородного 

дифференциального уравнения (описывающего волновой процесс) в 

виде однородной плоской волны  

    ( ) zkirkitiUEuE
z

−−=
⊥⊥


exp

~
,

~~,
~

00
     (16) 

и, следовательно, как возможность представления комплексной 

амплитуды волнового параксиального пучка в виде суперпозиции 

плоских волн  

( ) ( ) ( )  


−

⊥⊥⊥⊥⊥
+−−= kdzkizkirkikUzru

z


exp

~
,~

00
. (17) 

Дисперсионное соотношение, связывающее волновое число и частоту, 

является свойством дифференциального уравнения. Оно отражает 

свойства среды и используемых приближений для описания протекающего в 

ней волнового процесса. Дисперсионное уравнение для однородной 

изотропной среды, получающееся из уравнения Гельмгольца (В.3) при 

подстановке в него (16), имеет вид  

( )2222 v
fz

kkk =+
⊥

.        (18) 

Изочастотной поверхностью этого уравнения является сфера1) радиуса k , 

проекцией которой на плоскость служит окружность радиуса k , изображен-

ная на Рис. 47 сплошной линией.  

В квазиоптическом приближении амплитуда ( )zru ,~
⊥


0

 поля 

параксиального пучка удовлетворяет параболическому уравнению (4). 

Дисперсионное уравнение с помощью подстановки (17) в (4) находится в 

виде  

( ) kkkk
z

=+
⊥

22 .        (19) 

Оно может быть получено также из (18) как  

( ) 2222 21 kkkkkk
z ⊥⊥

−−= .     (19′) 

 

1)  В анизотропной среде дисперсионное уравнение зависит от направления  
⊥

k


.  
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Соответствующая уравнению (19) изочастотная поверхность является 

параболой (Рис. 47), имеющей со сферой точку касания второго порядка2). Из 

рисунка видно, что 

квазиоптическое 

приближение справедливо в 

пределах 

 ( ) 1=
⊥

kk    (20) 

малого угла около направления 

распространения (оси z), внутри 

которого изочастотные 

поверхности, соответствующие 

двум описаниям, не сильно 

расходятся. Таким образом, 

соответствие двух результатов 

имеет место в пределах так 

называемого параксиального (или малоуглового) приближения (1.5.55), 

(1.5.56).  

Основной вывод из сопоставлений свойств решений уравнения 

Гельмгольца и параболического уравнения заключается в том, что оба 

решения практически совпадают и потому применимы для описания 

распространения параксиальных волновых пучков.  

 

§ 4. Спектральный метод описания распространения параксиальных 

волновых пучков 

 

Воспользуемся преобразованием Фурье и представим поле 

параксиального волнового пучка (3.1) в виде суперпозиции плоских волн  

( ) ( ) ( ) ( ) ( )  


−

⊥⊥⊥
−=−= kdrkikUzkizruru


exp

~
exp,~~

00
,    (1)  

в которой ( )
⊥

kU


0

~
 является амплитудой парциальной плоской волны. Далее 

преобразуем Фурье-представление (1) в выражение  

( ) ( ) ( ) ( )   


−

⊥⊥⊥⊥⊥
−+−= kdzkkrkikUzru

z


exp

~
,~

00
,  (2) 

позволяющее по спектру ( )
⊥

kU


0

~
 найти комплексную лучевую амплитуду 

параксиального волнового пучка ( )zru ,~
0 ⊥


.  

При вычислении интеграла (2) следует учесть, что параксиальный 

волновой пучок в соответствии с (1.5.55) имеет узкий угловой спектр  

  ( ) 1
⊥

kk        (3) 

 
2) Приближенное описание привело к анизотропии пространства, влияние которой 

оказывается не очень существенным в параксиальном приближении (в пределах угла 

1 ).  

