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1 Теоретическая часть

1.1 Цель работы

Целью работы является изучение свойств линейных дискретных систем со многими сте-

пенями свободы на примере низкочастотного, высокочастотного фильтров, а также поло-

сового фильтра.

1.2 Уравнения многозвенного электрического фильтра

Система, состоящая из цепочки идентичных звеньев, будучи системой с пространственной

дисперсией, обладает селективными свойствами в определенной области частот. В зависи-

мости от того, какова область частот, в которой колебания пропускаются практически без

искажений, фильтры подразделяются на фильтры низких и высоких частот, полосовые и

задерживающие фильтры.

Четырехполюсники, образующие звенья рассматриваемых в работе электрических филь-

тров, состоят из пассивных элементов: индуктивностей, ёмкостей и сопротивлений. Для

большей методической простоты мы будем изучать только консервативные фильтры, со-

стоящие из чисто реактивных элементов – индуктивностей и ёмкостей, так называемые

LC - фильтры. Общая схема фильтра приведена на рис. 2.1, где введены следующие обо-

значения: 𝑍(𝑝) – операторный импеданс, 𝐺(𝑝) – операторная проводимость, 𝑍(𝑝) и 𝑍(𝑝)

– операторные импедансы на входе и выходе фильтра, соответственно, 𝑝 = 𝑖𝜔 , где 𝜔 –

частота коле-баний. При расчетах фильтры могут быть разбиты на так называемые Г -

образные, Т - образные и П -образные звенья. Заметим, что такое деление чисто условное

и не влияет на коэффициент передачи рассчитываемого фильтра.

Рис. 2.1

Рассмотрим для примера фильтр, разбитый на Т-образные звенья (см. рис. 2.2), и

запишем для него операторные уравнения казистатики.
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Рис. 2.2

При этом на основании законов Кирхгофа для комплексных амплитуд напряжений 𝑉𝑛

и токов 𝐼𝑛, где n – номер звена, будем иметь:

𝑉𝑛 − 𝑢0 =
𝑍

2
𝐼𝑛,

𝑢0 − 𝑉𝑛+1 =
𝑍

2
𝐼𝑛+1, (2.1)

𝐺𝑢0 = 𝐼𝑛 − 𝐼𝑛+1

Исключая из этих уравнений 𝑢0 и разрешая их относительно переменных 𝑉𝑛+1 и 𝐼𝑛+1,

получим:

𝑉𝑛+1 = 𝑎11(𝑝)𝑉𝑛 − 𝑎12(𝑝)𝐼𝑛, (2.2)

𝐼𝑛+1 = −𝑎21𝑉𝑛 + 𝑎22(𝑝)𝐼𝑛

где

𝑎11 = 1 +
1

2
𝐺𝑍, 𝑎12 = 𝑍(1 +

1

4
𝐺𝑍), (2.3)

𝑎21 = 𝐺, 𝑎22 = 1 +
1

2
𝐺𝑍.

Отметим следующее важное свойство четырёхполюсников. Четырёхполюсники, для

которых выполняются условия

𝑎11 = 𝑎22, 𝑎211 − 𝑎12 · 𝑎21 = 1 (2.4)

называются взаимными. Для них выполняется теорема взаимности, со-гласно которой

свойства четырёхполюсника не изменяются, если его вход и выход поменять местами.

Нетрудно видеть, что Т -образное звено представляет собой взаимный четырёхполюсник.

В случае П -образного разбиения на звенья в уравнениях (2.2) следует положить

𝑎11 = 1 +
1

2
𝐺𝑍, 𝑎12 = 𝑍, (2.5)

𝑎21 = 𝐺(1 +
1

4
𝐺𝑍), 𝑎22 = 1 +

1

2
𝐺𝑍.

Отсюда следует, что П -образное звено также удовлетворяет теореме взаимности.
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Система (2.2) должна быть дополнена граничными условиями

𝑉0 = −𝐼0𝑍0, 𝑉𝑁 = 𝑍𝑁𝐼𝑁 (2.6)

Исследование явлений, описываемых уравнениями (2.2) при условии (2.6), включает в себя

две задачи:

а) описание собственных колебаний;

б) описание вынужденных колебаний.

Прежде чем переходить к решению первой задачи, исследуем собственные колебания

(2.2) в безграничной цепочке, положив 𝑁 → ∞

1.3 Дисперсионное уравнение

Важнейшей особенностью рассматриваемой цепочечной структуры является её периодич-

ность, являющаяся следствием идентичности звеньев и проявляющаяся при𝑁 → ∞ в виде

свойства так называемой трансляционной симметрии. Это свойство равнозначно свой-

ству инвариантно-сти уравнений (2.1) относительно преобразования трансляции (сдвига)

𝑛 ⇒ 𝑛′ вида 𝑛′ = 𝑛 + 𝑚, где 𝑚 – любое целое число. Трансляционная симметрия (2.1) в

сочетании с линейностью этих уравнений позволяет искать их решение в виде

𝑉𝑛 = 𝐴𝑒−𝑖𝑛𝜃, 𝐼𝑛 = 𝐵𝑒−𝑖𝑛𝜃 (3.1)

где 𝑛 = 0,±1,±2, ..., а 𝜃 - некоторая величина, подлежащая определению. Она находится

из условия существования нетривиального решения алгебраической системы:

𝐴(𝑒−𝑖𝜃 − 𝑎11) +𝐵𝑎12 = 0 (3.2)

𝐴𝑎21 +𝐵(𝑒−𝑖𝜃 − 𝑎22) = 0

получаемой подстановкой (3.2), что, с учетом (2.4), даёт

(𝑒−𝑖𝜃 − 𝑎11)
2 − 𝑎211 + 1 = 0 (3.3)

или

𝑐𝑜𝑠𝜃 = 𝑎11 (3.4)

Величина 𝜃, определяемая из (3.4), называется постоянной распространения и прини-

мает в общем случае комплексные значения (𝜃 = 𝜃′ + 𝑖𝜃′′). Мнимая часть 𝜃 представляет

собой декремент (или инкремент) волны, а действительная часть - набег фазы волны на

одно звено. При этом 𝜃′ связана с длиной волны 𝜆 очевидным соотношением

𝜆 = 2𝜋/𝜃′ (3.5)
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в котором

𝜆 = 𝑚𝑖𝑛|𝑛1 − 𝑛2| (3.6)

где 𝑛1 и 𝑛2 номера ячеек, отвечающих синфазным колебаниям. Поскольку параметр 𝑎11

является функцией частоты 𝜔, уравнение (3.4) связывает постоянную распространения

с частотой и называется дисперсионным уравнением системы. Дисперсионное уравнение

исчерпывающе характеризует безграничную систему. В случае, когда отсутствует вре-

менное и пространственное затухание (𝐼𝑚𝜔 = 𝐼𝑚𝜃 = 0), оно позволяет определить фазо-

вую (𝑉ф) и групповую (𝑉гр) скорости волн:

𝑉ф =
𝜔

𝜃
, 𝑉гр =

𝑑𝜔

𝑑𝜃
(3.7)

(−𝜋 ⩽ 𝜃 ⩽ 𝜋)

Дисперсионное уравнение (3.4) описывает два типа волн - прямую (𝜃 = 𝜃+) и обратную

(𝜃 = 𝜃−) волну. При этом для фиксированного 𝜔 значения 𝜃+ и 𝜃− будут отличаться

знаком:

𝜃− = 𝜃+ (3.8)

Подставляя 𝜃+ и 𝜃− в одно из уравнений системы (3.2), можно найти связь между ампли-

тудами напряжения и тока для прямой и обратной волн:

𝐵+ = 𝐺𝑋𝐴
+, 𝐵− = −𝐺𝑋𝐴

− (3.9)