⊥
k  

Z
k  

  

Рис. 47 
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и что продольная составляющая )( kk
z
−  вектора )(

0
zkk


− , зависящая от 

2

⊥
k , может быть разложена в ряд по малому параметру ( ) 22


⊥

kk :  

( ) ( ) ( ) ++−−=−−=−
⊥⊥⊥

342222 8211 kkkkkkkkkk
z

  .    (4) 

Для оценки вкладов членов разложения (4) в интеграл (2) используем в 

соответствии с (2.12) связь ( )ak 1
⊥


 ширины углового спектра 

⊥⊥
 kk


 с шириной пучка a  и подставим в качестве координаты z  

точки наблюдения P  согласно (2.21) расстояние ( )nlL
fdn

2= . В этом 

случае учёт первого члена разложения (4) вносит в фазовый сомножитель 

подынтегрального выражения (2) небольшую поправку порядка  

( ) ( ) ( ) ( )nnllakLkzk
fdfdn

 41422 22 =
⊥

,   (5) 

которую, однако, следует учитывать. Вклад второго члена разложения (4) в 

фазовый сомножитель в интеграле (2) меньше первого в 2−  раз и поэтому 

заведомо удовлетворяет условию  

( ) ( ) ( ) ( )21688 24334  
⊥

nakLkzk
fdn

,  (6) 

которое позволяет им пренебречь. В результате Фурье-представление 

комплексной лучевой амплитуды параксиального волнового пучка (2) 

трансформируется, приобретая удобную для расчётов форму  

( ) ( ) ( ) ( )   


−

⊥⊥⊥⊥⊥⊥
−− kdzkkrkikUzru


2exp

~
,~ 2

00
. (7) 

Будем считать, что поле (1) образуется в результате дифракции на 

отверстии 
0

S  в экране (Рис. 43), находящемся в плоскости 0=z , поля, 

которое создаётся расположенными в области 1 источниками, и что 

распределение этого поля ( )0
0

,~
⊥

ru


 по поверхности отверстия 

0
S известно. Тогда спектральная плотность комплексной амплитуды 

( )
⊥

kU


0

~
 определится как Фурье-образ граничного значения поля ( )0

0
,~

⊥
ru


 

в плоскости отверстия 
0

S  в экране  

( )
( )

( ) ( )  +=
⊥⊥⊥⊥

0

020
exp0,~

2

1~

S

ydxdrkirukU



.  (8) 

Подставим (8) в (7) и проинтегрируем по переменным 
yx

kk , . В результате 

вычисления определённых (табличных) интегралов типа (2.10) получим 

дифракционную формулу Френеля (2.30). Таким образом, использование 

спектрального преобразования (7) для определения комплексной лучевой 

амплитуды поля ( )zru ,~
⊥


0

 по его известному спектральному составу 

( )
⊥

kU


0

~
 эквивалентно параксиальному приближению в рассмотренных 

ранее интегральных уравнениях (т.е. приводит к дифракционной формуле 

Френеля).  
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§ 5. Аналогия лучевого и волнового описаний  

распространения коротковолновых полей 
 

Матрицы, с помощью которых описываются преобразования 

координат лучей в го, имеют свои аналоги в квазиоптической теории 

распространения параксиальных волновых пучков (полей) в виде операторов 

преобразования лучевой амплитуды поля на элементах транспортной линии 

передачи коротковолнового излучения. Установим соответствие между 

преобразованиями поля параксиального волнового пучка и 

преобразованиями координат луча на участке свободного пространства и в 

тонкой линзе. Эти преобразования в го имеют прозрачный физический 

смысл, и соответствующие им матрицы-операторы перемещения ( )nL
Ĝ  и 

преобразования координат луча тонкой линзой ( )Fn
T̂  являются 

основными операторами-матрицами преобразования координат луча в 

однородной среде.  

 

5.1. Оператор преобразования амплитуды поля параксиального 

волнового пучка в свободном пространстве 

 

Из содержания §1 и §2 следует, что заданное на некоторой поверхности 

поле эквивалентно вторичным источникам, излучающим в свободном 

пространстве. В частности, согласно §2 вторичные источники в виде 

заданного на плоскости 0=z  поля ( )0
0

,~
⊥
ru


, создают в области 2 поле 

( )zru ,~
⊥


0

, которое рассчитывается с помощью дифракционной формулы 

Френеля (2.30). Этот метод расчёта полностью применим к 

недиафрагмированному случаю, когда поверхность отверстия 
0

S  является 

неограниченно большой и интеграл в (2.30) берётся в бесконечных пределах. 