где

𝐺𝑋 =
(︁𝑎21
𝑎12

)︁1/2

(3.10)

- характеристическая проводимость фильтра. Наряду с 𝐺𝑋 , вводят также обратную ей

величину

𝑍𝑋 =
(︁𝑎12
𝑎21

)︁1/2

(3.11)

Как отмечалось в начале раздела 1.1, пространственная дисперсия фильтра (описы-

ваемая (3.4)) обуславливает его селективные свойства. Для характеристики этих свойств

вводят понятие полосы прозрачности, а именно полосы частот, в которой 𝜃′′ = 0 (отсут-

ствует затухание по пе-ременной 𝑛).

Найдём связь ширины полосы прозрачности с параметрами фильтра. С этой целью

заметим, что поскольку

𝑠𝑖𝑛𝜃 = 𝑐ℎ𝜃′′𝑠𝑖𝑛𝜃′ + 𝑖𝑠ℎ𝜃′′𝑐𝑜𝑠𝜃′ (3.12)

то в полосе прозрачности

𝑠𝑖𝑛𝜃 = 𝑠𝑖𝑛𝜃′ (3.13)

Отсюда, в силу (3.3), заключаем, что

1− 𝑎211 ⩾ 0 (3.14)
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или, с учётом (2.3), -

𝐺𝑍(1 +
1

4
𝐺𝑍) ⩽ 0 (3.15)

Из этого условия и находится полоса прозрачности фильтра. Из него, в частности

следует, что в полосе прозрачности фильтра характеристический импеданс (3.11) будет

действительной величиной.

Вне полосы прозрачности 𝑠𝑖𝑛𝜃′ = 0 и, следовательно, 𝑠𝑖𝑛𝜃 = 𝑖𝑠ℎ𝜃′′. С учётом (3.4),

будем иметь

𝑠ℎ𝜃′′ = ±
√︁
𝑎211 − 1 (3.16)

1.4 Собственные колебания

Найдём собственные колебания в цепочке, состоящей из N одинако-вых Т -образных зве-

ньев, описываемой системой уравнений (2.2) при граничных условиях (2.6). Общее ре-

шение такой системы будет пред-ставлять собой суперпозицию прямой и обратной волн

вида

𝑉𝑛 = 𝐴1𝑒
−𝑖𝑛𝜃 + 𝐴2𝑒

𝑖𝑛𝜃 (4.1)

𝐼𝑛 = 𝐵1𝑒
−𝑖𝑛𝜃 +𝐵2𝑒

𝑖𝑛𝜃

Для внутренних звеньев прямая и обратная волны распространяются независимо и для

них, в силу (3.9), общее решение запишется в виде

𝑉𝑛 = 𝐴1𝑒
−𝑖𝑛𝜃 + 𝐴2𝑒

𝑖𝑛𝜃 (4.1)

𝐼𝑛 = 𝐺𝑋(𝐴1𝑒
−𝑖𝑛𝜃 + 𝐴2𝑒

𝑖𝑛𝜃)

Подставляя это решение в граничные условия (2.6), получим следующую однородную

систему уравнений для нахождения амплитуд 𝐴1 и 𝐴2:

(1 + 𝑍0𝐺𝑋)𝐴1 + (1− 𝑍0𝐺𝑋)𝐴2 = 0 (4.3)

(1− 𝑍𝑁𝐺𝑋)𝑒
−𝑖𝑁𝜃𝐴1 + (1 + 𝑍𝑁𝐺𝑋)𝑒

𝑖𝑁𝜃𝐴2 = 0

Отсюда, расписав условие существования ненулевых решений для 𝐴1 и 𝐴2, найдём харак-

теристическое уравнение рассматриваемой системы:

1− Г0Г𝑁𝑒
−2𝑖𝑁𝜃 = 0 (4.4)

где Г0 = 𝐴1

𝐴2
= −1−𝑍0𝐺𝑋

1+𝑍0𝐺𝑋
- коэффициент отражения от левой границы фильтра, а Г𝑁 =

𝐴2𝑒𝑖𝑁𝜃

𝐴1𝑒−𝑖𝑁𝜃 = −1−𝑍𝑁𝐺𝑋

1+𝑍𝑁𝐺𝑋
- коэффициент отражения от правой границы фильтра.

Решая совместно дисперсионное уравнение (3.4) и характеристиче-ское уравнение (4.4),

найдём спектр собственных (нормальных) частот фильтра и соответствующий ему спектр

значений постоянной распространения 𝜃. Очевидно, что этот спектр будет зависеть не

только от параметров звена фильтра, но и от условий на его концах. Отметим также, что

число нормальных частот всегда совпадает с числом степеней свободы системы.
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1.5 Вынужденные колебания

Рассмотрим вынужденные колебания в фильтре, составленном из Т -образных звеньев, при

условии, что на входе фильтра действует источник синусоидальной ЭДС 𝐸 = 𝐸0𝑐𝑜𝑠𝜔𝑡 с

внутренним сопротивлением 𝑟0 (см. рис. 2.4). Решение в такой системе можно искать в виде

синусоидальных колебаний на частоте внешней силы 𝜔. При этом остаются справедливыми

уравнения (2.2), а граничные условия принимают вид:

𝑉0 = 𝐸0 − 𝑟0𝑍0, 𝑉𝑁 = 𝑍𝑁𝐼𝑁 (5.1)

Рис. 2.4

Подставляя (4.2) в (5.1), получим

(1 + 𝑟0𝐺𝑋)𝐴1 + (1− 𝑟0𝐺𝑋)𝐴2 = 𝐸0 (5.2)

(1− 𝑍𝑁𝐺𝑋)𝑒
−𝑖𝑁𝜃𝐴1 + (1 + 𝑍𝑁𝐺𝑋)𝑒

𝑖𝑁𝜃𝐴2 = 0

Отсюда для 𝐴1 и 𝐴2 будем иметь

𝐴1 =
1− Г0

2
· 𝐸0

1− Г0Г𝑁𝑒−2𝑖𝑁𝜃
(5.3)

𝐴2 =
1− Г0

2
· 𝐸0Г𝑁𝑒

−2𝑖𝑁𝜃

1− Г0Г𝑁𝑒−2𝑖𝑁𝜃

Подставляя (5.3) в (4.2) получим следующие выражения для комплексных амплитуд на-

пряжения 𝑉𝑛 и тока 𝐼𝑛 в n-ой ячейке:

𝑉𝑛 =
1− Г0

2
· 𝐸0Г𝑁𝑒

−𝑖𝑛𝜃

1− Г0Г𝑁𝑒−2𝑖𝑁𝜃

[︁
1 + Г𝑁𝑒

−2𝑖(𝑁−𝑛)𝜃
]︁

(5.4)

𝑉𝑛 =
1− Г0

2
· 𝐸0Г𝑁𝑒

−𝑖𝑛𝜃

1− Г0Г𝑁𝑒−2𝑖𝑁𝜃
𝐺𝑋

[︁
1− Г𝑁𝑒

−2𝑖(𝑁−𝑛)𝜃
]︁

Из (5.4) следует, что если частота внешней ЭДС совпадает с одной из собственных

частот фильтра, то амплитуды напряжений и токов во всех звеньях фильтра принимают

бесконечно большие значения (явление резонанса). Очевидно, что это возможно лишь в
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отсутствии затухания, т.е. при условии 𝐼𝑚𝜔𝑚 = 0. В реальных системах всегда существу-

ют потери (𝜔𝑚 = 𝜔′
𝑚+ 𝑖𝜔′′

𝑚) и знаменатель в (5.4) не обращается в ноль. При этом в случае

произвольных потерь картина резонанса достаточно сложна и далека от той, какую мы

имеем в одиночном резонансном контуре. Однако, при 𝜔′′
𝑚/𝜔

′
𝑚 << 1 эта картина суще-

ственно упрощается, и влияние потерь можно описать на привычном языке добротности,

вводя её для каждой моды отношением

𝑄𝑚 = 𝜔′
𝑚/𝜔

′′
𝑚 (5.5)

Таким образом, для системы со многими степенями свободы не имеет смысла говорить

о добротности системы вообще, необходимо оговаривать, о добротности какой моды идёт

речь.