Фактически к недиафрагмированному случаю сводится расчёт поля 

волнового пучка в свободном пространстве по его известному значению в 

некоторой плоскости 0=z . Это значит, что дифракционная формула 

(интегральное  преобразование) Френеля для расчёта распространяющегося в 

свободном пространстве поля фактически играет роль оператора 

преобразования поля параксиального пучка на участке однородной среды 

в квазиоптическом приближении теории распространения 

коротковолнового излучения. Поэтому для сокращения записи такого 

интегрального квазиоптического оператора преобразования поля 

целесообразно ввести обозначение  

( ) ( ) ( ) ( )0,~ˆ
2

exp0,~

2
,~

0

2

00 ⊥⊥

⊥⊥

+

−

⊥⊥

























 −
−=   ruGrd

z

rrki
ru

z

ki
zru

kz







,   (1) 
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которое коррелирует с обозначением матричного оператора 





 nz

Ĝ  

преобразования координат луча в го, называемого матрицей перемещения 

(1.6.9).  

 

5.2. Преобразование поля волнового пучка тонкой линзой 

 

Матрица преобразования координат луча тонкой линзой (1.6.27) 

трансформирует пучок параллельных лучей таким образом, что они сходятся 

за линзой (в её фокальной плоскости на расстоянии F  от линзы) в одну 

точку, называемую фокусом (Рис. 48).  

Плоская волна преобразуется 

линзой в сферическую, сходящуюся на 

расстоянии F  за линзой. 

Следовательно, на линзе возникает 

пространственное запаздывание 

центра волнового фронта по отношению к точкам на периферии (Рис. 49). 

Пространственное запаздывание центрального луча по отношению к 

периферийному лучу обусловлено тем, что он преодолевает слой оптически 

более плотной среды. В результате возникает так называемая разность хода 

  двух сопоставляемых лучей в направлении оси системы. Для плоской 

волны (из пространственного спектра параксиального пучка) и конкретной 

линзы, фокусное расстояние которой велико по сравнению с её поперечным 

размером или шири    ной пучка ( ( ) 1 Fa ), разность хода лучей   

в центральной и периферийной (на расстоянии 
⊥⊥

 rr


от оси) лучевых 

трубках равна  

( ) 
F

r
FrFrFF

2
11

2

2222 ⊥

⊥⊥
−−=−−= .   (2) 

Это означает, что на выходе линзы фаза поля в периферийной лучевой трубке 

отличается от фазы поля в центральной лучевой трубке на величину  

 

( ) ( ) ( )  ( ) ( )Frknсr
вых

zr
вых

zс 20,, 2

⊥⊥⊥ −−==− 


,  (3) 

Рис. 48 

F  

Рис. 49 

F
 

O
 


 


 

r⊥
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где ( )
⊥

rz ,Ψ  – эйконал, ( ) nck =  – волновое число и n  – коэффициент 

преломления среды. Считая линзу бесконечно тонкой 0==− zzz
вхвых

 и 

полагая zzz
вхвых
== , получим, что комплексные амплитуды поля на 

выходе ( )
⊥⊥

= rrzu
вых


,~

0
 и на входе ( )

⊥
rzu

вх


,~

0
 линзы связаны 

очевидным соотношением  

( ) ( ) ( ) Frkirzzurzzu
вхвых

2exp,~,~ 2

00 ⊥⊥⊥
+=


.   (4) 

Таким образом, тонкая линза работает как бесконечно тонкий 

квадратичный корректор фазы поля параксиального волнового пучка.  