При изучении вынужденных колебаний важную роль играют два семейства статиче-

ских характеристик: семейство амплитудно-частотных характеристик (АЧХ) и семейство

фазо-частотных характеристик (ФЧХ). Эти семейства находятся из выражения для коэф-

фициента передачи, представляющего собой отношение комплексной амплитуды напряже-

ния на выходе фильтра к амплитуде ЭДС на входе, т.е.

𝑊 (𝜔) =
𝑉𝑁(𝜔)

𝐸0(𝜔)
=

(1− Г0)(1 + Г𝑁)𝑒
−𝑖𝑁𝜃

2(1− Г0Г𝑁𝑒−2𝑖𝑁𝜃)
(5.6)

По определению АЧХ - это функция

𝐴(𝜔) = |𝑊 (𝜔)| (5.7)

а ФЧХ - функция

Ф(𝜔) = −𝑎𝑟𝑔𝑊 (𝜔) (5.8)

Очевидно, что вид того и другого семейства характеристик зависиит от условий на концах

фильтра.

Рассмотрим влияние этих условий на 𝐴(𝜔) и Ф(𝜔) в полосе прозрачности фильтра, по-

логая для простоты, что нагрузка фильтра чисто активная (т.е. Г0 и Г𝑁 - действительные

функции). При этом

𝐴(𝜔) =
1− Г0

2
· 1 + Г𝑁√︀

1− Г0Г𝑁𝑐𝑜𝑠2𝑁𝜃 + Г2
0Г

2
𝑁

(5.9)

Из полученного выражения следует, что если фильтр согласован на обоих концах (Г0 =

Г𝑁 = 0), то 𝐴(𝜔) = 1/2, т.е. напряжение источника ЭДС делится поровну между фильтром

и внутренним сопротивлением источника. Если фильтр согласован только на входе (Г0 =

0), или только на выходе (Г𝑁 = 0), то 𝐴(𝜔) = (1+Г𝑁)/2 и 𝐴(𝜔) = (1−Г0)/2, соответственно.

Во всех трёх случаях АЧХ не зависит от числа звеньев фильтра.

9
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Если фильтр согласован хотя бы на одном из своих концов, а нагрузка на другом конце

- чисто активная, то существенно упрощается и Ф(𝜔):

Ф(𝜔) = 𝑁𝜃(𝜔) (5.10)

Т.е. ФЧХ с точностью до множителя 𝑁 сводится к дисперсионной характеристике филь-

тра.

Многозвенные фильтры представляют собой разновидность длинных линий и исполь-

зуются в радиотехнических устройствах в качестве линий задержки. Время запаздывания

сигнала при прохождении его через фильтр легко оценить для случая узкополосного сиг-

нала при условии, что спектр его лежит в полосе прозрачности фильтра и укладывается

в диапазон частот, в котором фазо-частотную характеристику фильтра можно считать

линейной. Спектральную плотность такого сигнала на выходе фильтра для прямой волны

можно записать в виде

𝑢𝑁(𝜂) = 𝐴1(𝜉)𝑒
𝑖[(Ω+𝜂)𝑡−𝑁𝜃(Ω+𝜂)] (5.11)

Учитывая, что |𝜂| ≤ ∆𝜔, где ∆𝜔 - полуширина спектра, и принимая во внимание условие

узкополосности ∆𝜔 << Ω, разложим в этом выражении нелинейную функцию 𝜃(Ω + 𝜂) в

ряд по степеням 𝜂, ограничившись двумя первыми членами:

𝜃(Ω + 𝜂) ≈ 𝜃(Ω) +
𝑑𝜃

𝑑𝜔

⃒⃒⃒
Ω
· 𝜂 (5.12)

При этом выражение (5.11) примет вид

𝑢𝑁(𝜂) ≈ 𝐴1(𝜂)𝑒
𝑖[Ω𝑡−𝑁𝜃(Ω)]𝑒𝑖(𝑡−𝑁 𝑑𝜃

𝑑𝜔
)𝜂 (5.13)

Отсюда следует, что время задержки сигнала при прохождении через 𝑁 -звенный фильтр

равно 𝜏𝑁 = 𝑁 𝑑𝜃
𝑑𝜔

⃒⃒⃒
Ω
. Т.е. групповая скорость 𝑑𝜔/𝑑𝜃 имеет смысл времени запаздывания,

приходящегося на одно звено.
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2 Конкретные виды фильтров

2.1 Фильтр низкой частоты (ФНЧ)

Вид отдельного звена ФНЧ изображен на рис. . ФНЧ служит для пропускания колебаний

низкой частоты от 𝜔 = 0 до 𝜔 = 𝜔ср (частота "среза"). Для ФНЧ

Рис. 3.1

𝑍 = 𝑖𝜔𝐿, 𝐺 = 𝑖𝜔𝐶 (6.1.1)

При этом дисперсионное уравнение имеет вид (см. рис. 3.2)

𝜔2 =
2

𝐿𝐶
(1− 𝑐𝑜𝑠𝜃) (6.1.2)

Рис. 3.2

Из периодического характера этого

уравнения следует, что физический смысл

имеет лишь та часть дисперсионных вет-

вей, которая лежит в области |𝜃| ≤ 𝜋. Т.е.

набег фазы на одно звено не может пре-

вышать 𝜋. Поскольку постоянная распро-

странения 𝜃 связана с длиной волны 𝜆 со-

отношением 𝜆 = 2𝜋/𝜃, то из существования

𝜃𝑚𝑎𝑥 = 𝜋 вытекает существование 𝜆𝑚𝑖𝑛 = 2.

Иными словами, волны с длиной в одну

ячейку существовать не могут. Этот ре-

зультат порождён дискретным характером

структуры фильтра и может быть предска-

зан заранее.

Полоса прозрачности ФНЧ, в силу (3.15), задаётся условием

𝜔2 ≤ 4

𝐿𝐶
(𝜉2 =

𝜔2

𝜔ср2
≤ 1) (6.1.3)

Характеристический импеданс фильтра, состоящего из Т - и П - образных звеньев

задаётся соотношениями:

𝑍𝑇
𝑥 = 𝜌

√︀
1− 𝜉2, 𝑍П

𝑥 =
𝜌√︀

1− 𝜉2
(6.1.4)
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(𝜌 =
√︀
𝐿/𝐶)

Рис. 3.3

Соответствующие им частотные зависимости изображены на рис. 3.3.

Рис. 3.4

Параметры звеньев фильтра рассчитывают-

ся по формулам

𝐿 =
2𝜌

𝜔ср
, 𝐶 =

2

𝜌𝜔ср
(6.1.5)

Время задержки на одно звено даётся выраже-

нием:

𝜏 =
2

𝜔ср
√︀

1− 𝜉2
(6.1.6)

Графически зависимость времени задержки от ча-

стоты изображена на рис. 3.4.
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2.2 Фильтр высокой частоты (ФВЧ)

Вид отдельного звена ФВЧ изображён на рис. 3.5. ФВЧ служит для пропускания колеба-

ний с частотами 𝜔 ≥ 𝜔ср. Для ФВЧ

Рис. 3.5

𝑍 =
1

𝑖𝜔𝐶
, 𝐺 =

1

𝑖𝜔𝐿
(6.2.1)

При этом дисперсионное уравнение имеет вид.