Для сравнения из выражения (4), которое устанавливает связь фаз волн 

на входе и выходе линзы в волновом описании, нетрудно получить связь  

( ) ( ) ( )Frnzrzr
вхвых

2,, 2

⊥⊥⊥
−=


    (5) 

значений эйконала, а также связь значений компонент лучевого вектора  

( ) ( ) ( ) ( )
⊥⊥⊥⊥⊥⊥

−−=


rFnsnFrnsn
вхвых


      (6) 

на границах этого бесконечно тонкого квадратичного корректора фазы 

поля плоской волны. Это соотношение точно соответствует преобразованию 

угловых координат луча, которое можно получить с помощью матрицы 

тонкой линзы (1.6.27). Соотношение  

⊥⊥
= rr


,       (7) 

являющееся следствием второй строки матрицы (1.6.27), означает, что лучи 

входят и выходят из одной и той же точки (из одного сечения z ) тонкой 

линзы. В волновом описании это означает равенство амплитуд поля слева и 

справа от линзы.  

Таким образом, действие тонкой линзы (как корректора фазы) на 

проходящее через неё излучение адекватно описывается преобразованием, 

которое заключается в умножении амплитуды поля на фазовый множитель  

  ( )FrkiT
Fk

2expˆ 2

⊥







= ,     (8) 

соответствующий согласно (4) – (7) матричному преобразованию (1.6.27) го и 

потому имеющий смысл оператора преобразования поля параксиального 

волнового пучка тонкой линзой (бесконечно тонким квадратичным 

корректором фазы). С помощью (8) связь полей (4) на входе и выходе 

тонкой линзы можно представить в более общей (удобной и компактной) 

форме  

( )
вхFkвхвых

uТFrkiuu ~ˆ2exp~~ 2






⊥

= .       (9) 

 

5.3. Операторы обратного преобразования поля параксиального  

пучка в свободном пространстве и тонкой линзой 

 

Операторы преобразования поля волнового пучка 
kz

Ĝ  и ( )Fk
T̂  

согласно их определениям (1) и (9) обладают свойством аддитивности  
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kzzkzkz
GGG






 +

=
2121

ˆˆˆ  (10)G ;  
2121

ˆˆˆ
FkFkFkFk

TTT
+

=  (10)F.  

Первое доказывается с помощью интеграла (2.10). Второе практически 

очевидно. Опираясь на свойство аддитивности, находим, что в случаях  

   
12

zz −= ;    
12

FF −=        (11) 

два последовательных преобразования (10) оставляют поле неизменным:  

1ˆˆˆ
1111

==





 −− kzzkzkz

GGG ;  1ˆˆˆ
1111

==















 −− FkFkFkFk
TTT .  (12) 

Это означает, что каждое подобное второе преобразование, удовлетворяющее 

условию (11), по существу является обратным по отношению к первому (в 

силу определения обратного преобразования). Отсюда находим, что 

операторы обратного преобразования поля параксиального пучка 1−

kz
Ĝ  и 

( )
1−

Fk
T̂  связаны с соответствующими операторами прямого преобразования 

в свободном пространстве 
kz

Ĝ  и тонкой линзой ( )Fk
T̂  простыми 

соотношениями  

 1−

kz
Ĝ =

kz
G

−
ˆ ;  ( )

1−

Fk
T̂ = ( ) ( )


− FkFk

TT ˆˆ . (13) 

 

5.4. Оператор Фурье-преобразования поля 

 

Согласно соотношению (1.6.35) матрицу перемещения 
a

Ĝ  можно 

представить в виде произведения трех матриц-операторов преобразования 

координат луча. Используя определения (1) и (8) волновых аналогов матриц 

перемещения 
a

Ĝ  и преобразования тонкой линзой ( )Fk
T̂ , а также 

определение (13) оператора обратного преобразования ( )
1−

Fk
T̂ , получим из 

(1) прямое Фурье-преобразование поля в свободном пространстве в виде  

( ) ( ) ( )  ( )⊥









−

⊥⊥⊥⊥⊥
+=   ru

kz
rdzrrkiru

z

ki
zkru


000

~ˆ/exp~

2
/~


.   (14) 

Таким образом, матрице Фурье (1.6.33), которая осуществляет 

преобразование пространственных координат луча в плоскости О  в его 

угловые координаты в плоскости О , соответствует интегральное 

преобразование Фурье (14), которое комплексную лучевую амплитуду поля в 

плоскости 0=z  трансформирует в пространственный спектр 

параксиального волнового пучка.  