𝜔2 =
1

2𝐿𝐶(1− 𝑐𝑜𝑠𝜃)
(6.2.2)

График дисперсионной зависимости 𝜔 = 𝜔(𝜃) приведён на рис. 3.6.

Рис. 3.6

Полоса прозрачности ФВЧ определяется из условия

1− 1

4𝜔2𝐿𝐶
≥ 0 (𝜉2 ≥ 1) (6.2.3)

Характеристический импеданс фильтра, состоящего из Т- и П- образных звеньев

задаётся соотношениями

𝑍𝑇
𝑥 = 𝜌

√︂
1− 1

𝜉2
, 𝑍П

𝑥 =
𝜌𝜉√︀
𝜉2 − 1

(6.2.4)
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(𝜌 =
√︀
𝐿/𝐶)

Соответствующие им частотные зависимости изображены на рис. 3.7.

Рис. 3.7

Параметры звеньев фильтра рассчитываются по формулам

𝐿 =
𝜌

2𝜔ср
, 𝐶 =

1

2𝜌𝜔ср
(6.2.5)

Рис. 3.8

Время задержки на одно звено даётся выра-

жением

𝜏 =
1

𝜔ср𝜉
√︀

𝜉2 − 1
(6.2.6)

Графически зависимость времени задержки от

частоты изображена на рис. 3.8.
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2.3 Полосовой фильтр (ПФ)

Вид отдельного звена полосового фильтра изображен на рис. 3.9. Полосовой фильтр слу-

жит для пропускания колебаний в полосе частот 𝜔1 ≤ 𝜔 ≤ 𝜔2.

Рис. 3.9

Для полосового фильтра:

𝑍 = 𝑖𝜔𝐿1 +
1

𝑖𝜔𝐶1

, 𝐺 = 𝑖𝜔𝐶2 +
1

𝑖𝜔𝐿2

(6.3.1)

Дисперсионное уравнение полосового фильтра определяется следующей зависимо-

стью:

𝑓(𝜔2) = 𝑠𝑖𝑛2 𝜃

2
(6.3.2)

где

𝑓(𝜔2) =
(𝐿1𝐶1𝜔

2 − 1)(𝐿2𝐶2𝜔
2 − 1)

4𝜔2𝐿2𝐶1

(6.3.3)

(см. рис. 3.10). Так как 0 ≤ 𝑠𝑖𝑛2 𝜃
2
≤ 1, то система будет пропускать частоты 𝜔1 ≤ 𝜔 ≤ 1√

𝐿1𝐶1

и 1√
𝐿2𝐶2

≤ 𝜔 ≤ 𝜔2.

Рис. 3.10

На практике интересен случай, когда 1√
𝐿1𝐶1

= 1√
𝐿2𝐶2

= 𝜔0,
𝐿1

𝐿2
= 𝐶1

𝐶2
= 𝛼. При этом диспер-

сионное уравнение принимает вид(︁𝜔2

𝜔2
0

− 1
)︁𝜔0

2𝜔

√
𝛼 = ±𝑠𝑖𝑛

𝜃

2
(6.3.4)
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Соответствующие ему дисперсионные кривые изображены на рис. 3.11, где

𝜔1 =
𝜔 − 0√

𝛼
(
√
1 + 𝛼− 1), 𝜔2 =

𝜔 − 0√
𝛼

(
√
1 + 𝛼 + 1) (6.3.5)

Рис. 3.11

Полоса прозрачности фильтра определяется из условия(︁ 𝜔

𝜔0

− 𝜔0

𝜔

)︁2

𝛼 ≤ 4 (6.3.6)

Характеристический импеданс фильтра, состоящего и Т - и П - образных звеньев

задаётся соотношениями

𝑍𝑇
𝑥 = 𝜌

√︂
1− 𝛼

4

(︁ 𝜔

𝜔0

− 𝜔0

𝜔

)︁2

, 𝑍П
𝑥 =

𝜌√︂
1− 𝛼

4

(︁
𝜔
𝜔0

− 𝜔0

𝜔

)︁2
(6.3.7)

где 𝜌 =
√︀
𝐿2/𝐶1. Зависимость этого импеданса от частоты приведена на рис. 3.12.