 

§ 6. Распространение параксиальных волновых пучков гауссовой формы 

в однородном свободном пространстве 
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Однородное свободное пространство является типичным примером 

недиафрагмированной системы. Для описания распространения в нём 

параксиальных волновых пучков применимы операторы (5.1) и (5.8).  

Рассмотрим распространение в однородном свободном пространстве 

параксиального волнового пучка гауссовой формы, поле которого в 

плоскости 0=z  имеет сферический волновой фронт. Для определённости 

можем считать, что рассматривается поле волнового пучка (2.8) с плоским 

фазовым фронтом после прохождения тонкой линзы (Рис. 50), имеющей 

фокусное расстояние 
0

RF = . Тогда комплексная амплитуда поля этого 

параксиального волнового пучка в плоскости 0=z  в соответствии с (5.8) 

будет иметь амплитуду гауссовой формы и сферический волновой фронт:  

( ) ( ) ( ) ( )
0

22

0

2

00
0

0
2exp2exp

~
0,~ˆ0,~ RrkiarUruTru

Rk ⊥⊥⊥





⊥

−=


.     (1) 

Воспользуемся интегральным квазиоптическим оператором 

преобразования поля параксиального волнового пучка 
kz

Ĝ , подставив в 

недиафрагмированное преобразование Френеля (5.1) правую часть формулы 

(1). Используя определённый интеграл (2.10), получим в произвольной точке 

области 2 комплексную лучевую амплитуду поля в форме гауссова пучка  

( ) =























 −
−







 
+


−=

⊥

⊥⊥


−

⊥⊥

⊥   rd
z

rrki

R

rk
i

a

r
U

z

ki
zru






2
exp

22
exp

~

2
,~

2

0

2

2

0

2

00


 

( ) ( ) ( ) ( ) 













 −

−−
= ⊥⊥

zR

rk
i

za

r

akziRz

U

2
exp

2
exp

1

~ 2

2

2

2

00

0 ,   (2) 

имеющего в плоскости 0= constz  поперечный размер  

( ) ( )  ( ) 22

0

2

0

2

0

2 1 akzRzaza +−=     (3) 

и кривизну сферического волнового фронта  

( )
( ) ( ) 
( )  ( ) ( )

( ) 








−+−








+−

−−
=

02

2

0

22

0

2

0

4

0

2

00

0

11
1

1

111
Rz

za

a

zakzRz

akRzRz

RzR
.  (4) 

Рис. 50 

z 

 

a
 

a  

z = 0 

θ 
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Таким образом, гауссов пучок при распространении в свободном 

пространстве сохраняет пространственную структуру своего поля.  

Помимо ширины ( )za  и радиуса кривизны волнового фронта ( )zR  

важной характеристикой является интенсивность ( )zI ,0  поля гауссова 

пучка на оси системы ( 02 =
⊥

r ). Эта характеристика изменяется по закону 

( ) ( )  ( ) zaaIzI 22

0
0,0,0 = .         (5) 

Исследуем зависимости этих характеристик от параметров поля пучка 

в плоскости 0=z  и от расстояния z .  

 

 

6.1. Гауссов пучок с плоским фазовым фронтом 

 

1) В этом важном частном случае =
0

R  поверхность волнового 

фронта распространяющегося поля 

согласно (4) является выпуклой на всей 

трассе 0z . Исключением является 

плоскость 0=z , где радиус кривизны 

волнового фронта ( ) =
0

0 RR  По 

мере увеличения расстояния z  

абсолютная величина радиуса кривизны 
( )zR  уменьшается (Рис. 51)  и 

достигает своего минимального 

значения  в плоскости  

fd
lakzz == 2

0min
,    (6) 

находящейся на расстоянии 

дифракционной длины от плоскости 

0=z . Минимальное абсолютное значение радиуса кривизны волнового 

фронта равно удвоенной дифракционной длине:  