Рис. 3.12
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Параметры фильтра рассчитываются по следующим формулам:

𝐿1 =

√
𝛼𝜌

𝜔0

=
2𝜌

𝜔2 − 𝜔1

, 𝐿2 =
𝐿1

𝛼
=

𝜌(𝜔2 − 𝜔1)

2𝜔2
0

(6.3.7)

𝐶1 =
1

𝜔2
0𝐿1

=
𝜔2 − 𝜔1

2𝜌𝜔1𝜔2

, 𝐶2 = 𝛼𝐶1 =
2

𝜌(𝜔2 − 𝜔1)

𝜌 =

√︂
𝐿2

𝐶1

=

√︂
𝐿1

𝛼𝐶1
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3 Практическая часть

3.1 Фильтр низкой частоты (ФНЧ)

Измерения с фильтром низкой частоты (ФНЧ):

𝐿 = 17 мГн, 𝐶 = 0, 025 мкФ, 𝑅 = 824 Ом

𝜈, Гц 𝑈вх, В 𝑈вых, В 𝜙, рад 𝑁 𝜏 , мс

400 1,7 1,6 0 6 0,11

1000 1,5 - 5 0,1

3000 1,4 - 4 0,075

4000 1,33 - 3 0,065

5500 1,2 3𝜋/2 2 0,04

7000 1,1 - 1 0,02

7440 1,0 2𝜋

9000 0,9 5𝜋/2

10800 0,7 3𝜋

12000 0,5 7𝜋/2

13000 0,3 4𝜋
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Сравнение времени задержки на одно звено.

𝜏 =
2

𝜔ср
√︀

1− 𝜉2

Экспериментальное 𝜏 = 0.02𝑚𝑠

Экспериментольная 𝜔𝑐𝑝 = 5500Гц

Теоритеческое 𝜏 =

19
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3.2 Фильтр высокой частоты (ФВЧ)

Измерения с фильтром высокой частоты (ФВЧ):

𝐿 = 4, 25 мГн, 𝐶 = 0, 03 мкФ, 𝑅 = 583 Ом

𝜈, Гц 𝑈вх, В 𝑈вых, В 𝜙, рад

0 Нелинейный режим - -

8000 1,25 0,2 0

8800 0,3 𝜋/2

9800 0,4 𝜋

11500 0,48 3𝜋/2

13800 0,6 2𝜋

18400 0,68 5𝜋/2

27500 0,7 3𝜋

55000 0,75 7𝜋/2
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Рис. 1: Преобразование П - образного сигнала
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3.3 Полосовой фильтр (ПФ)

Измерения с полосовым фильтром (ПФ):

𝐿 = 8, 5 мГн, 𝐶 = 0, 1 мкФ, 𝑅 = 291 Ом

𝜈, Гц 𝑈вх, В 𝑈вых, В 𝜙, рад

3800 1,3 0,08 -

4000 0,15 -

4300 0,3 𝜋/2

4900 0,51 𝜋

6100 0,53 3𝜋/2

8000 0,53 2𝜋

10800 0,519 5𝜋/2

14750 0,25 3𝜋
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Рис. 2: Преобразование П-образного сигнала

4 Вывод.

Были изучены свойства линейных дискретных систем со многими степенями свободы

на примере электрических фильтров. Измерены амплитудно- и фазо-частотная харак-

теристика многозвенных фильтров низких частот, фильтров высоких частот и полосовых

фильтров
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