( )
fd

lzRR 2
minmin =− .       (7) 

В области 
min

zz   абсолютное значение радиуса кривизны волнового 

фронта монотонно увеличивается (Рис. 51), и асимптотически при →z  

радиус кривизны волнового фронта параксиального гауссова пучка, 

оставаясь отрицательным, растёт как продольная пространственная 

координата:  

zmin 

( )R z−  

Рис. 51 

2 ld f 

z 
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( ) zzR
z

−=
→

lim .      (8) 

2) Площадь поперечного сечения пучка (Рис. 52) изменяется по 

гиперболическому закону  

( )  ( )22

0

2 1
fd

lzaza += .     (9) 

На расстоянии дифракционной длины пучка 
fd

lak 2

0
 от плоскости 0=z  

площадь поперечного сечения пучка увеличивается вдвое (а не в четыре раза, 

как получилось бы в приближении го). В области 
fd

lakz = 2

0
 ширина 

пучка согласно (9) растёт практически по линейному закону  

( ) ( ) ( )
0

2

00
akzakzaza = .    (10) 

3) Угловая ширина диаграммы направленности излучения вторичных 

источников, находящихся в плоскости 0=z , или угол расходимости поля 

гауссова пучка на уровне 1−e  по интенсивности определяется как  

( )  ( ) ( )
fd

aakzza
z

 =
→

00
21lim   (11) 

и совпадает с определением (2.18) угловой дифракционной расходимости.  

4) Интенсивность поля на оси пучка согласно (5) и (3) изменяется 

обратно пропорционально изменению площади поперечного сечения пучка. 

Поэтому на расстоянии дифракционной длины пучка 
fd

lak 2

0
 от 

плоскости 0=z  уменьшается в два раза (а не в четыре раза, как в 

приближении го). Учитывая характер изменения радиуса кривизны 

волнового фронта и ширины пучка, можно сделать вывод, что 

дифракционные явления достаточно заметно сказываются в пределах 

дифракционной длины пучка 
fd

lak 2

0
. 

 

6.2. Сфокусированный гауссов пучок 

Рис. 52 
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1) Характер изменения ширины пучка (3) (как функции координаты z  

точки наблюдения) зависит от знака радиуса кривизны волнового фронта в 

плоскости 0=z . Если в плоскости 0=z  волновой фронт пучка вогнутый 

( 0
0
R ), то вначале 

ext
zz 0  ширина пучка будет уменьшаться (см. 

Рис. 52) и достигнет наименьшей величины в плоскости   

( )   ( ) 2

0

22

000
11 ++= RakRRz

ext
.    (12) 

Как видно из формулы (12), расстояние 
ext

zz =  до плоскости наибольшей 

фокусировки поля с точностью до поправки  

( ) 22

00

2 akR= ,      (13) 

обусловленной дифракцией на конечной апертуре пучка, совпадает с 

расстоянием 
0

Rz =  до фокальной плоскости, в осевую точку которой (в 

фокус) сфокусировались бы лучи, образованные (в приближении го) 

эйконалом, т.е. волновым фронтом начального распределения поля.  

В плоскости 
ext

zz =  пучок будет иметь наименьший размер  

( ) ( )
( ) 









+










+
=

2

2

2

022

00

22

002

0

2

11 


a

akR

akR
aza

ext
,    (14) 

и согласно (14) минимальная ширина пучка в значительной мере 

определяется величиной отношения   радиуса кривизны волнового фронта 

0
R  в плоскости 0=z  к дифракционной длине 

fd
lak 2

0
. Если это 

отношение мало, то пучок фокусируется до предельно малого размера   

( ) ( ) ( ) ( ) 2

00

2

0

22

00

2

0

2 2 aRRakRaza
fdext

  .   (15) 

Асимптотически в области 
0

Rz   ширина сфокусированного пучка (3) 

растёт пропорционально расстоянию  

( ) ( ) ( )2

0

2

00
1 akRazza + .   (16) 

2) Согласно определению (11) и формуле (16) угловая расходимость 

сфокусированного пучка (Рис. 52)  

( )  ( ) 22

00lim fd
Razza

z

 +=
→

     (17) 

оказывается больше угловой дифракционной расходимости (11) пучка, 

который имеет такую же ширину 
0

a  и плоский фазовый фронт. 

Дополнительный по сравнению с (11) член в формуле (17) появляется из-за 

наличия фокусировки. Связанную с ним расходимость  

( )
00

Ra
гo
=          (18) 

можно назвать геометрооптической, поскольку она определяется 

исключительно геометрическими параметрами поля волнового пучка. Таким 

образом, фокусировка всегда приводит к увеличению расходимости, и 

полная расходимость гауссова пучка определяется по теореме Пифагора 

(17). 
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3) Кривизна волнового фронта изменяется с ростом z  как 

( )
( )
( )2

0

22

2

0
11

zRz

zR

zR −+

+−
=




     (19) 

и в случае сфокусированного пучка ( 0
0
R ) в плоскости 

ext
zz =  

оказывается равной нулю (соответствующая поверхность волнового фронта 

оказывается плоскостью). Из (19) видно, что в случае 0
0
R  радиус 

кривизны ( )zR  остаётся положительным (волновой фронт вогнутым) до 

ext
zz = . В области  

ext
zz   знак кривизны сферической поверхности 

волнового фронта становится отрицательным (поверхность становится 

выпуклой). В пределе при →z  радиус кривизны волнового фронта 

параксиального пучка (2) изменяется по закону (8) вне зависимости от его 

начальной величины.  

4) Согласно (5) интенсивность на оси пучка изменяется обратно 

пропорционально площади поперечного сечения пучка (3) и в плоскости 

наибольшей фокусировки поля 
ext

zz =  увеличивается в  

( ) ( )  ( )21000 −+= ,, IzI
ext

   (20) 

раз по сравнению с её начальной величиной. При сильной фокусировке 

относительно широкого пучка отношение (20) возрастает до величины 

( )2
0

Rl
fd

. 

 

6.3. Дефокусированный гауссов пучок 

 

Характеристики гауссова пучка (см. Рис. 52), который прошёл через 

дефокусирующую линзу с фокусным расстоянием 0
0
= RF  и в плоскости 

0=z  имеет выпуклый фазовый фронт, в области 0z  изменяются 

следующим образом.  

1) Ширина пучка ( )za  в соответствии с (3) монотонно растёт.  

2) Интенсивность поля на оси согласно (5) монотонно уменьшается.  

3) Угловая расходимость дефокусированного пучка совпадает с 

угловой расходимостью (17) сфокусированного пучка. Таким образом, 

дефокусировка приводит к увеличению расходимости так же, как 

фокусировка.  

4) Знак кривизны поверхности волнового фронта дефокусированного 

гауссова пучка (на всех расстояниях z ) согласно (19) не меняется.  

 

§ 7. Волновые пучки в недиафрагмированных открытых 

цилиндрических линиях передачи  
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Открытыми цилиндрическими линиями передачи будем называть 

периодические центрированные линии передачи силовых полей. 

Типичными примерами таких 

линий передачи являются 

линзовые линии передачи 

оптического излучения, 

изображённые на рисунках 53 и 54.  

Поскольку физические 

размеры зеркал конечны, то 

недиафрагмированными будем 

считать только такие линии 

передачи, в которых поперечный 

размер линзы настолько 

превышает ширину параксиального волнового пучка силового поля (в 10 или 

более раз), что дифракционные потери на краях апертуры линзы можно 

считать несущественными.  

Открытые линии передачи 

обладают основным свойством 

всех линий передачи 

цилиндрического типа: в них 

существуют собственные (или 

нормальные) типы волн (моды), 

у которых поперечная структура 

поля определённым образом 

связана с параметрами линзовой 

линии. В отличие от волноводов, полосковых или коаксиальных линий, в 

которых поперечная структура поля моды фиксирована по всей длине линии, 

модами открытых линий передачи являются пучки, параметры поперечной 

структуры  

Рис. 53 
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Рис. 54 
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